Download
jcm-09-01545.pdf 648,88KB
WeightNameValue
1000 Titel
  • Specific EEG Encephalopathy Pattern in SARS-CoV-2 Patients
1000 Autor/in
  1. Pastor, Jesus |
  2. Vega-Zelaya, Lorena |
  3. Martín Abad, Elena |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-05-20
1000 Erschienen in
1000 Quellenangabe
  • 9(5):1545
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.3390/jcm9051545 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • We used quantified electroencephalography (qEEG) to define the features of encephalopathy in patients released from the intensive care unit after severe illness from COVID-19. Artifact-free 120–300 s epoch lengths were visually identified and divided into 1 s windows with 10% overlap. Differential channels were grouped by frontal, parieto-occipital, and temporal lobes. For every channel and window, the power spectrum was calculated and used to compute the area for delta (0–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz) bands. Furthermore, Shannon’s spectral entropy (SSE) and synchronization by Pearson’s correlation coefficient () were computed; cases of patients diagnosed with either infectious toxic encephalopathy (ENC) or post-cardiorespiratory arrest (CRA) encephalopathy were used for comparison. Visual inspection of EEGs of COVID patients showed a near-physiological pattern with scarce anomalies. The distribution of EEG bands was different for the three groups, with COVID midway between distributions of ENC and CRA; specifically, temporal lobes showed different distribution for EEG bands in COVID patients. Besides, SSE was higher and hemispheric connectivity lower for COVID. We objectively identified some numerical EEG features in severely ill COVID patients that can allow positive diagnosis of this encephalopathy.
1000 Sacherschließung
lokal quantified EEG
gnd 1206347392 COVID-19
lokal Cardiorespiratory arrest
lokal spectral entropy
lokal correlation coefficient
lokal fast Fourier transform
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0001-6870-8409|https://frl.publisso.de/adhoc/uri/VmVnYS1aZWxheWEsIExvcmVuYQ==|https://frl.publisso.de/adhoc/uri/TWFydMOtbiBBYmFkLCBFbGVuYQ==
1000 Label
1000 Förderer
  1. Ministerio de Sanidad, Servicios Sociales e Igualdad |
  2. European Regional Development Fund |
1000 Fördernummer
  1. FIS PI17/02193
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
  1. Specific EEG Encephalopathy Pattern in SARS-CoV-2 Patients
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Ministerio de Sanidad, Servicios Sociales e Igualdad |
    1000 Förderprogramm -
    1000 Fördernummer FIS PI17/02193
  2. 1000 joinedFunding-child
    1000 Förderer European Regional Development Fund |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6421041.rdf
1000 Erstellt am 2020-05-20T15:54:29.746+0200
1000 Erstellt von 122
1000 beschreibt frl:6421041
1000 Bearbeitet von 122
1000 Zuletzt bearbeitet 2020-05-20T16:01:48.895+0200
1000 Objekt bearb. Wed May 20 16:01:18 CEST 2020
1000 Vgl. frl:6421041
1000 Oai Id
  1. oai:frl.publisso.de:frl:6421041 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source