Download
1-s2.0-S0168169922002113-main.pdf 9,12MB
WeightNameValue
1000 Titel
  • Patch cropping- a new methodological approach to determine new field arrangements that increase the multifunctionality of agricultural landscapes
1000 Autor/in
  1. Donat, Marco |
  2. Geistert, Jonas |
  3. Grahmann, Kathrin |
  4. Bloch, Ralf |
  5. Bellingrath-Kimura, Sonoko D. |
1000 Erscheinungsjahr 2022
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2022-04-12
1000 Erschienen in
1000 Quellenangabe
  • 197:106894
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2022
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1016/j.compag.2022.106894 |
1000 Ergänzendes Material
  • https://www.sciencedirect.com/science/article/pii/S0168169922002113?via%3Dihub#s0120 |
  • https://www.sciencedirect.com/science/article/pii/S0168169922002113?via%3Dihub#s0125 |
  • https://www.sciencedirect.com/science/article/pii/S0168169922002113?via%3Dihub#s0130 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Agricultural intensification decreased land cover complexity by converting small complex arable field geometries into large and simple structures which then were managed uniformly. These changes have led to a variety of negative environmental effects and influence ecosystem services. We present a novel small-scale and site-specific cropping system which splits a large field into small homogeneous sub-fields called ‘patches’ grouped in different yield potentials. A detailed workflow is presented to generate new spatially arranged patches with special focus on preprocessing and filtering of multi-year yield data, the variation in patch sizes and the adaptation of maximum working width to use available conventional farm equipment and permanent traffic lanes. The reduction of variance by the used cluster algorithm depends on the within-field heterogeneity. The patch size, the number of growing seasons (GS) used for clustering and the parallel shift of the patch structure along the permanent traffic lane resulted in a change in relative variance. Independent cross validation showed an increased performance of the classification algorithm with increasing number of GS used for clustering. The applied cluster analysis resulted in robust field segregation according to different yield potential zones and provides an innovative method for a novel cropping system.
1000 Sacherschließung
lokal Soil Management Zone Delineation
lokal Python
lokal Yield Productivity Zones
lokal Clustering
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/RG9uYXQsIE1hcmNv|https://frl.publisso.de/adhoc/uri/R2Vpc3RlcnQsIEpvbmFz|https://frl.publisso.de/adhoc/uri/R3JhaG1hbm4sIEthdGhyaW4=|https://frl.publisso.de/adhoc/uri/QmxvY2gsIFJhbGY=|https://frl.publisso.de/adhoc/uri/QmVsbGluZ3JhdGgtS2ltdXJhLCBTb25va28gRC4=
1000 Label
1000 Förderer
  1. Bundesministerium für Bildung und Forschung |
  2. Deutsche Forschungsgemeinschaft |
1000 Fördernummer
  1. 031B0729A
  2. -
1000 Förderprogramm
  1. Digital Agriculture Knowledge and Information System (DAKIS)
  2. Germany’s Excellence Strategy, EXC-2070 – 390732324 – PhenoRob
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Bundesministerium für Bildung und Forschung |
    1000 Förderprogramm Digital Agriculture Knowledge and Information System (DAKIS)
    1000 Fördernummer 031B0729A
  2. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm Germany’s Excellence Strategy, EXC-2070 – 390732324 – PhenoRob
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6433770.rdf
1000 Erstellt am 2022-06-08T13:44:28.912+0200
1000 Erstellt von 317
1000 beschreibt frl:6433770
1000 Bearbeitet von 218
1000 Zuletzt bearbeitet Sat Dec 24 13:34:10 CET 2022
1000 Objekt bearb. Sat Dec 24 13:34:09 CET 2022
1000 Vgl. frl:6433770
1000 Oai Id
  1. oai:frl.publisso.de:frl:6433770 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source