Download
s12967-019-1864-9.pdf 1,33MB
WeightNameValue
1000 Titel
  • Are innovation and new technologies in precision medicine paving a new era in patients centric care?
1000 Autor/in
  1. Seyhan, Attila A |
  2. Carini, Claudio |
1000 Erscheinungsjahr 2019
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2019-04-05
1000 Erschienen in
1000 Quellenangabe
  • 17:114
1000 Copyrightjahr
  • 2019
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12967-019-1864-9 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6451233/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Healthcare is undergoing a transformation, and it is imperative to leverage new technologies to generate new data and support the advent of precision medicine (PM). Recent scientific breakthroughs and technological advancements have improved our understanding of disease pathogenesis and changed the way we diagnose and treat disease leading to more precise, predictable and powerful health care that is customized for the individual patient. Genetic, genomics, and epigenetic alterations appear to be contributing to different diseases. Deep clinical phenotyping, combined with advanced molecular phenotypic profiling, enables the construction of causal network models in which a genomic region is proposed to influence the levels of transcripts, proteins, and metabolites. Phenotypic analysis bears great importance to elucidat the pathophysiology of networks at the molecular and cellular level. Digital biomarkers (BMs) can have several applications beyond clinical trials in diagnostics- to identify patients affected by a disease or to guide treatment. Digital BMs present a big opportunity to measure clinical endpoints in a remote, objective and unbiased manner. However, the use of "omics" technologies and large sample sizes have generated massive amounts of data sets, and their analyses have become a major bottleneck requiring sophisticated computational and statistical methods. With the wealth of information for different diseases and its link to intrinsic biology, the challenge is now to turn the multi-parametric taxonomic classification of a disease into better clinical decision-making by more precisely defining a disease. As a result, the big data revolution has provided an opportunity to apply artificial intelligence (AI) and machine learning algorithms to this vast data set. The advancements in digital health opportunities have also arisen numerous questions and concerns on the future of healthcare practices in particular with what regards the reliability of AI diagnostic tools, the impact on clinical practice and vulnerability of algorithms. AI, machine learning algorithms, computational biology, and digital BMs will offer an opportunity to translate new data into actionable information thus, allowing earlier diagnosis and precise treatment options. A better understanding and cohesiveness of the different components of the knowledge network is a must to fully exploit the potential of it.
1000 Sacherschließung
lokal Biomarkers
lokal Genomics
lokal Machine learning
lokal Cancer
lokal Artificial intelligence
lokal Deep phenotyping
lokal Autoimmune and inflammatory diseases
lokal Proteomics
lokal Diabetes
lokal Personalized medicine
lokal Precision medicine
lokal Modeling and simulation
lokal Genetics
lokal Epigenetics
lokal Digital biomarkers
lokal Immuno-oncology
lokal microRNAs
lokal Transcriptomics
lokal miRNAs
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0003-1276-8466|https://frl.publisso.de/adhoc/uri/Q2FyaW5pLCBDbGF1ZGlv
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6435323.rdf
1000 Erstellt am 2022-10-06T12:38:14.601+0200
1000 Erstellt von 329
1000 beschreibt frl:6435323
1000 Bearbeitet von 25
1000 Zuletzt bearbeitet 2022-11-11T08:23:04.539+0100
1000 Objekt bearb. Fri Nov 11 08:23:04 CET 2022
1000 Vgl. frl:6435323
1000 Oai Id
  1. oai:frl.publisso.de:frl:6435323 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source