Download
Sefika_Efeoglu_frl6440380_coverpage.pdf 1,05MB
WeightNameValue
1000 Titel
  • Fine-Grained Named Entities for Corona News - Presentation
1000 Autor/in
  1. Efeoglu, Sefika |
  2. Paschke, Adrian |
1000 Erscheinungsjahr 2023
1000 Publikationstyp
  1. Kongressschrift |
1000 Online veröffentlicht
  • 2023-03
1000 Erschienen in
1000 Übergeordneter Kongress
1000 Lizenz
1000 Verlagsversion
  • https://www.swat4ls.org/workshops/basel2023/scientific-programme-2023/ |
1000 Ergänzendes Material
  • https://github.com/sefeoglu/coronanews-ner |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Information resources like newspapers have produced unstructured text data in various languages related to the corona outbreak since December 2019. Analyzing these unstructured texts is time-consuming without representing them in a structured format; therefore, representing them in a structured format is crucial. An information extraction pipeline with essential tasks: named entity tagging and relation extraction to accomplish this goal might be applied to these texts. This study proposes a data annotation pipeline to generate training data from corona news articles, including generic and domain-specific entities. Named entity recognition models are trained on this annotated corpus and then evaluated on test sentences manually annotated by domain experts evaluating the performance of a trained model. The code base and demo are available at https://github.com/sefeoglu/coronanews-ner.git
1000 Sacherschließung
lokal named entity recognition
lokal corona news
lokal fine-grained entities
lokal contextual embedding
1000 Fächerklassifikation (DDC)
1000 DOI 10.4126/FRL01-006440380 |
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-9232-4840|https://orcid.org/0000-0003-3156-9040
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
  1. Fine-Grained Named Entities for Corona News - Presentation
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6440380.rdf
1000 Erstellt am 2023-02-24T11:07:59.724+0100
1000 Erstellt von 25
1000 beschreibt frl:6440380
1000 Bearbeitet von 25
1000 Zuletzt bearbeitet Mon Mar 06 09:07:04 CET 2023
1000 Objekt bearb. Mon Mar 06 09:06:46 CET 2023
1000 Vgl. frl:6440380
1000 Oai Id
  1. oai:frl.publisso.de:frl:6440380 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source