Download
13073_2024_Article_1315.pdf 1,83MB
WeightNameValue
1000 Titel
  • Deep learning in cancer genomics and histopathology
1000 Autor/in
  1. Unger, Michaela |
  2. Kather, Jakob Nikolas |
1000 Verlag BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-03-27
1000 Erschienen in
1000 Quellenangabe
  • 16(1):44
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s13073-024-01315-6 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976780/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:p>Histopathology and genomic profiling are cornerstones of precision oncology and are routinely obtained for patients with cancer. Traditionally, histopathology slides are manually reviewed by highly trained pathologists. Genomic data, on the other hand, is evaluated by engineered computational pipelines. In both applications, the advent of modern artificial intelligence methods, specifically machine learning (ML) and deep learning (DL), have opened up a fundamentally new way of extracting actionable insights from raw data, which could augment and potentially replace some aspects of traditional evaluation workflows. In this review, we summarize current and emerging applications of DL in histopathology and genomics, including basic diagnostic as well as advanced prognostic tasks. Based on a growing body of evidence, we suggest that DL could be the groundwork for a new kind of workflow in oncology and cancer research. However, we also point out that DL models can have biases and other flaws that users in healthcare and research need to know about, and we propose ways to address them.</jats:p>
1000 Sacherschließung
lokal Genomics
lokal Deep Learning [MeSH]
lokal Precision oncology
lokal Humans [MeSH]
lokal Neoplasms/diagnosis [MeSH]
lokal Precision Medicine/methods [MeSH]
lokal Genomics/methods [MeSH]
lokal Neoplasms/genetics [MeSH]
lokal Histopathology
lokal Artificial Intelligence [MeSH]
lokal Multimodality
lokal Review
lokal Deep learning
lokal Applications of technology in health and disease
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0001-5811-0200|https://frl.publisso.de/adhoc/uri/S2F0aGVyLCBKYWtvYiBOaWtvbGFz
1000 Hinweis
  • DeepGreen-ID: 29a73225428c47529bc281c3c5212c4d ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
  1. Deep learning in cancer genomics and histopathology
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6496508.rdf
1000 Erstellt am 2025-02-04T13:53:37.548+0100
1000 Erstellt von 322
1000 beschreibt frl:6496508
1000 Zuletzt bearbeitet 2025-09-11T19:25:38.117+0200
1000 Objekt bearb. Thu Sep 11 19:25:38 CEST 2025
1000 Vgl. frl:6496508
1000 Oai Id
  1. oai:frl.publisso.de:frl:6496508 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source