Download
os-21-199-2025.pdf 10,22MB
WeightNameValue
1000 Titel
  • Estimating ocean currents from the joint reconstruction of absolute dynamic topography and sea surface temperature through deep learning algorithms
1000 Autor/in
  1. Ciani, Daniele |
  2. Fanelli, Claudia |
  3. Buongiorno Nardelli, Bruno |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2025
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2025-01-27
1000 Erschienen in
1000 Quellenangabe
  • 21(1):199-216
1000 Copyrightjahr
  • 2025
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/os-21-199-2025 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Our study focuses on absolute dynamic topography (ADT) and sea surface temperature (SST) mapping from satellite observations, with the primary objective of improving the satellite-derived ADT (and derived geostrophic currents) spatial resolution. Retrieving consistent high-resolution ADT and SST information from space is challenging, due to instrument limitations, sampling constraints, and degradations introduced by the interpolation algorithms used to obtain gap-free (L4) analyses. To address these issues, we developed and tested different deep learning methodologies, specifically convolutional neural network (CNN) models that were originally proposed for single-image super resolution. Building upon recent findings, we conduct an Observing System Simulation Experiment (OSSE) relying on Copernicus numerical model outputs (with respective temporal and spatial resolutions of 1 d and 1/24°), and we present a strategy for further refinements. Previous OSSEs combined low-resolution L4 satellite equivalent ADTs with high-resolution “perfectly known” SSTs to derive high-resolution sea surface dynamical features. Here, we introduce realistic SST L4 processing errors and modify the network to concurrently predict high-resolution SST and ADT from synthetic, satellite equivalent L4 products. This modification allows us to evaluate the potential enhancement in the ADT and SST mapping while integrating dynamical constraints through tailored, physics-informed loss functions. The neural networks are thus trained using OSSE data and subsequently applied to the Copernicus Marine Service satellite-derived ADTs and SSTs, allowing us to reconstruct super-resolved ADTs and geostrophic currents at the same spatiotemporal resolution of the model outputs employed for the OSSE. A 12-year-long time series of super-resolved geostrophic currents (2008–2019) is thus presented and validated against in situ-measured currents from drogued drifting buoys and via spectral analyses. This study suggests that CNNs are beneficial for improving standard altimetry mapping: they generally sharpen the ADT gradients, with consequent correction of the surface currents direction and intensities with respect to the altimeter-derived products. Our investigation is focused on the Mediterranean Sea, quite a challenging region due to its small Rossby deformation radius (around 10 km). </jats:p>
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-8767-4379|https://orcid.org/0000-0002-7785-2821|https://orcid.org/0000-0002-3416-7189
1000 Hinweis
  • DeepGreen-ID: 92be80f804d546ad864756ba5ca40e8e ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. European Space Agency |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer European Space Agency |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6500817.rdf
1000 Erstellt am 2025-02-05T11:41:29.218+0100
1000 Erstellt von 322
1000 beschreibt frl:6500817
1000 Zuletzt bearbeitet 2025-02-20T08:46:54.369+0100
1000 Objekt bearb. Thu Feb 20 08:46:54 CET 2025
1000 Vgl. frl:6500817
1000 Oai Id
  1. oai:frl.publisso.de:frl:6500817 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source