Download
12874_2024_Article_2429.pdf 2,54MB
WeightNameValue
1000 Titel
  • Internal validation of self-reported case numbers in hospital quality reports: preparing secondary data for health services research
1000 Autor/in
  1. Ji, Limei |
  2. Geraedts, Max |
  3. de Cruppé, Werner |
1000 Verlag BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-12-31
1000 Erschienen in
1000 Quellenangabe
  • 24(1):325
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12874-024-02429-6 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686984/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>Health services research often relies on secondary data, necessitating quality checks for completeness, validity, and potential errors before use. Various methods address implausible data, including data elimination, statistical estimation, or value substitution from the same or another dataset. This study presents an internal validation process of a secondary dataset used to investigate hospital compliance with minimum caseload requirements (MCR) in Germany. The secondary data source validated is the German Hospital Quality Reports (GHQR), an official dataset containing structured self-reported data from all hospitals in Germany.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>This study conducted an internal cross-field validation of MCR-related data in GHQR from 2016 to 2021. The validation process checked the validity of reported MCR caseloads, including data availability and consistency, by comparing the stated MCR caseload with further variables in the GHQR. Subsequently, implausible MCR caseload values were corrected using the most plausible values given in the same GHQR. The study also analysed the error sources and used reimbursement-related Diagnosis Related Groups Statistic data to assess the validation outcomes.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>The analysis focused on four MCR procedures. 11.8–27.7% of the total MCR caseload values in the GHQR appeared ambiguous, and 7.9–23.7% were corrected. The correction added 0.7–3.7% of cases not previously stated as MCR caseloads and added 1.5–26.1% of hospital sites as MCR performing hospitals not previously stated in the GHQR. The main error source was this non-reporting of MCR caseloads, especially by hospitals with low case numbers. The basic plausibility control implemented by the Federal Joint Committee since 2018 has improved the MCR-related data quality over time.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusions</jats:title> <jats:p>This study employed a comprehensive approach to dataset internal validation that encompassed: (1) hospital association level data, (2) hospital site level data and (3) medical department level data, (4) report data spanning six years, and (5) logical plausibility checks. To ensure data completeness, we selected the most plausible values without eliminating incomplete or implausible data. For future practice, we recommend a validation process when using GHQR as a data source for MCR-related research. Additionally, an adapted plausibility control could help to improve the quality of MCR documentation.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Humans [MeSH]
lokal Quality of Health Care/statistics
lokal Hospitals/statistics
lokal Self Report/statistics
lokal Cross-field validation
lokal Hospitals/standards [MeSH]
lokal German hospital quality report
lokal Health Services Research/statistics
lokal Error source analysis
lokal Internal data validation
lokal Secondary data
lokal Reproducibility of Results [MeSH]
lokal Research
lokal Germany [MeSH]
lokal Minimum case volume regulations
lokal Quality of Health Care/standards [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/SmksIExpbWVp|https://frl.publisso.de/adhoc/uri/R2VyYWVkdHMsIE1heA==|https://frl.publisso.de/adhoc/uri/ZGUgQ3J1cHDDqSwgV2VybmVy
1000 Hinweis
  • DeepGreen-ID: 9761488c56914a8db165bcd144820cca ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Gemeinsame Bundesausschuss |
  2. Philipps-Universität Marburg |
1000 Fördernummer
  1. -
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Gemeinsame Bundesausschuss |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Philipps-Universität Marburg |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6507502.rdf
1000 Erstellt am 2025-02-06T14:33:51.502+0100
1000 Erstellt von 322
1000 beschreibt frl:6507502
1000 Zuletzt bearbeitet 2025-09-12T14:56:09.861+0200
1000 Objekt bearb. Fri Sep 12 14:56:09 CEST 2025
1000 Vgl. frl:6507502
1000 Oai Id
  1. oai:frl.publisso.de:frl:6507502 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source