Download
journal.pone.0314995.pdf 2,19MB
WeightNameValue
1000 Titel
  • Enhancing generalization in a Kawasaki Disease prediction model using data augmentation: Cross-validation of patients from two major hospitals in Taiwan
1000 Autor/in
  1. Hung, Chuan-Sheng |
  2. Lin, Chun-Hung Richard |
  3. Liu, Jain-Shing |
  4. Chen, Shi-Huang |
  5. Hung, Tsung-Chi |
  6. Tsai, Chih-Min |
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-12-31
1000 Erschienen in
1000 Quellenangabe
  • 19(12):e0314995
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1371/journal.pone.0314995 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687671/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Kawasaki Disease (KD) is a rare febrile illness affecting infants and young children, potentially leading to coronary artery complications and, in severe cases, mortality if untreated. However, KD is frequently misdiagnosed as a common fever in clinical settings, and the inherent data imbalance further complicates accurate prediction when using traditional machine learning and statistical methods. This paper introduces two advanced approaches to address these challenges, enhancing prediction accuracy and generalizability. The first approach proposes a stacking model termed the Disease Classifier (DC), specifically designed to recognize minority class samples within imbalanced datasets, thereby mitigating the bias commonly observed in traditional models toward the majority class. Secondly, we introduce a combined model, the Disease Classifier with CTGAN (CTGAN-DC), which integrates DC with Conditional Tabular Generative Adversarial Network (CTGAN) technology to improve data balance and predictive performance further. Utilizing CTGAN-based oversampling techniques, this model retains the original data characteristics of KD while expanding data diversity. This effectively balances positive and negative KD samples, significantly reducing model bias toward the majority class and enhancing both predictive accuracy and generalizability. Experimental evaluations indicate substantial performance gains, with the DC and CTGAN-DC models achieving notably higher predictive accuracy than individual machine learning models. Specifically, the DC model achieves sensitivity and specificity rates of 95%, while the CTGAN-DC model achieves 95% sensitivity and 97% specificity, demonstrating superior recognition capability. Furthermore, both models exhibit strong generalizability across diverse KD datasets, particularly the CTGAN-DC model, which surpasses the JAMA model with a 3% increase in sensitivity and a 95% improvement in generalization sensitivity and specificity, effectively resolving the model collapse issue observed in the JAMA model. In sum, the proposed DC and CTGAN-DC architectures demonstrate robust generalizability across multiple KD datasets from various healthcare institutions and significantly outperform other models, including XGBoost. These findings lay a solid foundation for advancing disease prediction in the context of imbalanced medical data.
1000 Sacherschließung
lokal Blood
lokal Kawasaki disease
lokal Machine learning
lokal Children
lokal Urine
lokal Forecasting
lokal Diagnostic medicine
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0009-0008-6290-0967|https://orcid.org/0000-0003-0840-394X|https://frl.publisso.de/adhoc/uri/TGl1LCBKYWluLVNoaW5n|https://frl.publisso.de/adhoc/uri/Q2hlbiwgU2hpLUh1YW5n|https://frl.publisso.de/adhoc/uri/SHVuZywgVHN1bmctQ2hp|https://frl.publisso.de/adhoc/uri/VHNhaSwgQ2hpaC1NaW4=
1000 (Academic) Editor
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6510869.rdf
1000 Erstellt am 2025-04-03T13:38:13.678+0200
1000 Erstellt von 337
1000 beschreibt frl:6510869
1000 Bearbeitet von 337
1000 Zuletzt bearbeitet 2025-08-26T14:19:09.629+0200
1000 Objekt bearb. Thu Apr 03 13:38:24 CEST 2025
1000 Vgl. frl:6510869
1000 Oai Id
  1. oai:frl.publisso.de:frl:6510869 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source