Download
s41598-024-74309-4.pdf 2,80MB
WeightNameValue
1000 Titel
  • Impact of coupled input data source-resolution and aggregation on contributions of high-yielding traits to simulated wheat yield
1000 Autor/in
  1. Rezaei, Ehsan Eyshi |
  2. Faye, Babacar |
  3. Ewert, Frank |
  4. Asseng, Senthold |
  5. Martre, Pierre |
  6. Webber, Heidi |
1000 Erscheinungsjahr 2024
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-10-05
1000 Erschienen in
1000 Quellenangabe
  • 14(1):23172
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1038/s41598-024-74309-4 |
  • https://pmc.ncbi.nlm.nih.gov/articles/PMC11455967/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • High-yielding traits can potentially improve yield performance under climate change. However, data for these traits are limited to specific field sites. Despite this limitation, field-scale calibrated crop models for high-yielding traits are being applied over large scales using gridded weather and soil datasets. This study investigates the implications of this practice. The SIMPLACE modeling platform was applied using field, 1 km, 25 km, and 50 km input data resolution and sources, with 1881 combinations of three traits [radiation use efficiency (RUE), light extinction coefficient (K), and fruiting efficiency (FE)] for the period 2001–2010 across Germany. Simulations at the grid level were aggregated to the administrative units, enabling the quantification of the aggregation effect. The simulated yield increased by between 1.4 and 3.1 t ha− 1 with a maximum RUE trait value, compared to a control cultivar. No significant yield improvement (< 0.4 t ha− 1) was observed with increases in K and FE alone. Utilizing field-scale input data showed the greatest yield improvement per unit increment in RUE. Resolution of water related inputs (soil characteristics and precipitation) had a notably higher impact on simulated yield than of temperature. However, it did not alter the effects of high-yielding traits on yield. Simulated yields were only slightly affected by data aggregation for the different trait combinations. Warm-dry conditions diminished the benefits of high-yielding traits, suggesting that benefits from high-yielding traits depend on environments. The current findings emphasize the critical role of input data resolution and source in quantifying a large-scale impact of high-yielding traits.
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/UmV6YWVpLCBFaHNhbiBFeXNoaQ==|https://frl.publisso.de/adhoc/uri/RmF5ZSwgQmFiYWNhcg==|https://frl.publisso.de/adhoc/uri/RXdlcnQsIEZyYW5r|https://frl.publisso.de/adhoc/uri/QXNzZW5nLCBTZW50aG9sZA==|https://frl.publisso.de/adhoc/uri/TWFydHJlLCBQaWVycmU=|https://frl.publisso.de/adhoc/uri/V2ViYmVyLCBIZWlkaQ==
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6511407.rdf
1000 Erstellt am 2025-05-19T09:53:40.049+0200
1000 Erstellt von 333
1000 beschreibt frl:6511407
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2025-06-10T10:39:42.904+0200
1000 Objekt bearb. Tue Jun 10 10:39:36 CEST 2025
1000 Vgl. frl:6511407
1000 Oai Id
  1. oai:frl.publisso.de:frl:6511407 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source