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1 Introduction

Bifactorial trial designs are used to test for the efficacy of fixed combinations of two com-

ponent drugs which form a large proportion of the total market. The efficacy mechanisms

are typically different for both agents and thus additive or even synergistic effects are ex-

pected which allow application of lower doses, decreasing the risk of adverse reactions

and toxicity. Clinically, it is of common interest if the respective combination groups have

a significantly higher response than both mono therapy groups as otherwise the use of

a drug combination would mean an unnecessary exposure to additional medication and

the risk of undesired interactions or side effects. In the drug admission process, statis-

tical confirmation of this property is required by regulatoric authorities as the European

Medicines Evaluation Agency (EMEA) and the United States Food and Drug Administra-

tion (FDA).

The analysis of dose-response relationships of combination drugs is needed for dose find-

ing purposes, i.e. to identify appropriate drug combinations in phase II trials as well as

for combined phase II/III trials. As an example of such an experiment, Hung (2000)

reported the results of a bifactorial clinical trial on hypertension patients who received a

combination of a diuretic (drug A) and an ACE inhibitor (drug B). The primary efficacy

parameter was the mean decrease in sitting diastolic blood pressure (SiDBP) with the

response means and sample size allocation (in parentheses) summarized as follows:

A=0 A=1 A=2 A=3

B=0 0 (75) 1.4 (75) 2.7 (74) 4.6 (48)
B=1 1.8 (74) 2.8 (75) 5.7 (74) 8.2 (49)
B=2 2.8 (48) 4.5 (50) 7.2 (48) 10.9 (48)

A pooled standard deviation of σ̂ = 7.07 was estimated.

The response means can be displayed as a function of the dose combinations in a three-

dimensional plot as shown in Figure 1.1a. Statistical tests are applied to the question

whether a particular combination is significantly more efficacious than both component

drugs. The AVE- and MAX-tests proposed by Hung, Chi and Lipicky (1993) and Hung

(2000) give an answer to the question if there exists at least one combination drug with

this property and can be applied to the above example. Hellmich and Lehmacher (2005)

reported pave = 0.000011 and pmax = 0.000048 for this. Now, these results both indi-

cate that there exists at least one combination that is significantly superior to both of its
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1 Introduction

components. The question for which particular subset of combinations this is true leads

to a multiple hypotheses problem for which the min-test proposed by Laska and Meis-

ner (1989) applies. Hellmich and Lehmacher (2005) determined one p-value for each

combination group:

A=1 A=2 A=3

B=1 0.69 0.029 0.035
B=2 0.50 0.007 0.000048

These p-values have been adjusted to account for the inflation of the type I error: if mul-

tiple hypotheses are tested, the probability to reject at least one true null hypothesis is

in general greater than the nominal level but can be controlled by adjustment of the cor-

responding p-values. The result from this analysis is that the combinations (1, 2), (1, 3),

(2, 2) and (2, 3) are all significantly more efficacious than their respective components.

Consider as a second application the example from the paper of Huang et al. (2007)

where the primary efficacy parameter was a dichotomous variable. The authors report

on a parallel phase I/II trial which is currently underway and was designed to evaluate

safety and efficacy for a combination of low-dose decitabine with cytarabine in the treat-

ment of acute myeloid leukemia (AML). Therapy response is investigated as the binary

endpoint of this trial, where achievement of complete remission is considered as the re-

sponse criterion. Toxicity and efficacy profiles of decitabine alone have been determined

in a phase I trial supervised by Issa et al. (2004) that surprisingly showed the most effi-

cacious levels to be those for low-dose decitabine; these can be described as two levels

such as “low-dose 1” and “low-dose 2”. According to the evaluation of complete remis-

sion under cytarabine alone, one “low-dose” and one “high-dose” level are studied. The

response rate for the latter is taken from Petersdorf et al. (2007), whereas the analysis

will be based on a guessed value for the low-level group.

As recruiting has just begun in this bifactorial trial, data for the response fraction un-

der combination therapy of decitabine and cytarabine are not available yet. Taking the

results of Issa et al. (2004) and Petersdorf et al. (2007) together, imaginary response

rates are guessed according to the single-compound treatments. For the methodology

exemplified here it is not relevant if the response rates which the calculations are based

on exactly reflect the truth. A possible scenario for the outcome of the bifactorial trial

might look similar to the following table with drug A representing decitabine and B

representing cytarabine. A placebo group with a zero rate is added which is needless for

the min-test analysis but required for placebo-controlled evaluation of the component

drugs.

10



1 Introduction

Figure 1.1: (a) Graphical representation of the hypertension example from Hung (2000).

The reduction of sitting diastolic blood pressure (SiDBP) is displayed as the primary

efficacy parameter. (b) Corresponding vizualisation of the binary data example from

Huang et al. (2007). The proportion of individuals that achieve complete remission

was determined in a sample of acute myeloid leukemia (AML) patients undergoing a

combination therapy. The figures have been generated by the R package bifactorial.

The following table specifies the respective response fractions per group and sample size

in parentheses:

(A,0) (A,1) (A,2)

(B,0) 0.00 (50) 0.45 (31) 0.65 (17)
(B,1) 0.30 (100) 0.71 (50) 0.70 (50)
(B,2) 0.59 (101) 0.64 (50) 0.75 (50)

These data are displayed in Figure 1.1b similarly as for the previous example. For the

binary case, there is no complete statistical methodology available up to now, at least not

as detailed as for the continuous case. The analysis of this example is therefore deferred

to Chapter 5 where binary endpoints are studied.

For continuous data, it was pointed out by Hung, Chi and Lipicky (1993) that the power

of the statistical methods for such a design strongly depends on how well the efficacy dif-

fers between the respective two component drugs. Furthermore, the theory is restricted

to standard distributional cases and requires quite technical derivations of the test statis-

tics’ distribution functions to determine the p-values. For practical purposes, it is also

11



1 Introduction

desirable to complement the p-values by corresponding confidence intervals and to in-

troduce concepts for sample size planning. In this thesis, bootstrap-based methods will

be applied to these problems as they allow for arbitrary distributional properties of the

data and their implementation is comparatively simple.
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2 A general approach to MCP and resampling methods

Multiple comparison procedures (MCP) are important for many practical applications.

Let H0 = {H0i}i∈I be a family of hypotheses, where I is a finite set. Typically, tests

for particular formations of parameters or some arbitrary subcollection of tests might be

of interest that both can be represented as multiple contrasts by a vector of coefficients

from the linear space C
m := {c ∈ R

m|
∑m

i=1 ci = 0}. Anyway, regarding the relation to

the following chapters, the focus will from now on primarily be on pairwise comparisons

on a single parameter between a particular subcollection of treatment groups, which is

obtained as a special case of multiple contrasts. If m groups with data X1, ...,Xm are

involved in the analysis, this results in a maximum number of k =
(

m
2

)
tests. Formally,

the index set I can then be written as a subset I ⊆ {1, ...,m} × {1, ...,m} such that an

example of H0 might be a collection of test problems with i = (i1, i2) ∈ I and

H0i : µi1 − µi2 = 0 vs. H1 : µi1 − µi2 6= 0, (2.1)

where in the treatment groups (i1, i2), µi1 and µi2 denote a parameter of interest in

connection with the research question, e.g. means of normal or event rates in binomial

populations, respectively. Furthermore, let H
I
0 :=

⋂
i∈I H0i and H

J
0 :=

⋂
i∈J H0i for J ⊂ I

be the complete and partial null hypotheses.

As an issue that is practically important and relevant to the applications discussed in this

thesis, all methods are discussed for multiple t-tests but also apply to χ2-type and other

statistics in an analogous way. If tests on equality of certain population means are to be

performed as in the application of Chapter 3, the decision on the system H0 is typically

based on k two-sample t-tests with a vector T := (T1, ..., Tk) ∈ R
k of test statistics. Under

the null hypothesis, each p-value in the analysis is uniformly distributed on the interval

[0, 1], i.e. containing p is equally likely for each of the 20 intervals [0, .05), ..., [.95, 1]

provided that the data are independent and normally distributed with equal variances in

the respective two groups. The type I error then exactly matches the given significance

level of 0.05. On the other hand, consider the event that at least one p-value is smaller

than α though all hypotheses are true, or equivalently, the latter holds for the minimum

of k p-values:

P ( min
1≤i≤k

pi ≤ 0.05) = 1 − P (pi > 0.05 ∀1 ≤ i ≤ k) = 1 − (1 − 0.05)k (2.2)

13



2 A general approach to MCP and resampling methods

Figure 2.1: Results of N = 10, 000 simulations of two-sample t-tests based on normal data

reflecting the null hypothesis with n = 100. The dashed line denotes the expected frequency

of p-values assuming they are uniformly distributed under the null hypothesis. In (a), this

assumption is strikingly satisfied as the histogram bars are well-aligned with the expected

level. Figure (b) shows frequencies of the minimum of 5 simulated p-values from k = 5

hypotheses tested each. Under the complete null hypothesis, the frequency of significant tests

by far exceeds the nominal level α = 0.05 as the actual type I error is 1− (1− 0.05)5 = 0.23.

Note that the latter is still much higher for settings with many more then five tests; e.g. 0.98

for k = 80.

This minimum is obviously not uniformly distributed under the complete null hypothesis

as small values are more likely to occur. The probability for at least one of the k p-

values to be in the interval [0, 0.05) by chance is therefore much larger than 0.05; the

probability density function (p.d.f.) of the minimum p-value distribution is derived from

(2.2) as f(p) = k(1 − p)k−1. For single Student t-tests as well as for the minimum of

k = 5 such p-values, this density has been simulated and visualized in Figure 2.1. Tools

are needed for modification of the tests to control the type I error by α also in multiple

testing procedures.

Several possibilities to define error probabilities in multiple inference procedures have

been discussed by Hochberg and Tamhane (1987). In (2.2), control of the probability

for at least one type I error was intuitively required, which Tukey (1953) recommended

14



as the definition that “should be standard, rarely will any other be appropriate”. In the

literature, this is commonly referred to as the familywise error (FWE). Formally, the FWE

can be further distinguished as follows:

(1) Partial familywise error (pFWE): the FWE is controlled in the strong sense, i.e. the

condition

P
(
∃i ∈ J : H0i is rejected |HJ

0

)
≤ α (2.3)

holds for the intersection H
J
0 of any possible collection of true null hypotheses

{H0i}i∈J ⊂ H0. Note that this probability depends on the choice of J ⊂ I.

(2) Common familywise error (cFWE): the FWE is controlled in the weak sense, i.e. the

condition

P
(
∃i ∈ I : H0i is rejected |HI

0

)
≤ α (2.4)

holds for the complete null hypothesis H
I
0 only.

The multiple p-values can be adjusted in a way that the distribution of their minimum

is uniform on the interval [0, 1] and the pFWE is controlled by the significance level α.

If K ⊂ I denotes the subset of true null hypotheses, this is attained by the definition

p̃i := P
(
maxj∈K |Tj| ≥ |ti|

∣∣HK
0

)
of the adjusted p-value for hypothesis H0i, extending

the usual univariate p-value representation pi = P (|Ti| ≥ |ti| |H0i ). However, if for all

subsets J ⊂ K, the joint distribution of the test statistics {Tj}j∈J does not depend on

which of the hypotheses in I \J are true, the value of p̃i will be the same if the expression

is considered for the whole set I instead:

p̃i = P

(
max
j∈I

|Tj| ≥ |ti|
∣∣HI

0

)
(2.5)

This modification will be very helpful for practical use in the following chapters. Note

that if different test statistics are used or both one- and two-tailed tests are among the

family of tests, the definition (2.5) can lead to unbalanced multiplicity adjustment. This

can be overcome using a definition based on the corresponding univariate p-values in-

stead (Westfall and Young, 1993). As the current chapter is intended as a review of

classical MCP, the historical notation will be used from now on, where inferences are

given by critical points or confidence statements, respectively, rather than in terms of

adjusted p-values. Without loss of generality, the notation for two-sided hypotheses as

stated in (2.1) is used.

For the problem of pairwise comparisons in mean, the simultaneous confidence intervals

15



2 A general approach to MCP and resampling methods

for the difference of population means µi1 and µi2 are of the form

µi1 − µi2 ∈


X̄i1 − X̄i2 ± ξi

√
σ̂2

i1

ni1

+
σ̂2

i2

ni2




with critical points ξi and sample variance estimates σ̂2
i1

and σ̂2
i2

. There are several reasons

for a common choice ξi ≡ ξ for these the most important of which is that calculation of

the ξi is then much more convenient (Hochberg and Tamhane, 1987). The common

critical point has to be chosen in a way that

P

(
max
i∈I

|Ti| ≥ ξ
∣∣HI

0

)
= α (2.6)

as rejecting at least one of the hypotheses in H0 is equivalent to maxi∈I |Ti| /∈ R0, where

the non-rejection region has got the form R0 =
{
t ∈ R

k|‖t‖∞ ≤ ξ
}

with ‖ · ‖∞ denoting

the maximum norm. The set R0 is a k-dimensional cube of edge length ξ, following from

the properties of ‖ · ‖∞ known from standard calculus.

Now, the multiple problem of inference on H0 essentially reduces to the determination

of ξ. In the literature, there have been many efforts on calculation or approximation of

expressions of the form in (2.6) for particular settings. Some essential ideas are given in

the following sections but these do by no means offer a complete overview.

2.1 Bonferroni and Šidák approach

An approach to multiple testing that is well-known to practitioners is the Bonferroni

method, which means to test each hypothesis H0i at level α
k

instead of α, where k is the

total number of hypotheses. The critical point for the ith test is then t
(1−α/k)
νi , the (1−α/k)

point of the t-distribution with νi = ni1 + ni2 − 2 degrees of freedom. As an upper bound

to the cFWE, the Bonferroni inequality

P
(
∃i ∈ I : H0i is rejected |HI

0

)
= P (max

i∈I
|Ti| ≥ |t(1−α/k)

νi
| |HI

0) ≤
∑

i∈I

P (|Ti| ≥ |t(1−α/k)
νi

| |HI
0)

(2.7)

holds independently from the distribution of the Ti, but is a somewhat rough upper

bound, contributing to the low power of the Bonferroni procedure. The familywise level

is controlled because it follows from (2.7) that

P
(
∃i ∈ I : H0i is rejected |HI

0

)
≤ k

α

k
= α (2.8)
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2.2 Tukey’s and Scheffé’s method

This requires the p-values involved in the analysis to be uniformly distributed on the in-

terval [0, 1] which is true, for instance, whenever the Student t-test is applied to normally

distributed data. However, the uniformity assumption is not always valid, e.g. in appli-

cations to non-normal populations or sparse binary data. In these cases, the Bonferroni

method may yield extremely conservative decisions.

As another approach that is closely related to this, the Šidák multiple testing method offers

a slight improvement compared to the Bonferroni method. The univariate hypotheses are

tested at level 1− (1− α)1/k instead of α such that the critical point is t
(1−(1−α)1/k)
νi for the

i-th test. To show that the cFWE is still bounded by α, the Bonferroni inequality is not

needed. Using the rules known from probability theory, it follows that

P
(
∃i ∈ I : H0i is rejected |HI

0

)
= P (max

i∈I
|Ti| ≥ |t(1−(1−α)1/k)

νi
| |HI

0)

= 1 − P (∀i ∈ I : |Ti| < |t(1−(1−α)1/k)
νi

| |HI
0)

= 1 −
∏

i∈I

P (|Ti| < |t(1−(1−α)1/k)
νi

| |HI
0) (2.9)

= 1 − ((1 − α)1/k)k) = α

if the univariate p-values are assumed to be independent and uniformly distributed on

[0, 1], i.e. the Šidák-adjusted p-values are exact in such a setting. Note that under certain

conditions, (2.9) is still valid as a “≤” relation if the independence assumption on the

p-values is dropped (Šidák, 1967 and Jogdeo, 1977); i.e. the cFWE is controlled but the

Šidák method is then no more exact. Nevertheless, the Šidák multiple testing method is

in general more powerful than the Bonferroni procedure which can be proven by Taylor

expansion of the levels α/k and 1 − (1 − α)1/k.

2.2 Tukey’s and Scheffé’s method

Tukey (1953) proposed an approach to multiple inference where all pairwise compar-

isons are to be performed in a collection of m groups in which a normal distributed

parameter is measured; i.e. the hypotheses of interest are of the form in (2.1) with

I = {1, ...,m} × {1, ...,m}. This involves k =
(

m
2

)
single tests. For the balanced case

n1 = ... = nm ≡ n, the statistic maxi∈I |Ti| is distributed as the Studentized range random

variable

Qk,ν =
max1≤i<j≤k |Zi − Zj|√

U/ν
, (2.10)

where U is χ2
ν-distributed with ν = n− 1 degrees of freedom and Z1, . . . , Zk are indepen-

dent standard normal variables. The critical point for the multiple procedure is then its
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2 A general approach to MCP and resampling methods

upper α-quantile ξ := Q
(α)
k,ν that can be obtained from appropriate tables e.g. in the ap-

pendix of Hochberg and Tamhane (1987). The cumulative distribution function (c.d.f.)

of the Studentized range random variable is also given there.

This is the classical T-procedure as it was initially introduced by Tukey (1953). For the

balanced case, it has been shown by Gabriel (1970) that the corresponding simultane-

ous confidence intervals are the shortest among all intervals with constant length that

keep the level 1 − α. For general unbalanced designs, an approximate solution to (2.6)

is classically given by the Tukey-Kramer procedure (Tukey, 1953 and Kramer, 1956): the

upper α-point Q
(α)
k,ν of the Studentized range distribution is taken as the critical point also

in the unbalanced case. Hayter (1984) proved that the inequality

P
(
µi − µj ∈

[
Ȳi − Ȳj ± Q

(α)
k,νS

√
1

2

„

1

ni
+ 1

nj

«

])
≥ 1 − α

holds for arbitrary sample sizes n1, ..., nm. The test results from this approach are then no

more exact but always keep the nominal significance level α. Hayter (1984) also showed

that the procedure performs conservative for strongly unbalanced sample size allocation.

Another classical approach for multiple comparisons in general unbalanced designs is the

multiple procedure of Scheffé (1953) that is commonly known as the S-procedure. The

critical point for any collection of multiple comparisons is defined by ξ :=
√

(m − 1)F
(α)
m−1,ν ,

where F
(α)
m−1,ν denotes the upper α-quantile of the multivariate F -distribution with pa-

rameters m − 1 and ν. This procedure is exact for the case of all real-valued contrasts

being tested, i.e. the identity

P


∀c ∈ C

m :
m∑

i=1

ciµi ∈




m∑

i=1

ciX̄i ± σ̂

√
(m − 1)F

(α)
m−1,ν

(
m∑

i=1

c2
i

ni

)1/2



 = 1 − α (2.11)

holds for any choice of m with the linear space C
m defined previously, i.e. the number

of tests is infinite and even uncountable in contrast to the prior discussion. The proof of

(2.11) is based on the fact that
m∑

i=1

X̄
2
i

σ2/ni
˜ χ2

m−1 and
νσ̂2

σ2 ˜ χ2
ν

under the complete null hypothesis; hence it follows that ν
m−1

times the ratio of both

statistics is Fm−1, ν-distributed. Details on this are given in Hsu (1996) and the classical

paper of Scheffé (1953).

The S-procedure provides a tool for a wide range of multiple contrast tests, but for par-

ticular subsets of hypotheses, the performance can be very poor. As a corollary to (2.11),
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2.3 Multiple inferences using the multivariate t-distribution

it follows that the coverage probability is greater than 1−α for particular contrast matri-

ces: for the all pairwise comparisons problem, the intervals are in fact wider than if the

Tukey-Kramer procedure is applied (Hsu, 1996).

2.3 Multiple inferences using the multivariate t-distribution

The Bonferroni and Šidák approaches to the multiple problem H0 assume that the k test

statistics involved in the analysis are stochastically independent. This is accompanied

by an unreasonable waste of information: consider the marginal case where the same

null hypothesis is tested k times, using always the same test, i.e. the correlation matrix

of the test statistics is a k × k matrix containing the value 1 in each cell. Obviously no

multiplicity adjustment is needed in such a setting as it is equivalent to the univariate

test. Now, speaking heuristically, if the statistics from two different tests in the analysis

are highly correlated, indicating that the hypothesis of the first test is associated with that

of the second, there is less multiplicity adjustment necessary than for two independent

test statistics. In general, if any two of the k test statistics in the analysis have non-

vanishing correlations or if the correlation matrix of the multiple problem is any other

than the identity matrix, this information may be used to construct more powerful tests.

Modifications allowing for more general MCP exist for the T-procedure. These methods

are no longer needed as solutions of (2.6) can nowadays be calculated numerically on

a standard desktop computer: for a multiple procedure, the multivariate distribution of

the vector T can be involved in the determination of a rejection region R = R
k \ R0 ={

t ∈ R
k|‖t‖∞ > ξ

}
, where the critical point ξ is to be chosen in a way that (2.6) holds.

For multiple t-tests, the value of ξ is uniquely determined by the condition

Γ
(

k+ν
2

)

Γ
(

ν
2

)√
|R|(νπ)k

∫

R

(
1 +

t
T
R

−1
t

ν

)− k+ν
2

dt = α,

where the integrand represents the p.d.f. of the centered multivariate t-distribution with

correlation matrix R and ν degrees of freedom. From this, a value of ξ that satisfies

condition (2.6) can in principle be calculated numerically. This may be difficult and

connected to extremely high computational effort. New algorithms for this purpose have

been developed and discussed by Genz and Bretz (1999 and 2002) and Bretz, Genz

and Hothorn (2001), implementations of which are now available in statistics software

packages like R and SAS. These methods will be applied when comparing the coverage

of the resampling-based intervals to classical methods.
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2 A general approach to MCP and resampling methods

2.4 Step-down multiple comparison procedures

Stepwise MCP generally comprise step-down and step-up methods. The major part of lit-

erature focuses on the step-down approach as the same theory applies to step-up methods

analogously. These are therefore omitted in this section.

The union of rejection regions for the univariate tests with i ∈ J is the rejection region of

the test on the intersection null hypothesis H
J
0 (union-intersection method, Roy 1953). A

step-down procedure for the family H0 of null hypotheses typically begins with a level α

test on the complete null hypothesis H
I
0 to make inference on the question if any hypoth-

esis in the family H0 can be rejected. If this test fails to reject H
I
0, the procedure stops

at this point and all hypotheses H0i, i ∈ I, are retained. Otherwise, all intersections H
J
0

with |J | = k − 1 are tested at level α and the implied hypotheses are all retained if the

test on H
J
0 is not significant. Subsequently, the algorithm proceeds stepping through the

hierarchy of hypotheses in the same fashion down to the elementary hypotheses. More

formally, a step-down procedure can be constructed by the closed test principle proposed

by Marcus, Peritz and Gabriel (1976). The closure of H0 is formed by the system of all

possible intersections, i.e.

H̄0 := {∩i∈JHi0 |J ⊂ I } (2.12)

Now, a hypothesis H
K
0 is retained if any null hypothesis H

J
0 with J ⊃ K is retained; oth-

erwise H
K
0 is tested at the unadjusted level α. This approach has been shown to control

the pFWE by Marcus, Peritz and Gabriel (1976).

The procedure can be displayed in a clearly arranged system as shown in Figure 2.2 for

the k = 3 case. This is much handier as compared to larger values of k where a tree struc-

ture like in Figure 2.2 can become very complicated: the number of tests to perform is
(

k
2

)

for the all pairwise comparisons problem and therefore increasing quadratically. Some

considerations on optimization are therefore reasonable to find some kind of shortcut for

the procedure.

Holm (1979) proposed a sequentially rejective MCP where first the observed values of

the test statistics are arranged in increasing order t(1), ..., t(k) with the corresponding hy-

potheses H0(1), ..., H0(k), where rejection of the complete null hypothesis is equivalent

with H0(k) being rejected. The multiple hypotheses problem is then reduced to a col-

lection of k − 1 hypotheses. Proceeding in the same way for all subset hypotheses, the

critical points are obtained as a monotonically decreasing sequence

ξk ≥ ξk−1 ≥ ... ≥ ξ1, (2.13)
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2.5 Resampling-based approach

Figure 2.2: Closed test principle. If H01 ∩ H02 ∩ H03 is rejected, the hypotheses H01 ∩ H02,

H02 ∩ H03 and H01 ∩ H03 are tested. The elementary hypotheses, i.e. H01, H02 or H03, are

tested only if the respective two hypotheses which imply these can be rejected. The procedure

can be proven to control the nominal level α.

depending on the correlation structure among the test statistics. Now, if the hypotheses

H0(k), ..., H0(j+1) are all rejected but H0(j) is retained, the procedure is stopped and the

remaining hypotheses H0(j−1), ..., H0(1) are also retained. From (2.13), it immediately

follows that a step-down procedure generally provides a greater power than the corre-

sponding single-step method because the critical constants resulting from the stepwise

algorithm are always equal or smaller than those based on a single-step method.

Obviously, the choice of the critical point sequence is crucial for the performance of the

sequentially rejective procedure. It can be based on the Bonferroni or Šidák method

which are known to be conservative, essentially because any distributional knowledge

on the data is ignored. As shown for the single-step approach, the intersection hypothe-

ses H
J
0 can be tested by appropriate F -tests or Studentized range tests (Hochberg and

Tamhane, 1987). The α-points of the F -test are obtained as F
(1−α)
|J |,ν for a particular subset

J of hypotheses. In principle, the closed test can be based on all particular testing tech-

niques; also the resampling-based approach given in the following section is convertable

to a step-down procedure. This has been discussed by Westfall and Young (1993).

2.5 Resampling-based approach

The method based on the multivariate c.d.f. of the test statistics fails for non-normal and

especially for heteroscedastic data. The correlation structure and distributional shape

should be involved in the analysis also if the joined c.d.f. of the test statistics is not the
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2 A general approach to MCP and resampling methods

multivariate t-distribution but any other c.d.f. which has unknown correlation structure

or is completely unknown. A resampling-based approach has got the desirable features

that on the one hand, it takes into account all the distributional information contained

in the data and on the other hand is not too complex on an analytical level.

Westfall and Young (1993) presented a comprehensive overview of resampling meth-

ods in multiple hypotheses problems. Basically, the idea is to represent the distribution

of the test statistics under the null hypothesis by repeatedly simulating data sets from

the observations in a way that the null is reflected. From these data, the statistics are

re-calculated and their empirical c.d.f. is used as the reference distribution for the test

decision. In multiple problems, reflection of the null hypothesis needs further discussion:

prior to testing, the particular subcollection of true hypotheses is, of course, unknown

as otherwise there would be no reason to perform any test. The condition under which

strong control of the familywise error is provided if resampling is done under the com-

plete null hypothesis H
I
0 is restated in the next section.

The distribution of the test statistic is simulated by recalculating it from data sets that

are repeatedly generated from the original data. Typically, the latter are modified such

that they satisfy the null hypothesis, e.g. by centering to a common mean. If hypotheses

on the population means, e.g. µ1 = µ2 and µ1 = µ3 are tested by t-tests on the respec-

tive (unpaired) data vectors X1, X2 and X3, the correlations of the test statistics are

determined by the proportion of sample sizes in the commonly and not commonly used

groups; that is to say, in a balanced design, the correlation between the two statistics is

exactly 0.5. In a resampling-based approach, this correlation is involved automatically in

a way that the observations X1 are used for both tests.

Consider a continuous data application where the normality assumption must be drop-

ped. In the one-sample case, even a single test statistic is then not exactly t-distributed as

normality is required in the definition of the t-distribution. For more than one hypothesis,

the c.d.f. of the maximum test statistic is involved which has a somewhat skewed shape

even for the normally distributed case. This skewness becomes very serious if in addition

the underlying data origin from a non-symmetric population. Westfall and Young (1993)

report this in detail for lognormal data in a multiple setting. However, these problems

are much less important for two-sample comparisons as the corresponding statistics are

approximately normal in particular for balanced designs and a similar skewness shape in

both groups. Nevertheless, the maximum distribution is still non-normal and is approxi-

mated better by a resampling-based approach.

If on the other hand, the equality of the variances over the groups cannot be supposed,

the test can be based on the Satterthwaite test statistic instead of the classical t-statistic
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2.5 Resampling-based approach

which was implicitly introduced in Chapter 3. This statistic is no more t-distributed and

the c.d.f. has to be approximated in an appropriate sense, which is commonly known as

the Behrens-Fisher problem. Many proposals for its solution exist in the literature. The

problem does not occur if the c.d.f. are obtained by resampling as the deviation from the

t-distribution is then also present in all statistics based on the resampled data.

Resampling-based methods are of considerable interest for special test statistics where

the derivation of the c.d.f. is not feasible or analytically intractable. Examples of this are

the the min-test (Laska and Meisner, 1989) and the AVE- and MAX-statistics proposed by

Hung, Chi and Lipicky (1993) and Hung (2000) that are frequently applied to the eval-

uation of drugs with multiple compounds (Chapter 3). The theory of bifactorial designs

developed by Hung and others lacks for a general approach with arbitrary distributions

underlying the data, e.g. for cases where non-normal or heteroscedastic data are in-

volved. A resampling-based approach to the problem is suitable to avoid the calculations

of c.d.f.’s for the multiple hypotheses problem associated with factorial designs as well

as for the AVE- and MAX-test. The theory and performance of this application are devel-

oped in the following chapters, pointing out some special problems that arise.

A general decision prior to the application of resampling is whether permutation- or

bootstrap-methods should be used. Different models and perceptions of the null hy-

potheses underlie these approaches.

2.5.1 Bootstrap methods

The null hypothesis can be reflected by centering the data involved in the respective test

to a common mean and resampling with replacement from these data. This is what the

term bootstrap is commonly used for (Efron, 1979), paralleling the iterative re-use of data

to lifting yourself by your own bootstrap. General guidelines for bootstrap hypothesis

testing were given by Hall and Wilson (1991):

(A1) “Care should be taken to ensure that even if the data might be drawn from a popu-

lation that fails to satisfy H0, resampling is done in a way that reflects H0.”

(A2) “Bootstrap hypothesis testing should use methods that are already recognized as

having good features in the closely related problem of confidence interval con-

struction”. That is, the statistic should be pivotal which means that under the null,

their distributions should not depend on which distribution generated the data.

Babu and Singh (1983) showed that bootstrap resampling on pivotal statistics has got

better convergence properties. Summarizing both rules for the t-test, it is first impor-
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2 A general approach to MCP and resampling methods

tant to center the data with the sample mean instead of the supposed population mean

because the statistic then reflects the null hypothesis even if it is not true. Second, the

resampled statistic has to be studentized dividing by the scale parameter σ̂/
√

n to make

it a pivotal statistic. Westfall and Young (1993) gave an extension of these guidelines for

multiple bootstrap hypothesis testing:

(B1) The guidelines of Hall and Wilson hold for all marginal distributions in the multiple

setting.

(B2) Resampling has to be done in a way that reflects the complete null hypothesis.

(B3) The subset pivotality condition holds: for all subsets J ⊂ I of true null hypotheses,

the joint distribution of {Ti}i∈J is identical under the restrictions H
J
0 and H

I
0.

The latter condition allows to resample the data under the complete null hypothesis H
I
0

instead of partial null hypotheses which would be impossible as the subset of true null

hypotheses is unknown. Westfall and Young (1993) showed that the partial familywise

error (pFWE) is protected by α if resampling is done under the complete null hypothesis

and the subset pivotality condition holds for the tests. An outline for an algorithm to

calculate adjusted p-values for the family H0 is now given.

Algorithm 2.1 1. Calculate the statistics Ti from the data Xi1 and Xi2 . Initialize count-

ing variables zi = 0 for i ∈ I.

2. Generate data sets X
∗
i1

and X
∗
i2

by drawing with replacement samples from the cen-

tered versions of Xi1 and Xi2 . Calculate the statistics T ∗
i of interest from these for all

i ∈ I.

3. If maxi∈I |T ∗
i | ≥ |Ti|, increase the corresponding counting variable by one: zi = zi + 1.

4. Repeat (2) and (3) N times. The estimated value of p̃i is then p̃
(N)
i = zi/N .

The guidelines (A1) and (A2) are kept by Algorithm 2.1 as well as (B1), (B2) and (B3).

Reflection of H
I
0 is achieved by centering all data to the common mean 0. The underlying

statistics are pivotal as they are studentized by an estimate σ̂/
√

n of the standard error.

The subset pivotality condition holds because for a subset J ⊂ I of true null hypotheses,

the {Ti}i∈J are multivariate t-distributed with a certain correlation matrix that does not

depend on which particular superset K ⊃ J of null hypotheses is true.
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2.5 Resampling-based approach

Another application of the bootstrap is the calculation of confidence intervals for the

differences µi1 − µi2 for all (i1, i2) ∈ I. The intervals {Ci}i∈I have simultaneous coverage

probability 1 − α if

P

(
⋂

i∈I

{µi1 − µi2 ∈ Ci}
)

= 1 − α,

i.e. the probability for all intervals (instead of each single interval) to contain the respec-

tive parameters is 1 − α.

Construction of confidence intervals requires an estimate for the critical point ξ of the

test statistic. In the multiple case, a common value of ξ can be chosen according to

(2.6) and some possibilities for calculation of ξ have been discussed. As a convenient

approach for general data, the critical point can also be obtained by a bootstrap algo-

rithm as proposed by Edwards and Berry (1987). All samples are centered by zero prior

to the procedure, i.e. resampling is done under the complete null hypothesis H
I
0. The

empirical (1−α)-quantile of maxi∈I |Ti| is taken as an estimate of ξ. For the family H0 of

hypotheses, simultaneous confidence intervals are obtained by the following algorithm.

Algorithm 2.2 1. Generate data sets X
∗
i1

and X
∗
i2

by drawing with replacement samples

from the centered versions of Xi1 and Xi2 .

2. Compute the statistics T ∗
i of interest from these for all i ∈ I and store the value

maxi∈I |T ∗
i |.

3. Repeat steps (2) and (3) N times. The m-th order statistic W(m) of the N values of

maxi∈I |T j∗
γ | with m = [(N + 1)(1 − α)] is an estimate of the critical value ξ.

The consistency of the bootstrap estimate is based on the fact that the m-th order statistic

converges to the (1−α)-quantile of the underlying population as n → ∞. A proof of this

statement is given, for instance, by Shao (1999, p. 305).

There are a few limitations of Algorithm 2.2. First, this approach will always result in

symmetric intervals as the critical point is the same for both confidence bounds. Further-

more, using the two-sample t-statistic is valid only in the case of normal distributed data

in both groups which is, however, less important for large samples and a similar skewness

in both groups. To overcome these problems, an alternative approach to bootstrap-based

confidence intervals proposed by Efron and Tibshirani (1993) may be suitable. In the

univariate case, the α
2

and (1 − α
2
) percentiles of the bootstrap sample mean distribu-

tion are used as the lower and upper limits for the confidence interval of the population
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2 A general approach to MCP and resampling methods

mean, whereas there is currently no extension of this method to multiple hypotheses

problems. However, as the percentile methods makes immediate use of the empirical

distribution of the parameter estimate, it applies to a large variety of distributional situ-

ations. The following algorithm forms an outline for simultaneous confidence intervals

using the percentile method. Basically, the idea is that a bootstrap iteration underlying

an extreme value for a particular parameter estimate will lead to extreme values also for

estimates of other parameters if there is a non-vanishing correlation.

Algorithm 2.3 1. For i ∈ I, generate data sets X
∗
i1

and X
∗
i2

by drawing with replacement

samples from Xi1 and Xi2 .

2. Calculate the mean difference X̄i1 − X̄i2 for all i ∈ I and append these values as a row

to a matrix M . Repeat steps (1) and (2) N times.

3. For j = 1, ..., k, eliminate the rows of M with the smallest and largest value in the jth

column. Repeat this step αN
2k

times.

4. For the jth comparison, the estimates for the confidence limits are min1≤i≤k Mij and

max1≤i≤k Mij.

The most extreme αN
2k

iterations are excluded not only from the empirical distribution of

each sample mean difference, which would be equivalent to the Bonferroni method, but

the iterations yielding the most extreme values in column j are also omitted from the

distributions of the remaining k − 1 comparisons, making implicit use of the correlation

structure. Thus, the width of the intervals based on Algorithm 2.3 is uniformly smaller

or equals that of Bonferroni intervals.

2.5.2 Permutation-based resampling

In contrast to the preceding sections, the family of hypotheses H0 is now assumed to

have a structure representing equality of the respective c.d.f., that is to say Fi1 = Fi2

vs. Fi1 6= Fi2 for i = (i1, i2) ∈ I instead of the parametric statements given in (2.1).

This is equivalent to the rerandomization null hypothesis that the data in the respective

two groups are a random rearrangement of the pooled sample (Xi1 ,Xi2). A p-value that

is exact given the observed samples can therefore be generated by calculating the test

statistics from all
(

ni1
+ni2

ni1

)
possible allocations of these data in two groups. As the order
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within the groups is not relevant for calculation of the test statistics, the exact p-value is

the fraction

p̃i =
#{maxi∈I |T ∗

i | ≥ |Ti|}(
ni1

+ni2
ni1

) , (2.14)

where the numerator can be obtained by evaluation of the test statistics for all possible al-

locations of the data to the groups. However, for applications with even moderate large

data amount, this requires heavy computational effort which exceeds technical limits:

the number of possible allocations of the data to a balanced two-sample design would

be
(

n1+n2

n1

)
=
(
2n
n

)
, which is obviously not computationally tractable for, say, n > 10. In-

stead, the exact probability given in (2.14) can be closely approximated by evaluation of

a large number N of possible permutations. This is attained by repeatedly shuffling the

observed data from the pooled treatment groups. As the null hypothesis is then reflected

by the new samples, the reference distribution for the test can be determined by repeat-

edly recalculating the test statistics from those. The following algorithm is approriate for

testing a family H0 of hypotheses, where the structure is like in (2.1), but equality of the

c.d.f. is explored as mentioned above.

Algorithm 2.4 1. Calculate the statistics Ti from the data Xi1 and Xi2 . Initialize count-

ing variables zi = 0 for i ∈ I.

2. Generate data sets X
∗
i1

and X
∗
i2

by drawing without replacement samples from the

pooled data (Xi1 ,Xi2). Calculate the statistics T ∗
i of interest from these for all i ∈ I.

3. If maxi∈I |T ∗
i | ≥ |Ti|, increase the corresponding counting variable by one: zi = zi + 1.

4. Repeat 2-3 N times. The estimated value of p̃i is then p̃
(N)
i = zi/N .

Note the close similarity between Algorithm 2.1 and 2.4.

2.5.3 Relationship of permutation and bootstrap resampling

Technically, the major difference between bootstrap and permutation resampling is that

in the former method, resampling is done with replacement, where resampling without

replacement from the pooled samples is used by the latter. The second guideline for the

bootstrap given by Hall and Wilson (1991) suggests that the statistic which the bootstrap

procedure is based on should be pivotal. Efron and Tibshirani (1993) point out that in

settings where both methods apply, in fact the bootstrap performs slightly more powerful
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when using studentized statistics, whereas the permutation test is not affected by this.

The results of both approaches are quite similar anyway and thus the distinction is only

slightly relevant for practice. Nevertheless, some thoughts on the relationship between

both are helpful to get a deeper understanding.

The rerandomization null hypothesis implies that all permutations of the data in the re-

spective groups are equally likely to occur. This symmetry limits the permutation method

to tests on hypotheses of the form F1 = F2, where F1 and F2 are two c.d.f. to be tested for

equality. In particular, no parametric hypotheses, e.g. for equality of means or variances,

can be tested. The range of applications is more general for the bootstrap as the above

symmetry is not implied by parametric hypotheses. On the other hand, the assumption

of equal probabilities for all permutations is also the fact where the exactness of the per-

mutation methods given the observed data origins from (Section 2.5.2). In contrast to

this, the bootstrap p-values are by no means exact; quite the contrary must there be

a certain minimum of sample size to produce reasonably accurate results. Efron and

Tibshirani (1993) state that “bootstrap methods are more widely applicable but less ac-

curate,” briefly summarizing the essential hallmarks of both permutation and bootstrap

resampling.

Consider a binary data application where for i = (i1, i2) ∈ I, the binomial event rates πi1

and πi2 are compared between two binomial samples Xi1 and Xi2 . Strictly speaking, the

number of events is a hypergeometric random variable but can be closely approximated

by the binomial c.d.f. for large populations due to the asymptotic properties of the hyper-

geometric distribution. If the null hypothesis H0i : πi1 = πi2 is reflected by two bootstrap

data vectors X
∗
i1

and X
∗
i2

of the same length n = ni1 = ni2 which are drawn with replace-

ment from the pooled sample (Xi1 ,Xi2), both of these have got the estimated event rate

π̂i = 1
2
(π̂i1 + π̂i2). From the new samples, a test statistic Ti is then calculated. Using the

denotations Z∗
i1

=
∑

Xi1 and Z∗
i2

=
∑

Xi2 , the probability that Ti has got the observed

or an even more extreme value under H0i is obtained by summing the expressions

P
(
(Z∗

i1
, Z∗

i2
) = (ki1 , ki2)|π̂

)
=

(
ni1

ki1

)
π̂ki1 (1 − π̂)ni1

−ki1 +

(
ni2

ki2

)
π̂ki2 (1 − π̂)ni2

−ki2

over all values of (ki1 , ki2) yielding a statistic at least as large as the observed value.

Obviously, the p-value depends on the particular choice of Ti. If, on the other hand, the

permutation test is applied, the value ki1 + ki2 is equal for all possible permutations and

the probability of the test statistic to be more extreme than the observed value equals the

probability of a more extreme distribution of the events to the integers ki1 and ki2 . Thus,

the procedure always results in Fisher’s exact test, regardless which statistic it is based
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on, and is therefore conservative as compared to the bootstrap approach: for binary data,

simulation results of Westfall and Young (1993) showed that the bootstrap exploits the

nominal level α better than the permutation methods; they propose a with replacement

resampling algorithm as a generally more powerful approach for binary data.

2.5.4 Performance of the resampling-based approach

For the bootstrap as well as for permutation-based resampling, errors essentially arise

for three reasons. First, random number generation for the decision on which bootstrap

samples to choose is never perfect, but the deviation resulting from this is negligible

because pseudo random numbers can be computed with an extremely high precision on

modern machines. Second, consider the simulation standard error that depends on the

number of bootstrap iterations. The variables zi counting the frequency of the event

maxi∈I |T ∗
i | ≥ |Ti| in Algorithms 2.1 and 2.4 are binomial distributed with parameters N

and p̃i for each combination i ∈ I and therefore have the probability density function

f zi(k) =

(
N

k

)
(1 − p̃i)

N−kp̃k
i ,

i.e. the simulation standard error of the estimate ˆ̃p for the adjusted p-value has got the

representation

se[p̃
(N)
i ] =

√
Var[zi]

N2
=

(1 − p̃i)p̃i

N
= O(N)

and hence can be brought arbitrarily close to zero if sufficient computational resources

are available.

For the confidence intervals, let G be the c.d.f. of the statistic maxi∈I |Ti|. With the deno-

tation m = [(N+1)(1−α)], the deviation from the specified level α induced by simulation

is given by G(W(m)), where W(m) is the m-th order statistic of the N values of maxi∈I |T ∗
i |

based on the respective N bootstrap samples and G(W(m)) = 1 − α represents a zero de-

viation. Because G(W(m)) is beta-distributed with parameters m and N −m+1 (Edwards

and Berry, 1987), the simulation standard error for the intervals is se[G(W(m))] = α(1−α)
N

and therefore of the same order as above. For reasonable allocation of resources, the

algorithms should stop as soon as N is large enough for the standard errors to satisfy the

condition se[p̃
(N)
i ] ≤ ε or se[G(W(m))] ≤ ε, respectively, where ε is a prespecified error

bound.

A third important kind of error results from the use of Ĝn instead of G and therefore

cannot be decreased with computational power. Anyway, following from the Glivenko-

Cantelli theorem, supx∈R

∣∣∣Ĝn(x) − G(x)
∣∣∣ → 0 holds for n → ∞ if G is continuous and
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the observations are independent. In particular, this shows that any kind of resampling-

based calculations is only reasonable for data samples that are not extremely small; on

the other hand, the third error source is negligible for large-sample applications since

the empirical c.d.f. approximates the population well in these cases. Singh (1981) and

Babu and Singh (1983) discussed convergence rates of bootstrap estimates for increasing

sample sizes.

In the simulation experiments used for evaluation of algorithms in the following chap-

ters, the probability α0 = P (p ≤ α) will be estimated. As pointed out by Westfall and

Young (1993), the estimate α̂0 matches the true value closer if more computational power

is allocated to the outer than to the inner loop. As the total simulation size is limited by

the availability of system resources, 25, 000 simulations with N = 15, 000 bootstrap itera-

tions are a reasonable choice. This yields a 0.95 confidence interval of α̂0±1.96
√

α̂0(1−α̂0)
25,000

for the true value of α0, e.g. 0.05 ± 0.0027 for α̂0 = 0.05. When interpreting the simula-

tion results, it should therefore be kept in mind that there is still an uncertainty in the

third decimal place. Using these settings and a C++ implementation for the simulations in

Chapters 4 and 5, e.g. those in Table 4.1, every single simulation for the largest sample

size n = 250 required several days of computation time on a 2 x 2.8 GHz Intel Pentium

D CPU.
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3 Efficacy analysis using the min-test

In the context of clinical trials on dose combinations, treatment with each component

drug is understood as a factor with stages according to the doses applied, establishing

a certain dose-response relationship. Bifactorial trial designs are used to test for the ef-

ficacy of combinations of two component therapies A and B. Each pair (i, j) identifies

a unique dose combination on the grid G0 = {0, ..., A} × {0, ..., B}, i.e. drug A can be

applied in doses 0 (placebo) to A, analogous for drug B. The question of interest is if the

respective groups (i, j) ∈ G have a significantly higher response than both mono therapy

groups (i, 0) and (0, j) for the set G = G0 \ {(i, j)|i = 0 ∨ j = 0}.

For a pair (i, j), let Xij denote a response vector with nij values from the respective treat-

ment group. If µij is the actual mean response value, it is reasonable to use the model

assumption Xij = µij + εij, where the errors εij must not necessarily be identically dis-

tributed. In particular, they can be non-normal or the variances might be heterogeneous

over the treatment groups. The associated (one-sided) test problem is

H ij
0 : (µij ≤ µi0) ∨ (µij ≤ µ0j) vs. H ij : (µij > µi0) ∧ (µij > µ0j). (3.1)

The decision is based on the so-called min-test statistic Tmin
ij = min

{
TA

ij , T
B
ij

}
(Laska and

Meisner, 1989), where

TA
ij =

X̄ij − X̄i0√
σ̂2

ij

nij
+

σ̂2
i0

ni0

and TB
ij =

X̄ij − X̄0j√
σ̂2

ij

nij
+

σ̂2
0j

n0j

(3.2)

with the estimate for the population variance σ2
ij in the respective treatment groups de-

noted by σ̂2
ij. The idea is that the observed value of Tmin

ij is equal or greater than a given

critical value if and only if this is the case for both TA
ij and TB

ij . In the balanced and

homoscedastic case, the min-statistic can equivalently be determined from the represen-

tation

Tmin
ij =

X̄ij − max{X̄i0, X̄0j}
σ̂/

√
n

.

According to the treatment groups in G, various test statistics of the min-test type are

calculated and the decision to reject or not to reject the null hypothesis (3.1) is made for

each pair (i, j).
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3 Efficacy analysis using the min-test

Note that (3.1) can equivalently be represented by H ij
0 : ϑij ≤ 0 with ϑij := µij −

max{µi0, µ0j}. The distribution of the min-statistic then depends on ϑij, the parameter

of interest, as well as on the unknown nuisance parameter δij := µi0 − µ0j because the

latter determines which of the two mean differences µij −µi0 and µij −µ0j is smaller and

hence will influence the probabilities for Tmin
ij = TA

ij and Tmin
ij = TB

ij . The c.d.f. of Tmin
ij

and its correlation structure is therefore a function of ϑij and δij.

As a way out of this problem, Hung (1993) proposed an α-level two-stage design, where

the hypothesis H0 : µi0 = µ0j is tested in a first step. If it can be rejected, the min test

is conducted in the second step, otherwise the pooled test
T A

ij +T B
ij

2
. Adjustment of the

resulting p-values is necessary to protect the type I error level α. This contributes to the

fact that this two-stage test is not very powerful as compared to other approaches (Hung,

1993).

3.1 Testing for the existence of efficacious dose combinations

The question if any combination is better than both of its components can be expressed

by the global test problem

H0 : ∀(i, j) ∈ G : (µij ≤ µi0) ∨ (µij ≤ µ0j)

vs. H : ∃(i, j) ∈ G : (µij > µi0) ∧ (µij > µ0j). (3.3)

As proposed by Hung, Chi and Lipicky (1993), inference can be based on the AVE-test

Tave = (AB)−1
∑A

i=1

∑B
j=1 Tmin

ij or the MAX-test Tmax = max(i,j)∈G Tmin
ij . The respective

distributions were given by Hung, Chi and Lipicky (1993) under the restriction that the

data are normally distributed with a common value σ2 for the variance and balanced

sample size allocation with n individuals in each group. They depend on the primary pa-

rameters ϑij as well as on the nuisance parameters δij that are unknown in all practically

relevant settings.

The power functions of Tave and Tmax are closely related to their respective c.d.f.. For

monotonicity reasons, the type I error of the AVE-test is bounded by the significance

level α which is obtained by taking the supremum of its power function

β(C; δij, ϑij) = P (Tave > C|δij, ϑij) (3.4)

given a prespecified critical point C and evaluated at ϑij = 0 for all (i, j) ∈ G, over all

possible values for δij (Hung, Chi and Lipicky, 1993). As the supremum always occurs
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3.1 Existence of efficacious combinations

at the extreme values of δij, one can equivalently assume |δij| = ∞ for all (i, j) ∈ G.

This particularly offers a possibility to derive p-values for the AVE- and MAX-test from

given observed values tave and tmax of the test statistics. They can be determined by the

equations

pave =

∫ ∞

0

Φ

(
−
√

nAB

1 + max{A,B}tavew

)
dQ(w) (3.5)

pmax = 1 −
∫ ∞

0

E
[
Φ(

√
ntmaxw + Z)2

]
E
[
Φ(

√
ntmaxw + Z)4

]
dQ(w), (3.6)

where Q denotes the c.d.f. of σ̂/σ, Φ is the standard normal c.d.f. and Z a random vari-

able with distribution according to Φ (Hung, Chi and Lipicky, 1993 and Hung, 1994). An

estimate of the population variance σ2 is needed in both (3.5) and (3.6); if σ2 is known

or the total sample size is sufficiently large, the integral corresponding to the distribution

function Q can be omitted in the calculation of the p-values from the observed values of

the test statistics.

In settings with δij ≈ 0 for any (i, j) ∈ G, the actual type I error does not match α exactly

as (3.5) and (3.6) are approximate representations only. This is due to the assumption

that |δij| = ∞ for all (i, j) ∈ G. The resulting p-values are biased towards conservative

test results, which turns the approximation out as a kind of “worst case” assumption as-

suring that the type I error is kept by the given level α.

From a practical point of view, it is for several reasons often desirable to allocate individ-

uals to groups with unequal sample sizes: the trial might at the same time be intended to

test for the efficacy of one or both of the component drugs, or some combinations might

be tested at a greater power than others, e.g. for marketing reasons. The above approach

to the global tests has therefore been extended to unbalanced bifactorial designs by Hung

(2000). The approximation attained by the “worst case” assumption that |δij| = ∞ for

all (i, j) ∈ G is still needed as the supremum in (3.4) will occur at the extreme values of

the nuisance parameters also in the unbalanced case. The min-statistic is now replaced

by the representation

Xij(πij) := πij(
√

λ1ijZij −
√

1 − λ1ijZi0) + (1 − πij)(
√

λ2ijZij −
√

1 − λ2ijZ0j), (3.7)

where λ1ij = ni0

nab+ni0
, λ2ij =

n0j

nab+n0j
and Zij =

(Xij−µij)√
nijσ

. For the AVE-test, Hung (2000)

showed that it is no loss of generality to determine the supremum in (3.4) by maximizing

the function P (X(π) > C|πij, ϑij = 0) instead, where X(π) := (rs)−1
∑r

i=1

∑s
j=1 Xij(πij)
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3 Efficacy analysis using the min-test

and the supremum is taken over the set

Ω := {π = (π11, ..., πrs)|(πij, πik, πlj, πlk) 6= (1, 0, 0, 1) or (0, 1, 1, 0) for i < l and j < k}

of all possible extreme values of δij except those that will never occur. For a given π ∈ Ω,

the variance of X(π) is obtained as

∆(π) = (rs)−2

r∑

i=1

s∑

j=1

(πijλ1ij + (1 − πij)λ2ij)

+
r∑

i=1

(
s∑

j=1

πij

√
1 − λ1ij

)2

+
r∑

i=1

(
s∑

j=1

(1 − πij)
√

λ1−2ij

)2

. (3.8)

Hence the approximate test statistic X(π) can be studentized dividing it by ∆(π). This

results in the asymptotically standard normal random variable

P

(
X(π)√
∆(π)

>
C√
∆(π)

∣∣∣∣∣ πij, ϑij = 0

)
= 1 − Φ

(
C√
∆(π)

)
(3.9)

which has got its supremum at the same point π ∈ Ω where the variance given in (3.8) is

maximized, following from monotonicity properties of Φ. Given an observed test statistic

tave, the p-value can therefore be calculated by

pave = 1 − Φ

(
tave√

maxπ∈Ω ∆(π)

)
.

The restrictions of the approximation are the same as for the balanced case: the type I

error is below the nominal level α, i.e. the test performs conservative if δij ≈ 0 for any

(i, j) ∈ G.

The p-value for the MAX-test is determined by pmax = min{p̃ij|(i, j) ∈ G}, where p̃ij

are the adjusted p-values from the multiple testing procedure that is given in the next

section.

3.2 Multiplicity-adjusted approach

The question which combination treatment groups have got significantly better responses

than both components requires evaluation of one min-test for each combination drug. As

this is leading to A·B tests, some considerations on multiplicity adjustment are necessary.

For a treatment group (i, j) ∈ G, the adjusted p-value p̃ij is the probability for at least

one of the p-values in the analysis to be equal or smaller than pij under the complete null
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3.2 Multiplicity-adjusted approach

hypothesis. In this case, where all statistics are of the same type and all are lower-tailed,

this is equivalent to

p̃ij = PH0

(
max

(i′,j′)∈G

Tmin
i′j′ ≥ tmin

ij

)
(3.10)

according to the definiton in (2.5), i.e. the joined c.d.f. of {Tmin
ij }(i,j)∈G under the com-

plete null hypothesis is needed which depends on the unknown nuisance parameters δij.

For monotonicity reasons, the familywise type I error is bounded by the significance level

α if the supremum of the power function at a prespecified point C is taken over all δij

with ϑij = 0 for all (i, j) ∈ G. It is again no loss of generality to maximize the power

function of Xij(πij) over the set Ω instead. The correlation matrix of {Xij(πij)}(i,j)∈G is

obtained as R = {̺ij,lm}, where

̺ij,lm =





1 i = l, j = m

πijπim

√
(1 − λ1ij)(1 − λ1im) i = l, j 6= m

(1 − πij)(1 − πim)
√

(1 − λ2ij)(1 − λ2im) i 6= l, j = m

0 i 6= l, j 6= m

As the min-test is based on the two-sample t-statistic, the joined distribution can now be

approximated by ΦR

AB, the c.d.f. of the (A·B)-variate normal distribution with covariance

matrix R as above, concluding that the p-value is determined by p̃ij = 1−ΦR

AB(tmin
ij 11AB)

from an observed value tmin
ij of the test statistic.

The approximation resulting from the assumption that |δij| = ∞ for all (i, j) ∈ G is

used for all parametric settings, even if in particular the actual nuisance parameter is

in an environment of zero. This assures protection of the nominal significance level α,

but the actual type I error will in general not exactly match α except for large values of

|δij|. For a single min-test in a balanced as well as in an unbalanced 1x1-design, Hung

(2000) showed different power values to occur depending on the nuisance parameter

δ11. If in particular δ11 ≫ 0, the min-test reduces to the single t-statistic Tmin
11 = TA

11,

while Tmin
11 = TB

11 analogously holds for δ11 ≪ 0. For normal data, the p-values are then

uniformly distributed on the interval [0, 1]. If on the other hand δ11 is close to 0, this

approximation does not hold as there is a high probability for TA
11 < TB

11 though in fact

µ11 − µ10 > µ11 − µ01 or vice versa, where the probabilities for both are approximately

equal. The p-values pA
11 and pB

11 of the single t-statistics are then both rectangular-shaped

and hence for the p-value pmin
11 = max{pA

11, p
B
11} of the min-test, greater values are more

likely to occur than smaller ones. In this sense, the distribution of pmin
11 for the combi-

nation group (1, 1) ∈ G will be exactly rectangular only for |δ11| = ∞ and simulation
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3 Efficacy analysis using the min-test

experiments will obtain a type I error of approximately α only in settings with large val-

ues of |δ11|. However, the nominal level α is kept well for all choices of δ11, but the test

performs conservative if δ11 is in fact in an environment of zero.

Buchheister and Lehmacher (2006) proposed multiple testing procedures based on the

closed test principle (Chapter 2) as an alternative approach to the test problem (3.1).

This requires construction of a hypotheses system that is closed under intersection: the

single “marginal” hypotheses for group (i, j) ∈ G are denoted by H ij,i0
0 : µij = µi0 and

H ij,0j
0 : µij = µ0j. In detail, three different approaches are possible.

First, Buchheister and Lehmacher (2006) defined the global intersection hypothesis as

the intersection of all local hypotheses expressed in terms of the marginal hypotheses:

H0 =
⋂

(i,j)∈G

H ij
0 =

⋂

(i,j)∈G

(H ij,i0
0 ∪ H ij,0j

0 ), (3.11)

which is equivalent to (3.3). The intersections of the local hypotheses for all groups

(i, j) ∈ G are tested by a step-down procedure which will be discussed in Chapter 2 and

can be shown to keep the level α. Now, each of the local hypotheses in the intersection

(3.11) is a union of two hypotheses, whereas standard methods for closed test proce-

dures are constructed for intersections of the hypotheses themselves. Using rules known

from set theory, the global intersection hypothesis can be expressed by a union of inter-

section hypotheses for which a generalized version of the min-test applies. Buchheister

(2001) illustrated this for closed testing procedures on 2x3- and 3x3-designs.

Second, a hypotheses system closed under intersection can be based on the marginal

hypotheses H ij,i0
0 and H ij,0j

0 themselves, comprising
∑2AB

g=1

(
2AB

g

)
hypotheses, i.e. a sub-

stantially higher number than in the first approach (Buchheister and Lehmacher, 2006).

However, using this method, the above transformations of hypotheses are no more needed,

making the involved hypotheses easier to test. The global intersection hypothesis of this

test can be expressed by intersections of the marginal hypotheses for both component

drugs:

H̃0 =



⋂

(i,j)∈G

H ij,i0
0


 ∩



⋂

(i,j)∈G

H ij,0j
0




A test on H̃0 is not equivalent to the AVE- or MAX-test because H̃0 differs from the global

hypothesis in (3.3); nevertheless, this procedure does apply to test the local hypotheses

in (3.1).

As a third approach, Buchheister and Lehmacher (2006) proposed a separate closed
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3.3 Higher-dimensional factorial designs

hypotheses system for each collection of marginal hypotheses H ij,i0
0 and H ij,0j

0 . The level

α is kept by both procedures due to the closed test principle, but multiplicity adjustment

is needed as the same procedure is applied twice. For instance, the simultaneous step-

down procedures can be performed at level α/2, implying adjustment according to the

Bonferroni method (Chapter 2). The global intersection hypotheses are

H̃A
0 =

⋂

(i,j)∈G

H ij,i0
0 and H̃B

0 =
⋂

(i,j)∈G

H ij,0j
0

and therefore distinct from (3.3). This approach is also appropriate for the local problem,

but does not include a direct test of the global hypothesis.

3.3 Higher-dimensional factorial designs

In recent years, combinations of more than two compounds have often been applied

if their respective efficacy mechanisms are distinct, especially in cancer therapies. The

theory of this thesis applies to designs with arbitrarily high dimensions in an analogous

way but might be practically relevant essentially for two or three compounds. Each

combination treatment group can be represented as a k-tuple on the grid G = G0 \
{(i1, ..., ik)|i1 = 0 ∨ ... ∨ ik = 0}, where

G0 = {0, ..., D1} × ... × {0, ..., Dk} ⊂ N
k,

i.e. there are now (D1 + 1)...(Dk + 1) treatment groups to allocate resources to which

may limit the practicability to trials on frequent disease patterns as e.g. hypertension.

For sake of simplicity, denote any point on the grid G by γ := (i1, ..., ik) and the marginal

treatment groups according to γ by the projections γj := (i1, ..., ij−1, 0, ij+1, ..., ik). The

question whether all component drugs give a contribution to the overall response of a

combination treatment group γ ∈ G is represented by the test problem

Hγ
0 :

k∨

j=1

(µγ ≤ µγj) vs. Hγ :
k∧

j=1

(µγ > µγj). (3.12)

As a modification of the min-test that is reasonable for this local problem and a particular

group γ ∈ G, consider the test statistic Tmin
γ = minj=1,...,k T j

γ with

T j
γ =

X̄γ − X̄γj√
σ̂2

γ

nγ
+

σ̂2

γj

n
γj

. (3.13)
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3 Efficacy analysis using the min-test

The c.d.f. of this will be shown to depend on the distance of the population means

µγ1 , ..., µγk in the marginal treatment groups as discussed in terms of the nuisance pa-

rameters δij for the bifactorial case. In a general k-dimensional setting, the nuisance

parameters can be denoted as a vector

δγ =




µγ1 − µγ2

...

µγ1 − µγk

µγ2 − µγ3

...

µγ2 − µγk

...

µγk−1 − µγk




(3.14)

of length
(

k
2

)
from which the nuisance parameters in the bifactorial design are obtained

as a special case as µγ1 −µγ2 = µi0 −µ0j for γ = (i, j) ∈ G. On the other hand, the global

test problem (3.3) can be generalized by

H0 : ∀γ ∈ G :
k∨

j=1

(µγ ≤ µγj) vs. H1 : ∃γ ∈ G :
k∧

j=1

(µγ > µγj), (3.15)

which now reflects the question if any dose combination has got the desired property

that all k component drugs give a contribution to the overall effect. Generalized forms

of AVE- or MAX-statistics, that is to say

Tave = (D1...Dk)
−1
∑

γ∈G

Tmin
γ and Tmax = max

γ∈G

Tmin
γ ,

are possible approaches to test the global null hypothesis (3.15) for the k-factorial case.

The methods proposed by Hung, Chi and Lipicky (1993), Hung (2000), Buchheister and

Lehmacher (2006) do not cover this general approach for neither the global nor the mul-

tiple local test problems. In principle, the theory can be generalized to the k ≥ 3 case

which remains as an unsolved problem up to now. For the resampling methods discussed

in the next chapter, this is not substantially more complicated than for k = 2.

In the bifactorial case which is most important for practice, an approach with less analyt-

ical effort is desirable. Resampling-based multiple testing generally offers an alternative

especially for arbitrary distributional conditions, e.g. skewness and heteroscedasticity.

These cases are not covered by the bifactorial design theory of Hung and others. How-

ever, the considerations in the next chapter will show that the resampling-based approach

38



3.3 Higher-dimensional factorial designs

cannot give a satisfactory solution to the dramatic loss of power in the min-test that oc-

curs whenever the response parameters in single-compound dose groups are close for

a particular combination. It will turn out later on that this is a general problem in the

nature of the min-test. Nevertheless, the resampling-based approach is more flexible ac-

cording to the distribution of the data and its application is therefore more convenient.
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4 Bootstrap approach to k-factorial designs

Simulation results from Hung (2000) showed that the adjusted p-values from the meth-

ods of Chapter 1 tend to be very conservative in settings where no extreme nuisance

parameters occur. In addition, the analytical solution proposed by Hung, Chi and Lipicky

(1993) and Hung (2000) is applicable only in the special (but important) case where the

underlying data are normally distributed with the variances assumed to be equal over the

treatment groups. It is desirable to weaken the normality and especially the homoscedas-

ticity assumption, using the actual empirical distribution of the data instead. For sake

of simplification and clearness, a solution is needed that does not require cumbersome

derivations of the power functions or the correlation matrix. Furthermore, no theory for

tests on the generalized null hypotheses (3.12) and (3.15) with arbitrary dimensionality

is available up to now, e.g. for the AVE- and MAX-test or multiple procedures for testing

all treatment groups γ ∈ G where k > 2. This appears to be substantially more compli-

cated than even for the bifactorial case discussed by Hung, Chi and Lipicky (1993) and

Hung (2000). A resampling-based approach to the problem is therefore presented that

is computationally intensive but has got the desired features.

To make resampling applicable to a wide range of multifactorial designs and to intro-

duce a notation that is valid in a general sense, the dimensionality will not be specified

from now on. A k-factorial design is considered where the treatment groups are rep-

resented as cells on the grid G = {1, ..., D1} × ... × {1, ..., Dk} ⊂ N
k. The denotations

γ for a combination group in G and γj, j = 1, ..., k, for specification of the marginal

treatment groups are carried over from Section 3.3. In the introduction to resampling-

based methods, permutation resampling has been shown to be more accurate because

these methods are exact given the observed data and are equivalent to Fisher’s exact test

when applied to binary data. As the hypotheses of interest in connection with the min-

test have historically been stated in a parametric sense, the permutation methods do not

apply to these. They are limited to hypotheses where two distributions are to be tested

for equality, whereas the bootstrap is suitable for parametric hypotheses like (3.12). In

the k-factorial design, the bootstrap procedure outlined by Algorithm 2.1 is therefore

considered the best approach for this particular application, i.e. resampling will now be

done by drawing with replacement samples from the data. This method has been shown
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4 Bootstrap approach to k-factorial designs

to be slightly more powerful when based on studentized statistics (Efron and Tibshirani,

1993). The bifactorial and trifactorial cases are obtained as special cases from this; eval-

uation of the proposed algorithms in terms of type I error and power will therefore be

given for k = 2 and k = 3.

4.1 Bootstrapping the min-test

According to the first guideline for bootstrap testing in univariate situations reported in

Section 2.5.1, resampling has to be done in a way that reflects the null hypothesis even

if it is not satisfied by the population. As the distribution of the min-statistic under Hγ
0

depends on the nuisance parameters δγ in the population, these have to be taken as a

part of the null hypothesis; i.e. the resampling procedure must reflect

Hγ
0 : (µγ − max{µγ1 , ..., µγk} = 0) ∧




µγ1 − µγ2

...

µγ1 − µγk

µγ2 − µγ3

...

µγ2 − µγk

...

µγk−1 − µγk




=: δγ (4.1)

as an extended version of the hypothesis in (3.12). The most natural approach to this is

to estimate δγ by the sample mean differences and use this value for generating a resam-

pled data set reflecting Hγ
0 . Equivalently, the data of the marginal treatment groups can

be resampled without centering by their mean; the data from the combination group γ

are then centered by the maximum of the marginal group means to represent the first

part of (4.1). The following algorithm performs the min-test for all combination groups

γ ∈ G and involves adjustment for the multiple hypotheses problem as discussed in Sec-

tion 2.5. This and the following algorithms will be given in a generalized form (left

panel) as well as for the important k = 2 case (right panel).
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4.1 Bootstrapping the min-test

Algorithm 4.1 (Multiple min-tests with estimated nuisance parameters)

(1) Initialize counting variables zγ = 0 for Initialize counting variables zij = 0 for

γ ∈ G. Calculate the min-statistics Tmin
γ (i, j) ∈ G. Calculate the estimates δ̂ij and

from the data Xγ and {Xγj}j=1,...,k the min-statistics Tmin
ij from the data Xij,

following equation (3.13). Xi0 and X0j following equation (3.2).

(2) Generate (D1 + 1) · ... · (Dk + 1) bootstrap Generate (A + 1) · (B + 1) bootstrap

samples X
∗
γ that reflect the null samples X

∗
ij that reflect (4.1): resample

hypothesis (4.1): resample X
∗
γj from X

∗
ij from Xij − X̄ij + δ̂ij with

Xγj for j = 1, ..., k and X
∗
γ from replacement. If δ̂ij ≥ 0, resample X

∗
i0

Xγ − X̄γ + max{X̄γ1 , ..., X̄γk} with from Xi0 − X̄i0 + δ̂ij and X
∗
0j from

replacement. X0j − X̄0j; if δ̂ij < 0, resample X
∗
i0 from

Xi0 − X̄i0 and X
∗
0j from X0j − X̄0j + δ̂ij.

(3) Calculate the min-test statistics Tmin∗
γ Calculate the min-test statistics Tmin∗

ij

from the resampled vectors X
∗
γ and from the resampled vectors X

∗
ij, X

∗
i0 and

{X∗
γj}j=1,...,k following (3.13). Check X

∗
0j following (3.2). Check whether

whether maxγ′∈G Tmin∗
γ′ ≥ Tmin

γ and in max(i′,j′)∈G Tmin∗
i′j′ ≥ Tmin

ij and in case

case increase zγ by 1. increase zij by 1.

(4) Repeat steps (2) and (3) N times and Repeat steps (2) and (3) N times and

estimate the adjusted p-values by estimate the adjusted p-values by
ˆ̃p
(N)
γ = zγ

N
. ˆ̃p

(N)
ij =

zij

N
.

The correlation structure from the data is implicitly used in a way that statistics with

non-vanishing correlation are resampled from overlapping data sets. Note that it is no

loss of generality to resample under the complete null hypothesis H
G

0 = ∩γ∈GHγ
0 if the

test statistics satisfy the subset pivotality condition (Westfall and Young, 1993). If K ⊂ G

is a subset of the design grid where all Hκ
0 are true for κ ∈ K, the joint distribution of

the test statistics {Tκ}κ∈K depends on the sample size allocation, the correlation matrix

of the statistics and the nuisance parameters {δκ}κ∈K . In particular, the distribution does

not depend on which particular subset of null hypotheses is true, i.e. on the values of the

remaining means {µκ}κ/∈K . Hence the subset pivotality condition is satisfied for testing

multiple hypotheses by the min-test.

To get an idea of the performance of bootstrap-based min-tests, it is convenient to con-

sider a design with k = 2 or k = 3 and only one combination group and its respective

components. This does obviously not require any multiplicity adjustment. Denote the
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Algorithm n δ=0.0 δ=0.1 δ=0.2 δ=0.3 δ=0.5 δ=0.8

10 0.0343 0.0419 0.0517 0.0551 0.0651 0.0706
25 0.0296 0.0465 0.0589 0.0684 0.0684 0.0566

4.1 50 0.0334 0.0532 0.0660 0.0725 0.0583 0.0501
100 0.0340 0.0615 0.0698 0.0630 0.0551 0.0525
250 0.0319 0.0678 0.0639 0.0556 0.0488 0.0488

10 0.0520 0.0504 0.0506 0.0504 0.0495 0.0482
4.1 25 0.0496 0.0506 0.0524 0.0522 0.0496 0.0486

(δ known) 50 0.0507 0.0487 0.0491 0.0478 0.0505 0.0520
100 0.0505 0.0494 0.0495 0.0530 0.0510 0.0523
250 0.0510 0.0488 0.0497 0.0526 0.0503 0.0514

10 0.0140 0.0180 0.0211 0.0266 0.0350 0.0458
25 0.0130 0.0200 0.0269 0.0379 0.0497 0.0473

4.2 50 0.0117 0.0220 0.0350 0.0406 0.0476 0.0521
100 0.0133 0.0284 0.0410 0.0483 0.0508 0.0491
250 0.0120 0.0343 0.0471 0.0489 0.0493 0.0510

Table 4.1: Results of 25, 000 simulations of the 0.05 level min-test for a 2x2 bifactorial design

using Algorithms 4.1 and 4.2 with N = 15, 000 bootstrap iterations each. For Algorithm

4.1, the nominal significance level is exceeded for nuisance parameters δ > 0. Algorithm

4.2 performs very conservative for small values of δ. The second panel shows results from

evaluation of Algorithm 4.1, but with a known value of the nuisance parameter. The actual

type I error is then close to the nominal level α for all choices of δ.

population means of the treatment groups involved by µ11, µ10 and µ01 with δ = µ10−µ01

in the k = 2 case. For simulation under the null hypothesis, data are then sampled from

normal populations with variance σ2 = 1 and means µ10 = 0 and µ01 = µ11 = δ. For

k = 3, denote the means by µ111, µ110, µ101 and µ011, where the data are simulated from

populations with several settings for the marginal means µ110, µ101 and µ011 according

to the columns of Table 4.2 and µ111 = max{µ110, µ101, µ011} reflecting the first part of

(4.1). The results of the studies on these examples are summarized in Table 4.1 for k = 2

and in Table 4.2 for k = 3, using several algorithms. Table 4.1 shows that the proposed

bootstrap approach to the min-test keeps the given level α = 0.05 well for a nuisance

parameter δ = 0, but performs anticonservative for settings where δ > 0. The same is

observed for k = 3, where α is protected well if all marginal means are equal. The three

components of the nuisance parameter vector δ are the same but in permuted order for

the third and forth column. However, denoting the ordered values of the marginal means

by µ(1), µ(2) and µ(3), the parameter |µ(3) − µ(2)| in the example has got the two distinct

values 0.1 and 0.4 and the simulation results are also distinct in these settings. Further-

more, for the case where |µ(3) − µ(2)| = 0.1, the type I error additionally depends on the
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Algorithm n (0.0,0.0,0.0) (0.2,0.2,0.2) (0.5,0.4,0.0) (0.5,0.1,0.0) (0.5,0.4,0.4) (0.5,0.1,0.1)

10 0.0241 0.0244 0.0474 0.0694 0.0362 0.0699
25 0.0244 0.0276 0.0589 0.0851 0.0426 0.0806

4.1 50 0.0269 0.0283 0.0564 0.0783 0.0509 0.0769
100 0.0242 0.0310 0.0647 0.0577 0.0597 0.0664
250 0.0222 0.0246 0.0781 0.0483 0.0763 0.0516

10 0.0049 0.0049 0.0140 0.0276 0.0082 0.0224
25 0.0060 0.0050 0.0189 0.0383 0.0110 0.0340

4.2 50 0.0053 0.0059 0.0224 0.0476 0.0131 0.0456
100 0.0040 0.0060 0.0277 0.0456 0.0178 0.0506
250 0.0048 0.0055 0.0349 0.0519 0.0247 0.0522

Table 4.2: Results of 25, 000 simulations for the 0.05 level min-test on a 2x2x2 trifactorial

design using Algorithm 4.1 and 4.2 with N = 15, 000 bootstrap iterations each. The actual

type I error is given for various combinations of the marginal means and depends primarily

on the parameter |µ(3) − µ(2)|: for Algorithm 4.1, the nominal level is not protected if

|µ(3) − µ(2)| > 0. Applying Algorithm 4.2, the test is very conservative if |µ(3) − µ(2)| is in an

environment of zero.

difference |µ(3) − µ(1)|, whereas the latter has no impact for |µ(3) − µ(2)| = 0.4 (last two

columns). It can therefore be supposed that in general, the components of the nuisance

parameter vector δ are of unequal importance for the test level; more exactly, the actual

type I error primarily depends on the parameter |µ(k) − µ(k−1)| and the influence of the

parameter |µ(k) − µ(k−2)| is getting stronger as |µ(k) − µ(k−1)| decreases.

The simulation results in Tables 4.1 and 4.2 exemplarily show for k = 2 and k = 3 that

the min-test based on Algorithm 4.1 exceeds the given significance level if δ is estimated

from the data. It will be shown later on that this stems from the poor accuracy of the

estimate for δ. This is confirmed by an additional simulation that has been performed

for k = 2, using a prespecified value of δ to resample under the true null hypothesis. The

nuisance parameter δ is assumed to be known and the data vectors are centered accord-

ing to δ prior to the resampling procedure in Algorithm 4.1 such that hypothesis (4.1) is

reflected. These results are additionally given in Table 4.1: the type I error of the test

approximately matches the level α for all values of δ and n but is of no use for practical

purposes as knowledge of δ cannot be assumed.

As the p-values might be too small for some settings of the nuisance parameters, the boot-

strap approach to the min-test proposed in Algorithm 4.1 is not suitable to increase the

power. From a regulatoric point of view, a better way to protect the significance level is to

involve the assumption that, as proposed by Hung (1993) for k = 2, |µ(k) − µ(k−1)| = ∞
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4 Bootstrap approach to k-factorial designs

Figure 4.1: Vizualisation of the results in Table 4.1. (a) Simulations are based on Algorithm

4.1. The nominal level α = 0.05 is exceeded for nuisance parameters δ > 0. (b) Evaluation

of Algorithm 4.2: the type I error is much smaller than α = 0.05, particularly if δ is close to

zero. Small sample sizes yield more conservative tests than large-sample designs.

for all γ ∈ G even if any of these parameters is in fact in an environment of 0. In

practice, this can be achieved by simulating the distribution of Tmin
γ using single two-

sample t-statistics based on two groups each. The combination group is compared to

the marginal group with the largest sample mean, i.e. the resampling-based approach is

based on Xγ − X̄γ and Xγj − X̄γj if X̄γj = max{X̄γ1 , ..., X̄γk}. For the k = 2 case, the

marginal group with the larger sample mean can equivalently be determined according

to the signs of the δ̂ij, i.e. the calculations are based on Xij − X̄ij and Xi0 − X̄i0 if δ̂ij ≥ 0

and on Xij − X̄ij and X0j − X̄0j if δ̂ij < 0. The algorithm is given as a modified version

of Algorithm 4.1, again in a general form for multiple inferences on a factorial grid G as

well as for k = 2:
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4.1 Bootstrapping the min-test

Algorithm 4.2 (Multiple min-tests with conservative assumption)

(1) Initialize counting variables zγ = 0 Initialize counting variables zij = 0 for

for γ ∈ G. Determine the indices j with (i, j) ∈ G and calculate the statistics

X̄γj = max{X̄γ1 , ..., X̄γk} and Tmin
ij = min{Ti0, T0j}.

Tmin
γ = T j

γ .

(2) Generate (D1 + 1) · ... · (Dk + 1) bootstrap Generate (A + 1) · (B + 1) bootstrap

samples X
∗
γ: resample X

∗
γ from samples: resample X

∗
ij from Xij − X̄ij.

Xγ − X̄γ + max{X̄γ1 , ..., X̄γk} and If δ̂ij ≥ 0, resample X
∗
i0 from Xi0 − X̄i0,

X
∗
γj from Xγj . otherwise X

∗
0j from X0j − X̄0j.

(3) Determine the min-test statistics Determine the min-test statistics Tmin∗
ij .

Tmin∗
γ = Tγj . Check whether Check whether max(i′,j′)∈G Tmin∗

i′j′ ≥ Tmin
ij

maxγ′∈G Tmin∗
γ′ ≥ Tmin

γ and in case and in case increase zij by 1.

increase zγ by 1.

(4) Repeat steps (2) and (3) N times. The Repeat steps (2) and (3) N times. The

estimated adjusted p-values are then estimated adjusted p-values are then
ˆ̃p
(N)
γ = zγ

N
. ˆ̃p

(N)
ij =

zij

N
.

This method has been evaluated by the same simulation experiments as performed for

Algorithm 4.1. The results are given in the last panels of Table 4.1 and Table 4.2 for

k = 2 and k = 3, respectively: in the k = 2 case, the p-values estimated by Algorithm 4.2

tend to be conservative if δ is in an environment of zero, whereas the type I error is close

to α if δ is large. These results essentially agree to those obtained by Hung (2000) from

the evaluation of his analytical min-test approach. Recalling the evaluation of Algorithm

4.1, it is no surprise that for k = 3, the type I error of the min test primarily depends on

how well the largest marginal means can be distinguished. If, in particular, the parame-

ter |µ(3) − µ(2)| is close to zero, the test performs much more conservative than for large

values of |µ(3) − µ(2)|. In addition, the impact of the parameter |µ(3) − µ(1)| is stronger if

|µ(3) − µ(2)| is small. It can be supposed that this holds for the parameters |µ(k) − µ(k−1)|
and |µ(k) − µ(k−2)| in a design with general choice of k.

There are a couple of possible modifications for Algorithm 4.2 which are essentially

equivalent but make different use of the data. One of these is to calculate the test statis-

tics alternately from both marginal groups, reflecting the fact that in case of small values

of the nuisance parameters, it is unknown which of the two marginal groups has in fact

larger mean. This approach avoids the problem of throwing away the data from the
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δ = 0.0 δ = 0.1 δ = 0.3 δ = 0.5

Population ϑ Hung Bootstrap Hung Bootstrap Hung Bootstrap Hung Bootstrap

0.0 0.0116 0.0117 0.0223 0.0220 0.0425 0.0406 0.0506 0.0476
0.2 0.1256 0.1278 0.1776 0.1830 0.2475 0.2484 0.2546 0.2626

Normal, 0.3 0.2737 0.2735 0.3572 0.3506 0.4337 0.4256 0.4396 0.4361
homoscedastic 0.4 0.4728 0.4757 0.5713 0.5599 0.6214 0.6228 0.6382 0.6283

0.5 0.6851 0.6907 0.7569 0.7482 0.7976 0.7996 0.8001 0.8002
0.6 0.8505 0.8443 0.8934 0.8857 0.9074 0.9051 0.9079 0.9059

0.0 0.0118 0.0129 0.0299 0.0222 0.0617 0.0465 0.0813 0.0487
0.2 0.1272 0.1317 0.2022 0.1859 0.2666 0.2216 0.2908 0.2280

Normal, 0.3 0.2758 0.2806 0.3701 0.3493 0.4426 0.3897 0.4588 0.3799
heteroscedastic 0.4 0.4631 0.4576 0.5518 0.5334 0.6025 0.5538 0.6200 0.5370

0.5 0.6562 0.6419 0.7282 0.7023 0.7561 0.7184 0.7695 0.6996
0.6 0.8034 0.7963 0.8550 0.8388 0.8698 0.8404 0.8742 0.8321

0.0 0.0115 0.0176 0.0210 0.0291 0.0328 0.0567 0.0346 0.0672
0.2 0.1447 0.1422 0.1950 0.2077 0.2591 0.2799 0.2595 0.3107

Lognormal, 0.3 0.3097 0.2936 0.3963 0.3682 0.4640 0.4627 0.4677 0.4892
homoscedastic 0.4 0.5354 0.4790 0.6069 0.5460 0.6703 0.6423 0.6753 0.6520

0.5 0.7337 0.6419 0.7924 0.7001 0.8241 0.7604 0.8377 0.7785
0.6 0.8620 0.7706 0.8994 0.8124 0.9218 0.8585 0.9277 0.8659

0.0 0.0115 0.0151 0.0208 0.0328 0.0424 0.0605 0.0510 0.0667
0.2 0.1240 0.1445 0.1864 0.2076 0.2592 0.2923 0.2940 0.2913

Lognormal, 0.3 0.2884 0.3063 0.3693 0.3879 0.4536 0.4600 0.4857 0.4511
heteroscedastic 0.4 0.5071 0.5195 0.6022 0.5914 0.6685 0.6356 0.6984 0.6284

0.5 0.7143 0.7224 0.7963 0.7661 0.8358 0.7947 0.8526 0.7729
0.6 0.8773 0.8568 0.9247 0.8855 0.9396 0.8879 0.9380 0.8693

Table 4.3: Results of 10, 000 simulations for the power of the 0.05 level min-test in a 2x2 bi-

factorial design using Algorithm 4.2 with n = 50 and N = 15, 000 bootstrap iterations each.

The power is monotonically increasing in δ also for non-vanishing values of the primary

parameter ϑ.

wrong group that might occur if, for instance, δ̂ > 0 though in fact δ < 0. A similar ap-

proach is to choose the bootstrap samples from the pooled data of both marginal groups.

However, as the resulting bootstrap distribution will approximately be a t-distribution

for both methods, the simulation results under the null hypothesis (Table 4.1) as well as

under the alternative and for different distributional settings (Table 4.3) are very similar.

These results are therefore not shown.

For bifactorial designs with just one combination group and a single min-test, simula-

tions on Algorithm 4.2 have also been performed under the alternative hypothesis for

n = 50. Evidently, a greater power is expected for larger sample sizes in any case, but the

analysis is focused on the influence of the primary parameter ϑ = µ11−max{µ10, µ01} and

the nuisance parameter δ. As mentioned in Chapter 2, the bootstrap allows for skewed
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4.2 Resampling-based tests of global hypotheses

and heteroscedastic data. To compare the performance to that of the analytical approach

of Hung (2000) which involves the multivariate normal distribution, the results are given

for both methods. To attain that the pooled variance over the three groups (1, 1), (1, 0)

and (0, 1) is still 1, the variances on which the simulations of heteroscedastic data are

based must be defined by

σ10 = a,

σ01 = a(1 + δ)

σ11 = a(1 + δ + ϑ),

where a =
√

3/ (1 + (1 + δ)2 + (1 + δ + ϑ)2). The simulation results under the alterna-

tive have been summarized in Table 4.3: as expected, the power primarily depends on ϑ,

but for fixed values of ϑ, it is also monotonically increasing in δ. The power is sufficient

for large primary parameters even if δ is in an environment of zero. For the normal and

homoscedastic case, there is no definite distinction between the analytical approach and

the bootstrap. When the equal variances assumption must be dropped, the analytical

method obviously exceeds the nominal level α under the null hypothesis if the nuisance

parameters are large. This problem is not present when using Algorithm 4.2 where the

power is slightly smaller in all parametric settings for normal data. If the underlying

population is lognormal, the power for small effect sizes is larger when using Algorithm

4.2 for the homoscedastic as well as the heteroscedastic case. This includes the problem

that under the null hypothesis, the significance level might be slightly exceeded by the

bootstrap if the nuisance parameters are large. In contrast, the power of the analytical

approach is better than that of the bootstrap for large effect sizes.

For sample size planning, the power of the tests on normal and homoscedastic data

has been evaluated for several values of n where the samples in the respective groups

are assumed to be equally-sized. The results for this are given in Table 4.4. As α = 0.05

and 1−β = 0.8 are usual choices for the error bounds, the sample sizes where the power

is at least 0.8 should be chosen. In practice, the parameters are defined as a clinically

relevant effect expressed in units of the supposed population standard deviations.

4.2 Resampling-based tests of global hypotheses

The remarks on the bootstrap approach for the min-test also apply to the AVE- and MAX-

test on the global problem (3.15) that was previously discussed by Hung, Chi and Lipicky
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ϑ = 0.4 ϑ = 0.6

Sample size δ = 0.0 δ = 0.2 δ = 0.4 δ = 0.0 δ = 0.2 δ = 0.4

n = 5 0.2546 0.2391 0.2270 0.3454 0.3322 0.3219
n = 15 0.3960 0.3776 0.3630 0.6096 0.5903 0.5492
n = 25 0.5146 0.5079 0.4656 0.7704 0.7377 0.7139
n = 50 0.7375 0.6957 0.6511 0.9440 0.9217 0.9153
n = 75 0.8476 0.8187 0.7881 0.9873 0.9807 0.9765

Table 4.4: Power simulations of the 0.05 level min-test for the normal and homoscedastic

case and various effect parameters ϑ and δ for purpose of sample size planning. Assuming

1 − β = 0.8, the samples sizes should be chosen from the table such that this power can be

achieved by the test. The calculations are based on 10, 000 simulations using Algorithm 4.2

with N = 15, 000 bootstrap iterations.

(1993), Hung (2000), Hellmich and Lehmacher (2005), Buchheister and Lehmacher

(2006). The powerful theory behind this was summarized in Chapter 3, but is restricted

to k = 2 and certain distributional cases. Furthermore, it might not be feasible for prac-

tical purposes to handle with the rather technical analytical approach. In the following,

the bootstrap methods are therefore extended to the AVE- and MAX-test, yielding an ap-

proach that needs no special theory on the power functions.

For the AVE-test, the null distribution of the random variable Tave can be simulated by

resampling from the original data. As the AVE-statistic is a mean of D1 · ... · Dk test

statistics, it needs to be studentized dividing by the variance of Tave. This has got the

representation

∆ =

(∑
γ∈G

(Tmin
γ )2 − (

P

γ∈G
T min

γ )
2

D1·...·Dk

)

(D1 · ... · Dk)((D1 · ... · Dk) − 1)
(4.2)

for the given sample as well as for each bootstrapped data set generated throughout

the simulation, avoiding calculation of the variance from (3.8). The p-value is then the

probability

pave = PH0

(
Tave√

∆
≥ tave√

∆̂

)
,

where ∆̂ denotes the estimated value of ∆ from the observed values tmin
γ of the min-

statistics. According to the nuisance parameters δγ, the same problems obviously arise

for the AVE-test as for the single min-tests and the multiple testing procedures in the

previous sections. Keeping in mind that the min-test fails to protect the nominal signifi-

cance level if |µ(k)−µ(k−1)| is estimated from the data, the assumption |µ(k)−µ(k−1)| = ∞
for all γ ∈ G will be applied again and conservative results are expected, regarding the
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evaluation of Algorithm 4.2. In detail, the calculations for a group γ ∈ G are based on Xγ

and Xγj if X̄γj = max{X̄γ1 , ..., X̄γk}. The following bootstrap-based algorithm computes

the p-value for the AVE-test, avoiding the derivation of the c.d.f. of Tave:

Algorithm 4.3 (Resampling-based AVE-test)

(1) Initialize a counting variable z = 0. Initialize a counting variable z = 0.

For all γ ∈ G, determine the Calculate Tmin
ij = min{Ti0, T0j} for

index j with X̄γj = max{X̄γ1 , ..., X̄γk} all (i, j) ∈ G and the variance ∆̂ and

and define Tmin
γ = T j

γ . Calculate the Tave = (AB)−1
∑

(i,j)∈G
Tmin

(i,j) .

variance ∆̂ and the AVE-statistic

Tave = (D1 · ... · Dk)
−1
∑

γ∈G
Tmin

γ .

(2) Generate 2D1 · ... · Dk bootstrap samples: Generate 2AB bootstrap samples:

resample X
∗
γ from Xγ − X̄γ and resample X

∗
ij from Xij − X̄ij. If δ̂ij ≥ 0,

X
∗
γj from Xγj − X̄γj . resample X

∗
i0 from Xi0 − X̄i0, otherwise

X
∗
0j from X0j − X̄0j.

(3) Determine Tmin∗
γ = T j∗

γ . Calculate Determine the min-statistics Tmin∗
ij ,

T ∗
ave = (D1 · ... · Dk)

−1
∑

γ∈G
Tmin∗

γ calculate T ∗
ave = (AB)−1

∑
(i,j)∈G

Tmin∗
ij

and the sample variance ∆̂∗ from (4.2). and the sample variance ∆̂∗ from (4.2).

Check whether (T ∗
ave/

√
∆̂∗) ≥ (Tave/

√
∆̂) Check whether (T ∗

ave/
√

∆̂∗) ≥ (Tave/
√

∆̂)

and in case increase z by 1. and in case increase z by 1.

(4) Repeat steps (2) and (3) N times. The Repeat steps (2) and (3) N times. The

estimate for the p-value is p̂
(N)
ave = z

N
. estimate for the p-value is p̂

(N)
ave = z

N
.

The p-value for the MAX-test is obtained as the smallest adjusted p-value resulting from

Algorithm 4.2 and therefore requires no further theory on numerical calculation.

Statistical power of Algorithm 4.3 and of the MAX-test based on Algorithm 4.2 have

been evaluated by simulation studies. Following Hung (2000), the matrices E1 and E2

are involved to represent the effect sizes occuring under the alternative hypothesis in a

simulated 4x3 bifactorial trial with two drugs evaluated in the doses 0, 1, 2, 3 (drug A)

and 0, 1, 2 (drug B), respectively: let

E1 :=




0.0 0.1 0.3 0.6

0.2 0.5 0.6 0.9

0.5 0.8 0.8 0.9


 and E2 :=




0.0 0.1 0.3 0.6

0.2 0.25 0.7 1.0

0.5 0.65 0.9 1.0


 ,
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Population Effect Variance AVE-test MAX-test

Hung (2000) Bootstrap Hung (2000) Bootstrap

E0 Vhom 0.0128 0.0537 0.0283 0.0245
E1 Vhom 0.7625 0.7920 0.5803 0.5170

Normal V1 0.7731 0.7231 0.6518 0.5591
E2 Vhom 0.7719 0.7246 0.7099 0.6314

V2 0.7374 0.7054 0.6990 0.5831

E0 Vhom 0.0117 0.0661 0.0198 0.0196
E1 Vhom 0.7250 0.6924 0.6040 0.4685

Lognormal V1 0.7782 0.7050 0.6249 0.5414
E2 Vhom 0.7232 0.7740 0.7199 0.5544

V2 0.7491 0.7999 0.7074 0.5994

Table 4.5: Simulation results for the 0.05 level AVE- and MAX-tests for several distributional

cases. Under the null hypothesis, 25, 000 simulations were performed, whereas 10, 000 were

considered enough under the alternative. The calculations are based on Algorithm 4.3 for

the AVE-test and Algorithm 4.2 for the MAX-test with N = 15, 000 bootstrap iterations. For

comparison, the multivariate normal approach proposed by Hung (2000) was evaluated,

where the implementation was overtaken from Hellmich and Lehmacher (2005).

where E1 represents the case that the effects have got a common value ϑij = µij −
max{µi0, µ0j} = 0.3 for all (i, j) ∈ G, whereas for E2, the groups with A = 1 have smaller

effects than the remaining combinations but still with a mean effect of 0.3 over the com-

bination groups. Sample size allocation matrices as chosen by Hung (2000) will not be

considered here as the focus of the simulations will primarily be on variations of the

distributional shape of the data. The AVE- and MAX-test have been evaluated for normal

versus lognormal populations and for homoscedastic as well as for heteroscedastic data.

The equal variances case is represented by the matrix

Vhom :=




1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00


 ,

whereas for the heteroscedastic case, the coefficient of variation is held constant over

the treatment groups, i.e. the standard deviations linearly increase in the population

means according to, say, σ = 0.5 + 0.9µ. For both effect size matrices, the variances in

the respective treatment groups can then be represented by one matrix each, that is to

say

V1 :=




0.50 0.60 0.77 1.04

0.68 0.95 1.04 1.31

0.95 1.22 1.22 1.31


 and V2 :=




0.50 0.59 0.77 1.04

0.68 0.73 1.13 1.40

0.95 1.09 1.31 1.40



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4.3 Simultaneous confidence intervals

for E1 and E2, respectively. In mean, the variance is still 1 for both matrices V1 and V2.

Under the null hypothesis, the methods are evaluated for the effect size matrix

E0 :=




0.0 0.1 0.3 0.6

0.2 0.2 0.3 0.6

0.5 0.5 0.5 0.6


 ,

which represents the same setting of the nuisance parameter as before and the effect

ϑij = µij − max{µi0, µ0j} = 0 for all (i, j) ∈ G. The type I error is evaluated for E0 with

equal variances over the treatment groups.

The results of the simulations are given in Table 4.6 for both the AVE- and MAX-test in the

same parametric settings. For the normally distributed case, the bootstrap-based AVE-test

performs slightly better than Hung’s method if all effects are equal with equal variances.

The power of the AVE-test is slightly greater for a design where the effects are distinct

in the respective groups when applying the bootstrap to the lognormal distributed case.

Under the null hypothesis, the significance level α is exceeded by Algorithm 4.3 for log-

normal data. For the MAX-test, it turns out that the bootstrap approach has no greater

power than the analytical method for any parametric and distributional setting. The sim-

ulations for the type I error of the MAX-test are equivalent to corresponding experiments

on multiple min-tests under the complete null hypothesis: they reflect the probability for

at least one true null hypothesis to be rejected by any min-test on the grid. The results

for the MAX-test from Table 4.6 indicate that the familywise error is controlled weakly

by the level α = 0.05 as defined in (2.4).

4.3 Simultaneous confidence intervals

Confidence intervals are of common interest in clinical applications, where researchers

are interested in possible values of outcome variables, supplementary to a rather tech-

nical adjusted p-value approach. The latter might particularly be useful for screening

purposes. Simultaneous confidence intervals for k-factorial trials must satisfy the con-

dition P
(⋂

γ∈G

⋂k
j=1

{
µγ − µγj ∈ Iγj

})
= 1 − α. For construction of the intervals, the

nuisance parameters δγ do not need to be considered because for a fixed treatment group

γ ∈ G, each of the k intervals describes the difference between the population mean µγ

and only exactly one of the means µγ1 , ..., µγk . The calculation of confidence intervals

therefore parallels the well-known problem of multiple intervals for a metric outcome

and adequate contrast matrix.
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4 Bootstrap approach to k-factorial designs

n=50 n=250

Population Effect Variance B./G./H. (2001) Algorithm 4.4 Algorithm 4.5 Algorithm 4.5

E0 Vhom 0.9502 0.9634 0.9314 0.9442
E1 Vhom 0.9469 0.9658 0.9421 0.9442

Normal V1 0.9191 0.9701 0.9288 0.9450
E2 Vhom 0.9461 0.9654 0.9308 0.9442

V2 0.9169 0.9629 0.9307 0.9435

E0 Vhom 0.9422 0.9876 0.9140 0.9349
E1 Vhom 0.9440 0.9858 0.9140 0.9349

Lognormal V1 0.9198 0.9452 0.8873 0.9249
E2 Vhom 0.9447 0.9835 0.9140 0.9338

V2 0.9104 0.9457 0.8868 0.9243

Table 4.6: Simulation results for the coverage probabilities of the simultaneous confidence

intervals are given for the various designs with calculations based on Algorithm 4.4, Al-

gorithm 4.5 and the multivariate t-distribution as proposed by Bretz, Genz and Hothorn

(2001).

The most common approach is to determine the intervals by the representation

Iγj =


X̄γ − X̄γj − ξ

√
σ̂2

γ

nγ

+
σ̂2

γj

nγj

, X̄γ − X̄γj + ξ

√
σ̂2

γ

nγ

+
σ̂2

γj

nγj




with the same critical point ξ being used for all. Some of the manifold approaches to cal-

culation of critical points in such a setting have been discussed in Chapter 2. Bretz, Genz

and Hothorn (2001) proposed algorithms based on transformations of the multivariate

t-distribution that allow numerical calculation of critical points with arbitrary precision

for normally distributed and homoscedastic data. These methods are implemented in the

multcomp package which is available on the Comprehensive R Archive Network (CRAN).

Simultaneous confidence intervals for factorial designs are now constructed using the al-

gorithm from Edwards and Berry (1987) which was introduced in Section 2.5.1. As men-

tioned in Chapter 2, the complete null hypothesis (3.15) is reflected in the resampling

procedure. The critical points required for confidence interval estimation are obtained

as the empirical (1− α)-quantile of the test statistic maxγ∈G |T j
γ |. Resampling is based on

the residuals Xγ − X̄γ using the respective sample variance estimators.
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4.3 Simultaneous confidence intervals

Algorithm 4.4 (Simultaneous confidence intervals using test statistics)

(1) Generate bootstrap samples X̃
∗
γ from Generate bootstrap samples X̃

∗
ij from

the residuals Xγ − X̄γ for all γ ∈ G0. the residuals Xij − X̄ij for all (i, j) ∈ G0.

(2) Calculate the statistics T j∗
γ for all Calculate the statistics TA∗

ij and TB∗
ij

γ ∈ G and j = 1, ..., k and store for all (i, j) ∈ G and store

maxγ∈G,j=1,...,k |T j∗
γ |. max(i,j)∈G{|TA∗

ij |, |TB∗
ij |}.

(3) Repeat steps (1) and (2) N times. Repeat steps (1) and (2) N times.

Estimate the critical value ξ by the m-th Estimate the critical value ξ by the m-th

order statistic of the N values of order statistic of the N values of

maxγ∈G,j=1,...,k |T j∗
γ | with max(i,j)∈G{|TA∗

ij |, |TB∗
ij |} with

m = [(N + 1)(1 − α)]. m = [(N + 1)(1 − α)].

These intervals are symmetric and still based on the test statistics which needs normal

distributed data in both groups. The modification of Efron and Tibshirani’s (1993) per-

centile method introduced in Section 2.5.1 can be used to overcome these limitations.

For confidence intervals in k-factorial designs, this can be applied as denoted in the fol-

lowing algorithm.

Algorithm 4.5 (Simultaneous confidence intervals using percentile method)

(1) Generate bootstrap samples X̃
∗
γ from Generate bootstrap samples X̃

∗
ij from

Xγ for all γ ∈ G0. Xij for all (i, j) ∈ G0.

(2) Calculate the estimates X̄
∗
γ − X̄

∗
γj for Calculate the estimates X̄

∗
ij − X̄

∗
i0 and

all γ ∈ G and j = 1, ..., k. Append these X̄
∗
ij − X̄

∗
0j for all (i, j) ∈ G and append

values as a row of a matrix M . Repeat these values as a row of a matrix M .

(1) and (2) N times. Repeat (1) and (2) N times.

(3) For l = 1, ..., (kD1...Dk), eliminate the For l = 1, ..., 2AB, eliminate the rows of M

rows of M with the smallest and with the smallest and largest value in the

largest value in the lth column. Repeat lth column. Repeat this step αN
2k

times.

this step αN
2k

times.

(4) For the lth column, the estimates of the For the lth column, the estimates of the

confidence limits for the corresponding confidence limits for the corresponding

comparison are min1≤i≤k Mil and comparison are min1≤i≤k Mil and

max1≤i≤k Mil. max1≤i≤k Mil.
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4 Bootstrap approach to k-factorial designs

The accuracy of the simultaneous intervals has been evaluated for the same data settings

as the global hypothesis tests in the previous section. The simulation results in the last

column of Table 4.5 represent simultaneous coverage probabilities of all intervals and are

therefore desired to equal the nominal level of 1 − α = 0.95 closely. The simulations are

given for the bootstrap approaches as well as for straight-forward calculation on multiple

contrasts using the numerical methods for evaluation of multivariate t-integrals. For the

latter, the coverage is close to the nominal level 1−α = 0.95 for the homoscedastic case,

but much lower for unequal variances in the involved treatment groups. Algorithm 4.4

performs slightly conservative for lognormal and homoscedastic data, but the coverage

probability is at least 1 − α in all cases. It can be shown by further simulations with dif-

ferent sample sizes that for n < 50 and even for n = 5, the nominal level is still protected

but the intervals tend to be conservative if the samples are very small. For reasonable

coverage probability, there should be a sample of at least n = 15. For Algorithm 4.5, the

coverage is smaller than the nominal level in all cases if n = 50 but, however, approaches

0.95 for larger sample sizes as shown for n = 250 in the last column.

4.4 Combination drug for reduction of SiDBP: application to a

clinical trial

For experiments on finding efficacious dose combinations in a k-factorial design, there

are (D1 + 1) · ... · (Dk + 1) treatment groups to be tested and allocation of resources must

be considered carefully. In particular, practical feasibility is limited to trials on disease

patterns where clinical and financial expense for data acquisition are not to heavy. An

example of such an experiment was given in the introduction. For convenience, it is

reproduced here: a combination of a diuretic (drug A) and an ACE inhibitor (drug B)

was tested for its efficacy in decrease of sitting diastolic blood pressure (SiDBP) with the

response means and sample size allocation (in parentheses) summarized as follows:

(A,0) (A,1) (A,2) (A,3)

(B,0) 0 (75) 1.4 (75) 2.7 (74) 4.6 (48)
(B,1) 1.8 (74) 2.8 (75) 5.7 (74) 8.2 (49)
(B,2) 2.8 (48) 4.5 (50) 7.2 (48) 10.9 (48)

A pooled standard deviation of σ̂ = 7.07 was estimated. The results of Hellmich and

Lehmacher (2005) for this example were summarized in the introduction. Some conside-

rations on bootstrap-based simultaneous confidence intervals and adjusted p-values are

now given to complement this. As the original data from the trial are kept confidential

by the United States Food and Drug Administration (FDA), the calculations will be based
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4.4 Combination drug for reduction of diastolic blood pressure

normal homosc. normal heterosc. lognormal homosc. lognormal heterosc.

Contrast p-value 2.5% 97.5% p-value 2.5% 97.5% p-value 2.5% 97.5% p-value 2.5% 97.5%

11-10 0.6937 -2.288 4.288 0.6937 -2.286 4.286 0.6937 -2.287 4.287 0.6937 -2.289 4.289
11-01 -1.876 4.677 -1.875 4.675 -1.876 4.676 -1.879 4.678
12-10 0.0291 0.602 7.199 0.0291 0.603 7.197 0.0291 0.602 7.198 0.0291 0.600 7.200
12-02 -0.299 6.299 -0.297 6.297 -0.298 6.298 -0.300 6.300
13-10 0.0357 2.705 10.095 0.0357 2.706 10.094 0.0357 2.705 10.095 0.0357 2.703 10.097
13-03 -0.475 7.675 -0.473 7.673 -0.474 7.674 -0.477 7.677
21-20 0.5002 -2.354 5.754 0.5002 -2.352 5.752 0.5002 -2.354 5.754 0.5002 -2.357 5.757
21-01 -0.563 6.763 -0.561 6.761 -0.563 6.763 -0.565 6.765
22-20 0.0070 0.305 8.496 0.0070 0.307 8.494 0.0070 0.305 8.495 0.0070 0.302 8.498
22-02 0.782 8.218 0.783 8.217 0.782 8.218 0.780 8.220
23-20 4.8E-5 4.005 12.196 4.8E-5 4.007 12.194 4.8E-5 4.005 12.195 4.8E-5 4.002 12.198
23-03 2.205 10.396 2.207 10.394 2.205 10.395 2.202 10.398

Table 4.7: Multiple inferences for simulated data matching the hypertension example from

Hung (2000). For the p-values, the implementation of the unbalanced-design adjusted p-

values approach was used (Hellmich and Lehmacher, 2005) where the calculations are based

on the multivariate normal distribution (Chapter 3). The intervals are based on critical

values of the multivariate t-distribution.

on simulated samples all with the same descriptives as given in the above table, but with

various distributional properties, i.e. the data are simulated from the normal and the

lognormal distributions to analyze the behaviour for symmetric as well as for strongly

skewed cases. For both types, one data set has been simulated with equal variances and

one with linearly increasing standard deviations, i.e. the coefficient of variation for these

data is held constant over the treatment groups.

The results of the calculations are summarized in Table 4.7 for the analytical approach

based on the proposals of Hung (2000), Hellmich and Lehmacher (2005) and Bretz, Genz

and Hothorn (2001) and in Table 4.8 for the bootstrap-based approach (Algorithms 4.2

and 4.4). Using the analytical methods, the intervals are essentially the same for all

types of data because they are based on the corresponding sufficient statistics under ad-

ditional distributional assumptions, that is to say homoscedasticity and normality of the

data. In contrast, the alternative methods using Algorithm 4.2 for the adjusted p-values

and Algorithm 4.4 for the simultaneous confidence intervals are sensitive to the actual

distributional structure contained in the data. The width of the bootstrap-based intervals

is different between the treatment groups not because of the unbalanced sample size

allocation only but also due to the heterogenity of variances and different distributional

shape of the data in use.

Consider the relation of the confidence intervals and the adjusted p-values as a kind of
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4 Bootstrap approach to k-factorial designs

normal homosc. normal heterosc. lognormal homosc. lognormal heterosc.

Contrast p-value 2.5% 97.5% p-value 2.5% 97.5% p-value 2.5% 97.5% p-value 2.5% 97.5%

11-10 0.7280 -2.509 4.455 0.6455 -2.107 4.011 0.7315 -2.523 4.398 0.6228 -2.472 3.736
11-01 -2.907 4.844 -1.650 4.356 -2.111 4.787 -2.009 4.087
12-10 0.0327 0.379 7.367 0.0317 0.391 7.300 0.0278 0.366 7.310 0.0143 -0.022 6.991
12-02 -0.521 6.467 -0.606 6.495 -0.534 6.410 -1.030 6.176
13-10 0.0398 2.456 10.284 0.0890 1.893 10.767 0.0346 2.440 10.220 0.0576 1.363 10.370
13-03 -0.749 7.883 -1.529 8.571 -0.766 7.812 -2.133 8.118
21-20 0.5334 -2.628 5.961 0.4941 -2.544 5.812 0.5331 -2.644 5.891 0.4619 -3.043 5.438
21-01 -0.810 6.950 -0.648 6.732 -0.825 6.887 -1.089 6.401
22-20 0.0096 0.028 8.705 0.0134 -0.349 9.002 0.0072 -0.012 8.633 0.0046 -0.907 8.583
22-02 0.531 8.408 0.070 8.793 0.516 8.344 -0.452 8.402
23-20 2.0E-4 3.728 12.405 2.3E-3 2.684 13.348 1.0E-4 3.712 12.333 5.0E-4 2.047 12.870
23-03 1.928 10.605 0.668 11.758 1.912 10.533 0.006 11.261

Table 4.8: Multiple inferences for simulated data matching the SiDBP example from Hung

(2000). The calculations are based on Algorithm 4.2 for the p-values and Algorithm 4.4

for the intervals with N = 25, 000 bootstrap iterations for each. The implementation in the

bifactorial package was used that is available from the CRAN network.

consistency control for the results. If both of the lower confidence bounds for µij − µi0

and µij − µ0j are non-negative, say

min



X̄ij − X̄i0 − ξ

√
σ̂2

ij

nij

+
σ̂2

i0

ni0

, X̄ij − X̄0j − ξ

√
σ̂2

ij

nij

+
σ̂2

0j

n0j



 = 0,

this can likewise be denoted as tmin
ij = min

{
taij, tbij

}
= ξ, where the latter is equivalent

to p̃ij = P
(
Tmin

ij ≥ tmin
ij

)
= α

2
. As 1 − α = 0.95 is a common choice for the confidence

level, the results are consistent if p̃ij ≤ 0.025 occurs if and only if both lower confidence

bounds are non-negative.

Checking this in the results for the SiDBP example shows that the test decisions and

intervals are consistent for the results based on the multivariate normal or t-distribution,

whereas there are some abberations for heteroscedastic and lognormal data when using

the bootstrap-based approach.
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5 Binary endpoints in k-factorial designs

The outcomes of multiple dose experiments are often binary features, such as for example

response vs. non-response to a medication, occurance vs. non-occurance of adverse

events or recidive vs. non-recidive after a medicamentous therapy. Typically, the number

of “events” in n cases is then binomially distributed with certain parameters π and n.

Paralleling the test problem in (3.1), the null hypothesis of interest for the bifactorial

design can then be expressed in terms of the proportion of “events” for patients in the

respective treatment groups, that is to say

H ij
0 : (πij ≤ πi0) ∨ (πij ≤ π0j) vs. H ij : (πij > πi0) ∧ (πij > π0j), (5.1)

representing the question if the event rate in the combination group is higher than in

both component groups. To make inference on (5.1), the min-statistics can be based on

appropriate χ2- or Z-type statistics for comparisons of two proportions. In the following,

the asymptotically normally distributed Z-statistics are chosen to point out the relation-

ship to the continuous data case. The min-statistic is defined by Zmin
ij = min

{
ZA

ij , Z
B
ij

}

with the denotations

ZA
ij =

π̂ab − π̂a0√
V (π̂ab)

nab
+ V (π̂a0)

na0

and ZB
ij =

π̂ab − π̂0b√
V (π̂ab)

nab
+ V (π̂0b)

n0b

, (5.2)

where V (x) = x(1 − x) and the π̂ denote the sample “event” rates as estimates of the

respective population rates. Wang and Hung (1997) proposed an approach to derive

the power function of Zmin
ij for the special case of equal and large sample sizes in the

treatment groups and discuss an extension to unequally-sized treatment groups. Again,

the power function depends on the primary parameters ϑij = πij −max{πi0, π0j} and the

(usually unknown) nuisance parameters δij = πi0 − π0j. For monotonicity reasons, an

upper bound for the type I error can be obtained by taking the supremum of the power

function, evaluated at ϑij = 0 for all (i, j) ∈ G, over all possible values of the nuisance

parameters δij. This offers a method to derive the p-values corresponding to any ob-

served value of the test statistic, analogously as for the continuous data case.

Wang and Hung (1997) do not consider binary data designs with multiple dose combina-

tions. This poses the problem of multiple inferences on hypothesis (5.1) using the min-

test and requires considerations on the global question if any dose combination is more
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5 Binary endpoints in k-factorial designs

efficacious than its components. The latter could be answered by global test methods for

binary k-factorial designs comparable to those for the continuous data case. Derivations

of the power functions of the corresponding AVE- and MAX-test and a multiple inference

approach are not available up to now; approximations might involve the multivariate

normal distribution for the Z statistics and a supremum taken over all possible values of

the nuisance parameters δij, which are now bounded between −1 and 1.

In the following section, the decisions on multiple dose combinations with binary end-

points will be based on resampling, generalizing the results from Chapter 4. Again, the

methods are given for a grid where the dimensionality is not specified. The denotations

G = {1, ..., D1} × ... × {1, ..., Dk} ⊂ N
k, γ = (i1, ..., ik) and γj = (i1, ..., ij−1, 0, ij+1, ..., ik)

are taken over from Chapter 3 and the null hypothesis is generalized as

Hγ
0 :

k∨

j=1

(πγ ≤ πγj) vs. Hγ :
k∧

j=1

(πγ > πγj), (5.3)

where the decision is based on the min-statistic Zmin
γ = min{Z1

γ , ..., Z
k
γ} with the denota-

tions

Zj
γ =

π̂γ − π̂γj√
V (π̂γ)2

nγ
+

V (π̂
γj )2

n
γj

, (5.4)

analogously as for the t-statistics in (3.13). The Zj
γ are approximately standard normal

if the sample sizes are sufficiently high and the data are not too sparse.

5.1 Bootstrap approach

When the resampling-based approach is carried over from the continuous case (Chapter

4), some special problems arise for binary data. Regarding the first guideline of Hall and

Wilson (1991), the null hypothesis should not be reflected by centering the data to a

common mean like for continuous data. The result of this is not a {0, 1}-valued vector

and its interpretation in connection with the “event” of interest is therefore unclear.

Instead, either two samples of interest can be pooled to one single sample from which,

subsequently, the random samples are drawn. The probabilities of an “event” are then
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5.1 Bootstrap approach

equal for both of those samples. Now, to reflect the null hypothesis

Hγ
0 : (πγ − max{πγ1 , ..., πγk} = 0) ∧




πγ1 − πγ2

...

πγ1 − πγk

πγ2 − πγ3

...

πγ2 − πγk

...

πγk−1 − πγk




= δγ, (5.5)

how can the condition on the nuisance parameter vector δγ be involved when resam-

pling from pooled data sets? The data are pooled to attain equal sample rates π̂γ and

max{π̂γ1 , ..., π̂γk}. To reflect (5.5), the original distances of the event rates in the marginal

groups should be kept when resampling the data from the remaining treatment groups,

which can obviously not be attained by the pooling strategy.

As the order of the “events” in each treatment group is not relevant for the test and for

resampling, it does not mean any loss of information on the data to involve the parame-

ters π̂ and n only, i.e. data are sampled from binomial distributions with the parameters(
π̂γj , nγj

)
for j = 1, ..., k and

(
max{π̂γ1 , ..., π̂γk}, nγ

)
. This reflects (5.5) and additionally

offers a remarkable simplification in implementation.

The following is a particular form of what Efron and Tibshirani (1993) called a paramet-

ric bootstrap procedure. As before, the algorithms for binary data are given for general

k-factorial designs as well as for k = 2.

Algorithm 5.1 (Binary multiple min-tests with estimated nuisance parameters)

(1) Initialize counting variables zγ = 0 Initialize counting variables zij = 0

for γ ∈ G. Calculate the min- for (i, j) ∈ G. Calculate the min-

statistics Zmin
γ following (5.4). statistics Zmin

ij following (5.2).

(2) Generate (D1 + 1) · ... · (Dk + 1) binomial Generate (A + 1) · (B + 1) binomial

samples X
∗
γ that reflect the null samples X

∗
ij that reflect (5.5): simulate

hypothesis (5.5): simulate X
∗
γj from X

∗
i0 from Bi(π̂i0, ni0), X

∗
0j from

Bi
(
π̂γj , nγj

)
for j = 1, ..., k and Bi(π̂0j, n0j) and X

∗
ij from

X
∗
γ from Bi

(
max{π̂γ1 , ..., π̂γk}, nγ

)
. Bi(max{π̂i0, π̂0j}, nij).
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5 Binary endpoints in k-factorial designs

n=50 n=100

(πA0, π0B) Algorithm 5.1 Algorithm 5.2 Algorithm 5.1 Algorithm 5.2

(0.9,0.7) 0.05560 0.05204 0.05080 0.04968
(0.8,0.6) 0.06244 0.04892 0.05424 0.05040
(0.7,0.5) 0.06428 0.04884 0.05576 0.05104
(0.6,0.4) 0.06872 0.05560 0.06124 0.05172
(0.5,0.3) 0.06376 0.04728 0.05456 0.04732
(0.4,0.2) 0.06220 0.04744 0.05172 0.04960
(0.3,0.1) 0.05780 0.04820 0.05288 0.05164

Table 5.1: Results of 25, 000 simulations of the 0.05-level min-test for a binary outcome vari-

able and δ = 0.2 in a 1x1 bifactorial design using Algorithms 5.1 and 5.2 and N = 15, 000

bootstrap iterations each. For both algorithms, the actual type I error slightly depends on

the position of the rates of the marginal groups in the interval [0, 1]. This effect is stronger

for n = 50 than for n = 100.

(3) Calculate the min-test statistics Zmin∗
γ Calculate the min-test statistics Zmin∗

ij

from the resampled vectors X
∗
γ and from the resampled vectors X

∗
ij, X

∗
i0 and

{X∗
γj}j=1,...,k following equation (5.4). X

∗
0j following equation (5.2). Check

Check whether maxγ′∈G Zmin∗
γ′ ≥ Zmin

γ whether max(i′,j′)∈G Zmin∗
i′j′ ≥ Zmin

ij and

and in case increase zγ by 1. in case increase zij by 1.

(4) Repeat steps (2) and (3) N times and Repeat steps (2) and (3) N times and

estimate the adjusted p-values by estimate the adjusted p-values by
ˆ̃p
(N)
γ = zγ

N
. ˆ̃p

(N)
ij =

zij

N
.

Algorithm 5.1 has been evaluated for k = 2 in a design with only one combination group

using a single min-test. When planning the simulation studies, several settings with

n = 50 or n = 100 and a constant value of the nuisance parameter, that is to say δ = 0.2,

but distinct positions of the marginal rates in the interval [0, 1] were simulated under

the null hypothesis (Table 5.1). It turns out that the actual type I error is remarkably

larger than 0.05 if the pair (πa0, π0b) is located in the mid-range of [0, 1] but smaller near

the limits of the interval. This a particular problem for binary data as in the continuous

case, the null distribution of the test statistics does not depend on a location parameter.

However, all simulation results in Table 5.1 are, even though not equal, but close to the

nominal level α = 0.05 especially for n = 100.

For the type I error, 25, 000 data sets were simulated for various parameter values δ

and sample sizes n. For sake of clearness to the reader and because of the weak de-

pendence on the position in [0, 1], the simulations are performed for a fixed value of
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5.1 Bootstrap approach

Algorithm n δ=0.0 δ=0.1 δ=0.2 δ=0.3 δ=0.4

10 0.03264 0.05120 0.06768 0.07260 0.06548
25 0.03440 0.06112 0.07348 0.06300 0.05176

5.1 50 0.03144 0.06540 0.06428 0.05420 0.05164
100 0.03272 0.07140 0.05576 0.05160 0.05208
150 0.03360 0.07004 0.05268 0.04968 0.04996
250 0.03308 0.06148 0.05060 0.05036 0.05036

10 0.07100 0.05732 0.06384 0.06860 0.07424
25 0.01096 0.02552 0.04096 0.04636 0.04648

5.2 50 0.01260 0.03612 0.04992 0.05128 0.05144
100 0.01212 0.04336 0.05104 0.05192 0.05052
150 0.01288 0.04716 0.04920 0.05268 0.04932
250 0.01336 0.04884 0.05008 0.05008 0.05008

Table 5.2: Results of 25, 000 simulations of the 0.05 per cent level min-test for a binary

outcome variable in a 1x1 bifactorial design using Algorithms 5.1 and 5.2 and N = 15, 000

bootstrap iterations each. For Algorithm 5.1, the type I error exceeds the nominal level if

the nuisance parameter δ is slightly larger than zero. Using Algorithm 5.2, the test is very

conservative for designs where the nuisance parameter δ is in an environment of zero. Note

that a minimum amount of data should be available as for n = 10, the type I error exceeds

the nominal level also when using Algorithm 5.2.

πa0 = 0.7 and with various values π0b ∈ {0.7, 0.6, 0.5, 0.4, 0.3}, which is equivalent to

δ ∈ {0.0, 0.1, 0.2, 0.3, 0.4}. The simulation results are summarized in Table 5.2 and

vizualised in Figure 5.1. Just as in the continuous data case, Algorithm 5.1 performs

anticonservative for settings where δ is slightly larger than 0. In addition, the type I error

depends on the sample size in a non-monotonic way which can be explained by the fact

that the estimate of δ is more accurate for larger samples.

Again, a stricter assumption on the nuisance parameter is therefore proposed to achieve

protection the significance level. Algorithm 5.2 is a modification of Algorithm 4.2 for the

binary data case and implicitly assumes a large value for |δ|.
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5 Binary endpoints in k-factorial designs

Algorithm 5.2 (Binary multiple min-tests with conservative assumption)

(1) Initialize counting variables zγ = 0 for Initialize counting variables zij = 0 for

γ ∈ G. Determine the index j with (i, j) ∈ G and calculate the min-statistics

π̂γj = max{π̂γ1 , ..., π̂γk} and Zmin
ij .

define the min-statistics as Zmin
γ := Zj

γ.

(2) Generate (D1 + 1) · ... · (Dk + 1) samples Generate (A + 1) · (B + 1) samples

from the binomial distribution: from the binomial distribution: if δ̂ij ≥ 0,

simulate X
∗
γj from Bi(π̂γj , nγj) simulate X

∗
ij from Bi(π̂i0, nij) and X

∗
i0

for j = 1, ..., k and X
∗
γ from from Bi(π̂i0, ni0), otherwise X

∗
ij from

Bi
(
max{π̂γ1 , ..., π̂γk}, nγ

)
. Bi(π̂0j, nij) and X

∗
0j from Bi(π̂0j, n0j).

(3) Determine the min-statistics Zmin∗
γ := Zj∗

γ . Determine the min-statistics Zmin∗
ij .

Check whether maxγ′∈G Zmin∗
γ′ ≥ Zmin

γ Check whether max(i′,j′)∈G Zmin∗
i′j′ ≥ Zmin

ij

and in case increase zγ by 1. and in case increase zij by 1.

(4) Repeat steps (2) and (3) N times. The Repeat steps (2) and (3) N times. The

adjusted p-value for group γ is then adjusted p-value for group (i, j) is then

estimated by ˆ̃p
(N)
γ = zγ

N
. estimated by ˆ̃p

(N)
ij =

zij

N
.

This has been evaluated in the same way as Algorithm 5.1. Again, the type I error slightly

depends on the position of the marginal means in the interval [0, 1]; thus in Table 5.1,

the simulation results for various positions in [0, 1] are given also for Algorithm 5.2. The

simulation results are shown in the second panel of Table 5.2: the algorithm performs

conservative for small values of the nuisance parameter δ, but the actual type I error is

approximately α = 0.05 if δ is greater than 0, i.e. the behaviour is comparable to that of

Algorithm 4.2. Note that if the sample size is extremely small (n = 10), the significance

level is exceeded also with this conservative method.

Algorithm 5.2 has been evaluated also under the alternative hypothesis: data were

generated from the binomial distribution and the population variance was determined

as nπ(1−π) from the parameters π and n. Thus, assumptions on distributional shape and

equal or unequal variances over the respective groups do not make sense. As the range

for combinations of the parameters δ and ϑ is limited by the restriction that all parameters

have to be in the interval [0, 1], the simulations are performed for a fixed value πa0 = 0.5

with π0b ∈ {0.5, 0.4, 0.3, 0.2, 0.1}, which is equivalent to δ ∈ {0.0, 0.1, 0.2, 0.3, 0.4}. In

addition, the values πab ∈ {0.5, 0.6, 0.7, 0.8, 0.9} are considered, representing a primary

parameter of ϑ ∈ {0.0, 0.1, 0.2, 0.3, 0.4}. The results of the power simulations are given

in Table 5.3, showing a similar behaviour as for the continuous case as reported in Table
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5.2 Global null hypotheses for binary data

Figure 5.1: Vizualisation of the results in Table 5.2. (a) Simulations are based on Algorithm

5.1 where the nominal level α = 0.05 is exceeded for nuisance parameters δ > 0. (b) Eval-

uation of Algorithm 5.2: the type I error rate is much smaller than α = 0.05, particularly

if δ is in an environment of 0. The significance level is exceeded also for Algorithm 5.2 if

the sample size is very small (n = 10), which has been omitted in the figure to get a clearer

vizualisation.

4.3: the power is monotonically increasing in both parameters δ and ϑ. The procedure

tends to a more conservative behaviour if δ is an environment around zero, but the power

is satisfying also in these cases if, in addition, the effect size is sufficiently large.

5.2 Global null hypotheses for binary data

The global question if any combination group evocates a higher response than both of its

components is now extended to the binary case. Following the remarks in Section 3.3,

the null hypothesis and alternative of interest can be expressed according to

H0 : ∀γ ∈ G :
k∨

j=1

(πγ ≤ πγj) vs. H1 : ∃γ ∈ G :
k∧

j=1

(πγ > πγj). (5.6)
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5 Binary endpoints in k-factorial designs

ϑ δ = 0.00 δ = 0.10 δ = 0.20 δ = 0.3

0.00 0.0144 0.0337 0.0429 0.0515
0.05 0.0504 0.1009 0.1189 0.1243
0.10 0.1376 0.2301 0.2599 0.2635
0.15 0.3089 0.4319 0.4557 0.4589
0.20 0.5348 0.6511 0.6804 0.6839
0.25 0.7588 0.8389 0.8496 0.8576
0.30 0.9013 0.9433 0.9448 0.9493

Table 5.3: Simulation results for the power of the 0.05 level min-test for a 1x1 bifactorial de-

sign using Algorithm 5.2. The power is monotonically increasing in δ also for non-vanishing

values of the primary parameter ϑ.

For the decision on this test problem, the AVE- and MAX-statistics are carried over from

the continuous case. Paralleling the AVE- and MAX-tests proposed by Hung, Chi and

Lipicky (1993) and Hung (2000), the generalized form

Zave = (D1...Dk)
−1
∑

γ∈G

Zmin
γ and Zmax = max

γ∈G

Zmin
γ

will be used. A modification of the AVE-test algorithm from Section 4.2 can be applied

to the case of binary data. The null hypothesis will be reflected in the same way as

mentioned for the multiple inference case in Section 5.1: data are sampled from the bi-

nomial distribution with parameters
(
π̂γj , nγj

)
for j = 1, ..., k and

(
max{π̂γ1 , ..., π̂γk}, nγ

)
,

respectively. From these, the AVE- and MAX-statistics are calculated. The algorithm for

the AVE-test is the following.

Algorithm 5.3 (Binary resampling-based AVE-test)

(1) Initialize a counting variable z = 0. Initialize a counting variable z = 0.

Determine the min-statistics Zmin
γ and Determine the min-statistics Zmin

ij and

calculate the average statistic calculate the average statistic

Zave = (D1 · ... · Dk)
−1
∑

γ∈G
Zmin

γ Zave = (AB)−1
∑

(i,j)∈G
Zmin

ij from the

from the data. data.

(2) Generate (D1 + 1) · ... · (Dk + 1) samples Generate (A + 1) · (B + 1) samples

from the binomial distrubution: from the binomial distribution: if δ̂ij ≥ 0,

simulate X
∗
γj from Bi

(
π̂γj , nγj

)
simulate X

∗
ij from Bi (π̂i0, nij) and X

∗
i0

for j = 1, ..., k and X
∗
γ from from Bi (π̂i0, ni0), otherwise X

∗
ij from

Bi
(
max{π̂γ1 , ..., π̂γk}, nγ

)
. Bi (π̂0j, nij) and X

∗
0j from Bi (π̂0j, n0j).
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5.2 Global null hypotheses for binary data

Effect size AVE-test MAX-test Confidence intervals

E0 0.0607 0.0272 0.9548
E3 0.7390 0.5752 0.9545
E4 0.9375 0.6148 0.9796

Table 5.4: Simulation results for the 0.05 level AVE- and MAX-tests based on E3 and E4

taken as the effect size matrices. The calculations are based on Algorithms 5.3 and 5.2,

where 25, 000 simulations were performed under the null hypothesis and 10, 000 for E3

and E4. The overall coverage probability of simultaneous confidence intervals based on

Algorithm 5.4 has also been evaluated for either setting of treatment effects. For all analyses,

N = 15, 000 bootstrap iterations were used.

(3) Determine the min-test statistics Determine the min-test statistics Zmin∗
ij

Zmin∗
γ = Zj∗

γ and the average statistic and the average statistic

Z∗
ave = (D1 · ... · Dk)

−1
∑

γ∈G
Zmin∗

γ . Z∗
ave = (AB)−1

∑
(i,j)∈G

Zmin∗
ij . Increase

Increase z by one if Z∗
ave ≥ Zave. z by one if Z∗

ave ≥ Zave.

(4) Repeat steps (2) and (3) N times. The Repeat steps (2) and (3) N times. The

estimated p-value is then p̂
(N)
ave = z

N
. estimated p-value is then p̂

(N)
ave = z

N
.

The p-value for the MAX test can be derived from the multiple inference method as given

by Algorithm 5.2, where pmax is estimated by the smallest of the resulting p-values.

The performance of Algorithm 5.3 and of the MAX-test based on Algorithm 5.2 have

been evaluated by simulation experiments. The matrix

E0 =




0.0 0.2 0.3 0.4

0.2 0.2 0.3 0.4

0.3 0.3 0.3 0.4




represents the complete null hypothesis, i.e. the effect sizes for all (i, j) ∈ G have the

common value ϑij = πij − max{πi0, π0j} = 0, whereas

E3 =




0.0 0.2 0.3 0.4

0.2 0.4 0.5 0.6

0.3 0.5 0.5 0.6


 and E4 =




0.00 0.20 0.30 0.40

0.20 0.25 0.55 0.65

0.30 0.55 0.55 0.65




now indicate the respective response rates in the combination treatment groups when

simulating under the alternative. Paralleling the simulation in Chapter 4, the matrix
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5 Binary endpoints in k-factorial designs

E3 represents a design with an effect of 0.2 in all combination groups, whereas E4 has

smaller effects in the low-dose group (1, 1) but the mean of the rates in all groups is still

0.2. The variances in the respective groups are determined from these effects through

the representation nπ(1− π) as the data are generated from the binomial distribution. A

balanced sample size allocation of n = 100 per group was chosen.

The results are given in Table 4.5. It turns out that the behaviour is similar to that of

the methods for the continuous data application: the resampling-based AVE-test tends

to exceed the significance level under the null hypothesis, whereas the MAX-test per-

forms more conservative than the AVE-test in all situations. As the latter is equivalent

to an evaluation of the multiple inference procedure, it is important to remark that the

familywise error is protected weakly by the significance level α.

5.3 Confidence intervals for binary data

For binary data, confidence intervals for the differences in the “event” rates between the

combination groups and their respective components, i.e. for πγ−πγj and j = 1, ..., k, can

be given. As pointed out in Section 4.3, no problems arise from the nuisance parameters

δγ because the group γ and only one of the groups γj, j = 1, ..., k, is involved in each

inference. Covering all parameters simultaneously with a prespecified probability 1 − α

means P
(⋂

γ∈G

⋂k
j=1

{
πγ − πγj ∈ Ij

γ

})
= 1 − α to hold for the intervals, where

Ij
γ =

[
π̂γ − π̂γj − ξ

√
V (π̂γ)

nγ

+
V (π̂γj)

nγj

, π̂γ − π̂γj + ξ

√
V (π̂γ)

nγ

+
V (π̂γj)

nγj

]
. (5.7)

Hence the remaining issue is to estimate the critical value ξ. As it is no loss of information

to consider the parameters π and n for each sample only, data are sampled from the

binomial distributions Bi

(
π̂γ+π̂

γj

2
, nγ

)
and Bi

(
π̂γ+π̂

γj

2
, nγj

)
, reflecting the null hypothesis

πγ = πγj for j = 1, ..., k and γ ∈ G. Summarizing these considerations, the algorithm can

be outlined as follows.
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5.4 Remission of AML patients under combined decitabine and cytarabine therapy

Algorithm 5.4 (Binary simultaneous confidence intervals)

(1) Generate 2kD1 · ... · Dk binary samples Generate 4AB binary samples

{(X∗
γ ,X

∗
γj)}γ∈G;j=1,...,k from the {(X∗

ij,X
∗
i0), (X

∗
ij,X

∗
0j)}(i,j)∈G from the

binomial distributions Bi

(
π̂γ+π̂

γj

2
, nγ

)
binomial distributions Bi

(
π̂ij+π̂i0

2
, nij

)
,

and Bi

(
π̂γ+π̂

γj

2
, nγj

)
. Bi

(
π̂ij+π̂i0

2
, ni0

)
, Bi

(
π̂ij+π̂0j

2
, nij

)
,

and Bi

(
π̂ij+π̂0j

2
, n0j

)
.

(2) Calculate the statistics Zj∗
γ for all γ ∈ G Calculate the statistics ZA∗

ij and ZB∗
ij for

and j = 1, ..., k as given by (5.4). Store all (i, j) ∈ G as given in (5.2). Store

the value maxγ∈G,j=1,...,k |Zj∗
γ |. the value max(i,j)∈G{|ZA∗

ij |, |ZB∗
ij |}.

(3) Repeat steps (1) and (2) N times. Repeat steps (1) and (2) N times.

Estimate the critical value ξ by the Estimate the critical value ξ by the

m-th order statistic of the N values of m-th order statistic of the N values of

maxγ∈G,j=1,...,k |Zj∗
γ | with max(i,j)∈G{|ZA∗

ij |, |ZB∗
ij |} with

m = [(N + 1)(1 − α)]. m = [(N + 1)(1 − α)].

The simultaneous coverage probability of the intervals constructed by Algorithm 5.4 has

been evaluated by an additional simulation experiment for the same designs as for the

global AVE- and MAX-test. The results for the confidence intervals are given in the last

column of Table 5.4 together with those for the AVE- and MAX-tests: under the null

hypothesis and in the setting E3, the coverage probability is close to the nominal level

0.95. For the design with unequal effect sizes, the intervals still cover the true parameters

with sufficient probability but are slightly more conservative.

5.4 Remission of AML patients under combined decitabine and

cytarabine therapy

As a binary data application, the trial supervised by Huang et al. (2007) reported in the

introduction is now analyzed. For convenience, the example is reproduced here: patients

suffering from acute myeloid leukemia (AML) are treated by a combination of the two

drugs decitabine and cytarabine. The binary feature to be a responder or non-responder

is taken as the endpoint of this trial where the response criterion is taken to be achieve-

ment of complete remission. The response rates are expected to look approximately like

(A,0) (A,1) (A,2)

(B,0) – 0.45 (31) 0.65 (17)
(B,1) 0.30 (100) 0.71 (50) 0.70 (50)
(B,2) 0.59 (101) 0.64 (50) 0.75 (50)
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5 Binary endpoints in k-factorial designs

Contrast p-value 2.5% 97.5%

11-10 0.0417 0.1714 0.6456
11-01 -0.0819 0.5843
12-10 0.8208 0.1480 0.6287
12-02 -0.3686 0.4355
21-20 0.7434 -0.2196 0.2869
21-01 -0.1679 0.5118
22-20 0.5848 -0.0807 0.3898
22-02 -0.3020 0.4895

Table 5.5: Multiple inferences for simulated data matching the specifications in the AML

remission example. The p-values have been determined by Algorithm 5.1, whereas Algo-

rithm 5.4 was used for the confidence intervals. The implementation is available in the

bifactorial package.

with the respective sample sizes given in parentheses. Application of the bootstrap ap-

proach to this requires a complete binary data set for which the descriptive statistics co-

incide with the values in the above table. These can be simulated randomly on a personal

computer. Multiplicity-adjusted p-values according to the min-test, confidence intervals

and p-values for the AVE- and MAX-test were determined for the example and summa-

rized in Table 5.5. Combination (1, 1) has got the desired property that the response

rate is significantly higher than in both component groups. Note that the confidence

intervals are consistent with the min-test p-values as discussed in section (4.4): for the

(1, 1) − (0, 1) contrast, the lower confidence bound is close but still smaller than zero,

whereas the p-value is slightly larger than 0.025.

The AVE-test based on Algorithm 5.3 results in pave = 0.0523. As discussed in Chapter

3, the MAX-test p-value is determined as the smallest of the results from the multiple

hypothesis approach, i.e. pmax = 0.0416. These p-values both indicate that at least one

combination is better than both of its components, although the AVE-test does not show

significance. In the multiple procedure, the desirable combination was identified to be

the drug in group (1, 1).
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6 Discussion

Several bootstrap-based approaches to the min-test and corresponding global test statis-

tics on k-factorial clinical trial designs have been proposed and evaluated in terms of

statistical power. However, as mentioned in Section 2.5.4, the level of uncertainty repre-

sented by the confidence limits of the simulation results should be kept in mind through-

out the discussion. First, the method based on Algorithm 4.1 was observed to exceed the

nominal level α if the nuisance parameters are slightly greater than zero. This problem

analogously occurs in the binary data case (Algorithm 5.1) and emerges from the fact

that except for reasonably large sample sizes, the estimate δ̂ will most likely not match

the true value δ and resampling under the null hypothesis is therefore possible in an

approximate sense only. This is now considered on a probabilistic level: the min-statistic

can be written as Tmin = TA11{TA≤TB} + TB11{TB<TA} and has got the expectation value

E[Tmin] = E
[
TA11{TA≤TB}

]
+ E

[
TB11{TA>TB}

]
.

For δ ≫ 0, the random variable 11{TA≤TB} reduces to the constant 1 as P ({TA ≤ TB}) ≈ 1.

An analogous conclusion holds for δ ≪ 0 such that

E[Tmin] =





E[TA] if δ ≫ 0

E[TB] if δ ≪ 0.
(6.1)

For settings where the approximation |δ| = ∞ is not valid, the expectation value of Tmin

can be derived applying rules that are commonly known from probability theory, i.e.

E
[
TA11{TA≤TB}

]
=

∫ ∞

−∞

1∑

t=0

st ϕ(TA,11{TA≤TB})(s, t) ds

=

∫ ∞

−∞
s ϕ(TA,11{TA≤TB})(s, 1) ds

In the latter, the common p.d.f. of TA and 11{TA≤TB} is denoted by ϕ(TA,11{TA≤TB}) and can

be written as

ϕ(TA,11{TA≤TB})(s, 1) = P (TB ≥ TA|TA = s)P (TA = s) = (1 − F TB(s))fTA(s)
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where F TB denotes the c.d.f. of the test statistic TB and fTA the p.d.f. of TA. For the

above expectation value, it follows now that

E
[
TA11{TA≤TB}

]
=

∫ ∞

−∞
s (1 − F TB(s))fTA(s) ds.

Analogously, the second summand of E[Tmin] can be shown to have the representation

E
[
TB11{TB≤TA}

]
=
∫∞
−∞ s (1 − F TA(s))fTB(s) ds. Taken together, these results give the

expectation value of the min-statistic as a function of the distributions of TA and TB:

E[Tmin] =

∫ ∞

−∞
s
(
(1 − F TB(s))fTA(s) + (1 − F TA(s))fTB(s)

)
ds. (6.2)

Under the null hypothesis H0 : (µab − max{µa0, µ0b} = 0)∧ (µa0 − µ0b = δ), the test statis-

tics TA and TB are t-distributed with nab + na0 − 2 and nab + n0b − 2 degrees of freedom

and noncentrality parameters

µA =





0 for δ > 0

−δ/
√

1
nab

+ 1
na0

for δ ≤ 0
and µB =





δ/
√

1
nab

+ 1
n0b

for δ > 0

0 for δ ≤ 0.

Thus, the expectation value E[Tmin] can be obtained numerically by equation (6.2). If

Algorithm 4.1 is used for resampling, the bootstrapped mean µ̂min of the distribution of

Tmin therefore depends on the estimated value δ̂ and does in general not equal the pop-

ulation mean µmin of the min-statistic under the null hypothesis. Now, the shape of this

dependence is not symmetric and as the probabilities of δ to be over- or underestimated

are approximately equal, the resulting sample mean is more likely to be µ̂min < µmin

than µ̂min ≥ µmin if |δ| > 0. In total, there are less iterations where T ∗
min ≥ Tmin than

would be under the true null hypothesis, biasing the p-values towards smaller values, i.e.

anticonservative test results.

Figure 6.1 shows the result of 5, 000 simulations of a 2x2-design with δ = 0.3 and n = 50,

where estimates of δ were explicitly evaluated and plotted against the bootstrap distri-

butional mean µ̂min of the min-test Tmin, resulting from N = 15, 000 bootstrap iterations

each. The mean µ̂min does highly depend on the estimated value δ̂ in an asymmetric way.

It tends to be smaller for δ̂ < δ than for δ̂ > δ. It can be shown by further simulations for

choices of δ other than 0.3 that the shape of the dependence is nearly independent from

the true value of δ.

Simulations of binary data applications using Algorithm 5.1 cause slightly different prob-

lems than for the continuous case and Algorithm 4.1. Despite the nuisance parameter
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Figure 6.1: Each of the 5, 000 dots represents a single sample from the null distribution with

δ = 0.3 and n = 50 in all three cells of a 2x2 design. The empirical distribution of the test

statistic was calculated by N = 15, 000 bootstrap iterations per sample and is exemplified

on the right for one of the 5, 000 replicates. The plot shows the dependence of the resulting

distributional mean µ̂min on the estimated nuisance parameter δ̂. Small values are more

likely to occur when δ̂ < δ than for δ̂ > δ. The dotted line represents the true value δ = 0.3.

δ = πa0 − π0b, the actual type I error slightly depends on the position of the parame-

ters πa0 and π0b in the interval [0, 1]. The deviations from the nominal level result from

the poor estimation of δ in the small-sample case; note that this problem is almost not

present for n = 100. It is no surprise that the performance of Algorithm 5.1 is similar to

that of Algorithm 4.1 as the test statistics are approximately normally distributed also in

the binary case, following from the Central Limit Theorem. On the other hand, there is

only a finite number of possible simulated data sets and thus for the nuisance parameter:

for n = 50, there are 51 × 51 = 2601 pairs of binary vectors, resulting in 101 different

values of δ. For vizualisation, 2, 500 binary data sets have been simulated and the mean

µ̂min of the sampled distribution of the min-statistic Zmin based on N = 15, 000 bootstrap
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Figure 6.2: Dependence of the sampled distributional mean µ̂min on the estimated nuisance

parameter δ̂ in the binary case. Each of the 2, 500 dots represents a single sample from the

null distribution with δ = 0.2 and n = 50 in all three cells of a binary 2x2 design. The

empirical distribution was calculated by N = 15, 000 bootstrap iterations for each sample.

The shape of the dependence is similar as in the continuous case.

iterations has been plotted against the estimated nuisance parameter in each simulation

(Figure 6.2). Note the difference between this and the continuous case plotted in Figure

6.1. Thus the accuracy of the estimate for the nuisance parameter is not sufficient also

in the binary case. The considerations on the distributional mean of the min-statistic de-

pending on the estimate δ̂ also apply to binary data as the expectation of the min-statistic

has been derived without any assumptions on the type of the statistic that the min-test is

based on; thus it can be directly converted to

E [Zmin] =

∫ ∞

−∞
(1 − FZB(s))fZA(s) + (1 − FZA(s))fZB(s)ds (6.3)

where FZA, FZB denote the c.d.f. of the test statistics ZA, ZB and fZA, fZB the corre-

sponding density functions.
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The dependence of E[Tmin] on the estimated value δ̂ is a general problem which also

arises in further approaches involving estimated values for the nuisance parameters:

Snapinn (1987) reports that anticonservative p-values occur when handling with several

estimates for the nuisance parameters based on the data observed, with |δ̂| = ∞ being

the only assumption that uniformly keeps the significance level. The conclusion from this

is that without knowledge of δ, the min-test cannot essentially be improved, particularly

for settings where δ is close to zero.

The simulations for k = 3 give information on the behaviour of the min-test for higher

dimensionality. The type I error was supposed to depend primarily on the proportion of

the largest mean values in the marginal groups. The
(

k
2

)
-dimensional nuisance parameter

vector δ is uniquely determined by k − 1 of his components. Denote by µ(1) ≤ ... ≤ µ(k)

the marginal group means µγ1 , ..., µγk in increasing order. The components of δ can then

be represented as the k − 1 values

|µ(k) − µ(k−1)| ≤ ... ≤ |µ(k) − µ(1)| (6.4)

Under the null hypothesis, these determine which is the smallest of the k statistics

T 1
γ , ..., T k

γ involved in the min-test: if |µ(k) − µ(k−1)| is large, it is very unlikely that any

other marginal group than that with mean µ(k) yields the smallest test statistic. If on

the other hand, |µ(k) − µ(k−1)| is comparatively small, the probability that the group with

mean µ(k−1) yields the smallest statistic is larger. In addition, if the next component

|µ(k) − µ(k−2)| is only slightly larger, it is more likely that the marginal group with mean

µ(k−2) yields the smallest statistic. Thus, the k − 1 values in (6.4) have monotonically

decreasing impact on the test level where, importantly, the dependence of the level is

strongest for the smallest of these values. In addition, for any value in the list, the influ-

ence of those above it is smaller the larger that particular value is.

This interpretation is in accordance with the simulation results in the last four columns

of Table 4.2. For k = 3, the simulation experiments showed that the distance |µ(3) − µ(2)|
is in fact the marginal parameter that has strongest influence on the observed type I error

as the latter is distinct for the marginal means (0.5, 0.4, 0.0) and (0.5, 0.1, 0.0), whereas

the nuisance parameter vector is the same but in different order. Considering the re-

sults for (0.5, 0.4, 0.4), the probability that the test involving µ(3) and µ(1) is smallest is

higher than in the (0.5, 0.4, 0.0) case, whereas this probability is essentially equal for

(0.5, 0.1, 0.1) and (0.5, 0.1, 0.0) as the test statistic for the first marginal group is always

smaller. Summarizing these results, the actual type I error does not depend on the param-

eters |µ(k−1)−µ(k−2)|, ..., |µ(2)−µ(1)| if |µ(k)−µ(k−1)| is large enough. If, on the other hand,

the latter is close to zero, the dependence on the next parameter |µ(k−1)−µ(k−2)| becomes
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Figure 6.3: Frequency of p-values for the min-test under the null hypothesis with nuisance

parameter (a) δ = 0.5 and (b) δ = 0.1 using 20, 000 samples from a normal population

with n = 50 in each marginal group. The proportion of values below 0.05 is smaller for the

case with δ = 0.1, whereas the histogram for δ = 0.5 is the same as for a two-sample t-test.

stronger. Now, the distribution of the min-statistic under the null hypothesis cannot be

generated without knowledge of |µ(k) − µ(k−1)| also for general choices of k; i.e. when

using Algorithms 4.1 or 5.1, also the general null hypothesis (4.1) can be reflected in an

approximate sense only unless the |µ(k) − µ(k−1)| can be determined properly. For k = 2,

the only way out of this was obtained to be the assumption |δ| = ∞ which is used by

Algorithm 4.2 and causes a more conservative performance. This conclusion reflects the

fact that in the case of large nuisance parameters, the min-test is an ordinary two-sample

t-test and the p-values of the single statistics are therefore rectangular-shaped for nor-

mally distributed data (Figure 6.3a). If, on the other hand, |δ| is in an environment of

zero, the min-statistic is the minimum of two t-statistics the p-values for which are both

uniformly distributed. For the min-test with the t-distribution taken as the reference dis-

tribution, larger p-values are therefore more likely to occur (Figure 6.3b). Both taken

together, this is the reason why the nominal level is matched well for large |δ|, whereas

the min-test tends to be very conservative for |δ| ≈ 0 when using Algorithm 4.2. Con-

cluding from the k = 2 case to generality, the type I error is expected to be close to α if

the assumption |µ(k) − µ(k−1)| = ∞ is approximately satisfied which is confirmed by the
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Figure 6.4: Frequency of estimated values for a true nuisance parameter δ = 0.5 using

10, 000 samples from (a) a normal and (b) a lognormal population with n = 50 in each

marginal group. The proportion of values smaller than zero is larger for the lognormal case,

thus values δ̂ with a sign that is distinct from that of δ are more frequent here. The sections

on the axes where this occurs are marked by dashed lines in both figures.

results for k = 3.

In the simulations for skewed populations and large values of |δ|, it was found that the

probability to reject a true null hypothesis is still larger than the nominal level α if 4.2 is

used. This is due to the fact that in this algorithm, the sign of the nuisance parameter is

still determined from the data. For skewed populations, the proportion of mismatches in

the sign of δ and thus in determining the min-statistic is higher than for the symmetric

case. Results from a simulation of normal and lognormal data are vizualized in Figure

6.4 and show the sections on the axes where the described errors occur. If |δ| is large,

rejecting a true null hypothesis is more likely if the wrong comparison is chosen for the

min-statistic. Thus the type I error is in fact larger than α in the lognormal case.

The confidence intervals based on the multivariate t-distribution have a coverage proba-

bility remarkably less than 1−α = 0.95 if heteroscedasticity of the populations is ignored.

It is not possible to involve the sample variances from the data in that kind of analysis,
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and as instead equal variances are assumed throughout the analysis, the resulting inter-

vals all have the same length if the sample sizes in the groups are equal. Thus, the event

that mean differences in certain groups are not covered happens too often such that the

coverage probability is smaller than 0.95 in these cases.

In contrast, the actual sample distribution is used in a natural way when the bootstrap

is applied. Regarding the results from the hypertension example in Tables 4.7 and 4.8, it

becomes obvious how the improvement in terms of coverage works: the bounds of the si-

multaneous confidence intervals are adjusted according to the respective group variances

only when using the bootstrap, but not for the multivariate t-distribution. Nevertheless,

the coverage of the bootstrap intervals (Algorithm 4.4) may become conservative for cer-

tain parametric assumptions but is at least 1 − α in all cases.

For the new approach to simultaneous confidence intervals based on the percentile

method (Algorithm 4.4), it turned out that the coverage probability is not sufficient for

moderate sample sizes (n = 50) but very close to the nominal level of 0.95 for any distri-

butional setting if n = 250. Following from the Glivenko-Cantelli theorem, the bootstrap

distribution of the parameter estimates forms a better approximation to the empirical

c.d.f. if the sample size is large. For n = 50, the approximation is not sufficiently smooth

particularly in the distributional tails, causing a high uncertainty about the confidence

limits. However, as the performance is satisfying for larger sample sizes, the principle of

Algorithm 4.5 is in working order and may be improved by a mechanism for the number

of iterations to omit on both sides of the interval, depending on the sample size available.

Evaluation of the bootstrap-based AVE- and MAX-test showed that the respective power

is not essentially better than if the analytical methods of Hung (2000) are applied. The

behaviour of these methods can be explained by the fact that the bootstrap-based p-

values do not coincide entirely with those determined by analytical methods also for the

multiple min-tests as discovered, for instance, in the example of Section 4.4. These aber-

rations are reproduced and amplified in the global methods derived from the min-test.

Nevertheless, for binary data applications, the bootstrap-based AVE- and MAX-tests form

the only existing approach to the global null hypothesis in this special problem. Rec-

ommendations of analysis methods for the global hypotheses which are most suitable

in terms of power were given by Buchheister (2001) for several formations of the effect

sizes. In this context, the performance of the bootstrap-based AVE- and MAX-tests is

comparable to that of Hung’s tests with the above-mentioned limitations.

The discussion is concluded with some remarks concerning problems of factorial designs
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that have not been considered here and form remaining lacks in the factorial design

theory. For many reasons it may make sense to omit certain combination groups from

the design, one of which is that these combinations are expected to achieve little effect.

Patients undergoing these treatments would otherwise be consciously excluded from a

more efficacious therapy. Hung (1996) showed that the power of the test procedures is

then remarkably lower compared to a complete design. Buchheister (2001) proposed to

solve these problems by the closed test principle, but a bootstrap approach could also be

appropriate to allow for empty groups in the factorial design grid.

The interpretation of the results for the k = 3 case has been mostly qualitative in this

scope, bringing up the question how the analytical basis of this approach looks, partic-

ularly how the power functions of the tests depend on the components of the nuisance

parameter vector ordered by size as in (6.4). The result of this might also be extended to

the unbalanced case as done by Hung (2000) for the k = 2 case. Furthermore, literature

on analytical approaches to bifactorial designs involving binary data is very limited up to

now.

Further research is needed for the extension of the theory to group sequential or adaptive

designs. Ethical and logistic issues as well as financial problems that arise from the pos-

sibly very large total sample size needed for a factorial trial design are weakened when

applying adaptive designs where the recruitment in certain groups can be stopped for

futility at an early stage after interim analyses. Lehmacher, Kieser and Hothorn (2000)

applied group sequential and adaptive methods to multiple testing problems. This may

help saving an essential number of patients to be included in the trial, but also leads to

the problem of incomplete factorial designs mentioned above.

Apart from efficacy analysis, drug safety and the evaluation of side effects are important

issues in any clinical trial. These have not been considered here as application of the min-

test and its related methods to this is not suggested by the legal situation. Safety-related

events are typically reported descriptively but can also be analyzed by the factorial de-

sign methods, leading to the question if particular side effects in a combination drug are

at most as frequent as in its respective components.
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Bifactorial designs are used to test for the efficacy of drugs with a fixed combination

of two (or more) components. The question if a combination has a significantly higher

efficacy than both of its components is of common interest for obvious clinical reasons

and due to legal prescriptions. For this, Laska and Meisner (1989) proposed the min-test

which is defined by the minimum of two statistics, each testing the difference in efficacy

between the combination and one of the single compounds. To give an answer to the

question if there is at least one combination with the desired property, Hung, Chi und

Lipicky (1993) proposed the AVE- and MAX-test where the average or the maximum,

respectively, of the involved min-statistics is taken. This was initially stated for the bal-

anced and homoscedastic case. Hung (2000) generalized the theory to designs with

unequally-sized groups. The question which of the combinations have got the property

mentioned above involves the problem of multiple hypotheses testing.

The power of these methods highly depends on the difference of the respective param-

eters between the component groups considered in the analysis. This is described by

the so-called nuisance parameters δij that quantify the marginal differences between the

combination groups: if these parameters are close to zero, the methods are very conser-

vative, whereas they are more powerful for large values.

In general, bootstrap methods are a suitable approach to simulate the distribution of test

statistics without the need for an analytical representation. However, it turns out that

the dependence on the nuisance parameters δij is in the nature of the min-statistic and

is still present if the reference distribution is approximated by a bootstrap algorithm.

Furthermore, estimating the δij from the data does not give any improvement as the sim-

ulated distribution of the min-statistic asymmetrically depends on the estimated value,

the accuracy of which is quite uncertain, at least for small samples. Nevertheless, the

bootstrap methods offer additional advantages: no assumptions on the distribution of

the data as e.g. a normality assumption or homogenity of the variances in the respective

groups are needed. Furthermore, it is not relevant if the sample sizes in the groups are

equal, and the correlation of the test statistics is automatically included in the calculation

because data which two particular statistics are based on are used for both throughout

the simulation of the distribution. In contrast to an analytical approach, the extension

81



7 Summary

of the methods to designs for combinations of more than two compounds requires no

further theory.

The power of the proposed bootstrap algorithms was evaluated by simulation experi-

ments. Basically, only one single min-test was considered under the corresponding null

hypothesis and the dependency on the nuisance parameter and sample size was ana-

lyzed. When estimating the marginal difference from the data, it was shown that for

|δ| > 0, the nominal level of α = 0.05 is exceeded. If the conservative assumption

|δ| = ∞ is used instead as implicitly done in the approach of Hung (2000), the type I

error is substantially smaller than the significance level for δ ≈ 0. In principle, the prob-

lem connected to the unknown nuisance parameters can therefore not be resolved by

bootstrap methods. The power of the latter conservative method has additionally been

evaluated for various values of n for purpose of sample size planning.

Using bootstrap algorithms, the AVE- and MAX-tests can be performed with an easier

implementation than in the classical approach as analytical considerations on the distri-

bution functions are needless for these. The behaviour in simulation experiments was

similar to that of Hung’s approach in most situations. Additionally, confidence intervals

can be given with a comparatively simple implementation using bootstrap methods. In

connection to bifactorial designs, nothing of this kind is available from literature up to

now. The coverage probability was simulated using a bootstrap approach involving the

test statistics as well as for a novel algorithm for bootstrap percentiles in multiple prob-

lems, considering various distributional conditions for both methods. It was shown that

for the bootstrap approach involving the test statistics, the coverage probability is always

at least 1 − α = 0.95 in contrast to a procedure based on the multivariate t-distribution.

However, for skewed distributions, the bootstrap intervals are quite conservative. The

bootstrap percentile intervals for multiple settings have sufficient coverage probability

only for large sample sizes. Considering the hypertension trial from the paper of Hung

(2000), classical methods result in the same intervals for unequal variances as for ho-

moscedastic data because the pooled variance estimate is always used. On the other

hand, the bootstrap methods yield different intervals the length of which depends on the

respective sample variance.

All the methods described above have been transferred to the case of binary endpoints for

which theory is hardly available from literature. However, the results essentially agree

to those for the continuous case because of asymptotical properties of the test statistics

(Central Limit Theorem). For the continuous case, the min-test for generalized dimen-

sionality was evaluated for combinations of 3 compounds. For this, it was shown that

the power primarily depends on the distance of the two marginal groups with the largest
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population means and the other marginal means have an influence only if this parameter

is very small. If the distances are estimated from the data, the nominal significance level

is no more protected if the value of the parameter is in fact positive. Using the assump-

tion that both means are far apart from each other, the test is very conservative also in

the three-dimensional case. In the discussion, it was shown that this can be generalized

to arbitrary dimensionality from which the tests for combinations of 2 or 3 component

drugs are obtained as special cases.
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8 Zusammenfassung

Bifaktorielle Studienpläne werden verwendet, um die Wirksamkeit von Präparaten mit

einer festen Kombination aus zwei (oder mehr) Wirkstoffen zu testen. Aus naheliegen-

den klinischen Gründen und aufgrund regulatorischer Vorgaben interessiert man sich für

die Frage, ob eine Kombination eine signifikant höhere Wirksamkeit aufweist als beide

Komponenten für sich betrachtet. Laska und Meisner (1989) schlugen hierfür den min-

Test vor, dessen Teststatistik durch das Minimum von zwei Statistiken gebildet wird, die

die Wirksamkeit der Kombination gegen je eines der Einzelpräparate testen. Um die

Frage zu beantworten, ob es mindestens eine Kombination mit der gewünschten Eigen-

schaft gibt, schlugen Hung, Chi und Lipicky (1993) den AVE- und MAX-Test vor, bei dem

der Mittelwert bzw. das Maximum der beteiligten min-Statistiken gebildet wird. Dies ist

zunächst nur für den balancierten und homoskedastischen Fall geschehen. Hung (2000)

verallgemeinerte diese Theorie auf Designs mit ungleichen Gruppengrößen. Die Frage,

welche der betrachteten Kombinationen das o.g. Kriterium erfüllen, führt in die Prob-

lematik des multiplen Testens.

Man stellt fest, dass die Mächtigkeit der beschriebenen Methoden in hohem Maß davon

abhängt, wie stark sich die jeweiligen Parameter zwischen den betrachteten Gruppen

der Einzelpräparate unterscheiden. Dies wird durch die sogenannten Störparameter δij

beschrieben, die die Randdifferenzen der Parameter zwischen den Gruppen der Einzel-

präparate angeben: Liegen diese Parameter nahe Null, so sind die Methoden sehr kon-

servativ, während sie für große Werte erheblich mächtiger sind.

Bootstrap-Methoden sind im Allgemeinen geeignet, um die Verteilung von Teststatistiken

zu simulieren, ohne eine analytische Darstellung zu benötigen. Es zeigt sich aber, dass die

o.g. Abhängigkeit von den Störparametern δij in der Natur der min-Statistik liegt und da-

her auch noch besteht, wenn die Prüfverteilung mit einem Bootstrap-Algorithmus appro-

ximiert wird. Auch das Schätzen der δij aus den Daten führt zu keiner Verbesserung, weil

die simulierte Verteilung der min-Statistik in asymmetrischer Weise von dem geschätzten

Wert abhängt, der zumindest für kleine Stichproben mit großer Unsicherheit behaftet ist.

Dennoch haben die verwendeten Bootstrap-Methoden noch weitere Vorteile: Es fließen

keine Annahmen über die Verteilung der Daten ein wie z. B. eine Normalverteilungsan-

nahme oder die Homogenität der Varianzen in den Gruppen. Ferner spielt es keine Rolle,
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ob die Stichproben in den Gruppen verschieden groß sind, und die Korrelation der Test-

statistiken fließt automatisch in die Berechnung ein, weil von zwei Statistiken gemeinsam

verwendete Daten auch in der Simulation der Verteilung gemeinsam verwendet werden.

Es ist im Gegensatz zu einem analytischen Ansatz ohne weiteres möglich, die Verfahren

auf Designs für Kombinationspräparate mit mehr als zwei Wirkstoffen auszudehnen.

Die vorgeschlagenen Bootstrap-Algorithmen wurden in Simulationsexperimenten auf ihre

Mächtigkeit hin untersucht. Dabei wurde zunächst nur ein einzelner min-Test unter

der entsprechenden Nullhypothese betrachtet und die Abhängigkeit vom Störparameter

und der Stichprobengröße analysiert. Wenn die Randdifferenz aus den Daten geschätzt

wurde, zeigte sich dabei, dass für |δ| > 0 das nominale Niveau von hier α = 0.05 deutlich

überschritten wurde. Arbeitet man hingegen mit der konservativen Annahme |δ| = ∞,

so wie dies implizit im Ansatz von Hung (2000) geschieht, so wird für δ ≈ 0 das Niveau

nicht einmal annähernd ausgeschöpft. Die Problematik der unbekannten Störparameter

lässt sich also mit den untersuchten Bootstrap-Methoden prinzipiell nicht auflösen. Die

erwähnte konservative Methode wurde zum Zweck der Fallzahlplanung auch für ver-

schiede Werte von n ausgewertet.

Die AVE- und MAX-Tests können durch die vorschlagenen Methoden mit sehr viel über-

sichtlicherer Methodik als klassisch durchgeführt werden, weil eine analytische Betrach-

tung der Verteilungsfunktionen sich erübrigt. Das Verhalten in Simulationsexperimenten

war in den meisten Situationen ähnlich wie mit der von Hung untersuchten Technik.

Konfidenzintervalle können durch Bootstrap-Methoden ebenfalls mit einfacher Imple-

mentation angegeben werden. Dergleichen wurde im Zusammenhang mit faktoriellen

Studienplänen bisher noch nicht in der Literatur beschrieben. Die Überdeckungswahr-

scheinlichkeit wurde sowohl mit einem auf den Teststatistiken basierenden Algorithmus

als auch für eine neue Methode untersucht, bei der die multiplen Intervallgrenzen als

Bootstrap-Perzentile bestimmt werden. Beide Varianten wurden für unterschiedliche

Verteilungsbedingungen simuliert und es konnte gezeigt werden, dass die Wahrschein-

lichkeit bei der erstgenannten Methode im Gegensatz zu einem auf der multivariaten

t-Verteilung basierenden Verfahren immer mindestens 1 − α = 0.95 beträgt, allerdings

bei schiefgipfligen Verteilungen recht konservativ wird. Die Überdeckungswahrschein-

lichkeit der durch Bootstrap-Perzentile konstruierten Intervalle ist nur für größere Stich-

probenumfänge ausreichend. Am Beispiel der Bluthochdruckstudie aus dem Artikel von

Hung (2000) zeigte sich, dass klassische Methoden im Fall ungleicher Varianzen die gle-

ichen Intervalle ergeben wie bei homoskedastischen Daten, weil dort immer der gepoolte

Varianzschätzer verwendet wird. Die Bootstrap-Methoden erzeugen hingegen Intervalle,

deren Breite von der jeweiligen Stichprobenvarianz abhängt.
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Alle erwähnten Verfahren wurden auf den Fall binärer Endpunkte übertragen, zu dem

bislang nur wenig in der Literatur zu finden ist (Wang und Hung, 1997). Allerdings sind

die Ergebnisse hier aufgrund asymptotischer Eigenschaften der Teststatistiken (Zentraler

Grenzwertsatz) weitgehend identisch mit denen für den stetigen Fall. Für diesen wurde

der min-Test außerdem mit verallgemeinerter Dimensionalität für Präparate mit 3 Wirk-

stoffen ausgewertet. Hierbei zeigte sich, dass die Mächtigkeit des Verfahrens maßgeblich

vom Abstand der beiden Randgruppen mit den jeweils größten Mittelwerten abhängt

und die anderen Ränder nur eine Rolle spielen, wenn dieser Parameter sehr klein ist.

Schätzt man diesen Abstand aus den Daten, so wird das nominale Signifikanzniveau

wiederum deutlich überschritten, wenn der wirkliche Parameter einen positiven Wert

hat. Verwendet man immer die Annahme, dass die beiden Mittelwerte weit voneinander

entfernt sind, so ist der Test auch für den dreidimensionalen Fall sehr konservativ. In der

Diskussion wurde gezeigt, dass sich dies auf beliebige Dimensionalität verallgemeinern

lässt, worin die Tests für Präparate mit 2 oder 3 Wirkstoffen als Spezialfälle enthalten

sind.
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10 Appendix: Implementation of the algorithms

Manifold approaches to factorial designs have been proposed by several authors. Some

advantages and disadvantages of the various methods were discussed in the preceding

chapters. To make all the methods available for practitioners, they have been summa-

rized to an R package called bifactorial that is available from the Comprehensive R

Archive Network (CRAN) at http://cran.r-project.org/web/packages/bifactorial/

index.html. The package offers construction of class carpet and cube objects that are

appropriate to represent bi- or trifactorial designs. Graphics and descriptive statistics

can be generated as well as the inductive methods such as the AVE- and MAX-test. For

inference on multiple hypotheses, the algorithms for calculation of adjusted p-values and

simultaneous confidence intervals for the treatment groups involved in the design have

been implemented.

Method dispatch is available for classes carpet and cube such that specific methods for

these classes are called when given to the generic functions. p-values for the min-test

are calculated for each combination group and multiplicity adjustment is done where

needed. For global AVE- and MAX-tests, the approach proposed by Hung, Chi and Lipicki

(1993) and Hung (2000) has been implemented as well as the resampling-based meth-

ods described in Chapters 4 and 5. Simultaneous confidence intervals can be calculated

with an analogous syntax also based on the bootstrap or on the multivariate t-distribution

if desired. The repeated calculations in all bootstrap algorithms are extremely compu-

tationally intensive and have therefore been implemented in C++ for reasons of perfor-

mance improvement.

As the R language offers powerful features of object oriented programming (OOP), it

is apparent to represent the design and data from a clinical trial on combination drugs

by an object with properties representing the dimension vector D, the measured data as

a list of vectors for either treatment group and the sample size allocation n.

The syntax to construct objects of class carpet and cube is quite simple. For k = 2, it

requires a list containing the data from the respective treatment groups ordered by rows,

i.e. for a 2x2 design, the list should contain the data vectors in the order (0, 0), (0, 1),

(0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1) and finally (2, 2). To handle with the hypertension
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10 Appendix: Implementation of the algorithms

example from Chapter 4, simulated data satifying the descriptive statistics given there

can be generated by the code

library(bifactorial)

n<-c(75,75,74,48,74,75,74,49,48,50,48,48)

m<-c(0,1.4,2.7,4.6,1.8,2.8,5.7,8.2,2.8,4.5,7.2,10.9)

s<-rep(7.07,12)

x<-list(12)

for(i in 1:12){

x[[i]]<-rnorm(n[i],mean=0,sd=1)

x[[i]]<-x[[i]]-mean(x[[i]])

x[[i]]<-x[[i]]*(s[i]/sd(x[[i]]))

x[[i]]<-x[[i]]+m[i]

}

hung<-carpet(data=x,D=c(2,3))

where the latter constructs the carpet object hung from the simulated data. The generic

functions mintest, avetest, maxtest, confint and S4 methods for the generic functions

plot, show and summary from the base package are now available to be applied to the

example. The constructed object is displayed by typing the object name hung:

Carpet size: 2 x 3

Sample size allocation matrix:

0 1 2 3

0 75 75 74 48

1 74 75 74 49

2 48 50 48 48

Descriptive statistics: Mean response values

0 1 2 3

0 0 1.4 2.7 4.6

1 1.8 2.8 5.7 8.2

2 2.8 4.5 7.2 10.9
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Descriptive statistics: Standard deviations

0 1 2 3

0 7.07 7.07 7.07 7.07

1 7.07 7.07 7.07 7.07

2 7.07 7.07 7.07 7.07

A graphical vizualisation can be generated by the command plot(hung), the result of

which was displayed in Figure 1.1a. Multiple inferences using the min-test and simulta-

neous confidence intervals can be conducted typing

mintest(hung,test="ttest",nboot=20000)

confint(hung,test="ttest",nboot=20000)

avetest(hung,test="ttest",nboot=20000)

maxtest(hung,test="ttest",nboot=20000)

The results from this have been presented in Chapter 4; the output looks like

Group p-value

(1,1) 0.7280

(1,2) 0.0327

(1,3) 0.0398

(2,1) 0.5334

(2,2) 0.0096

(2,3) 2.0E-4

Contrast Confidence interval

(1,1)-(1,0) [-2.509; 4.455]

(1,1)-(0,1) [-2.907; 4.844]

(1,2)-(1,0) [ 0.379; 7.367]

(1,2)-(0,2) [-0.521; 6.467]

(1,3)-(1,0) [ 2.456; 10.284]

(1,3)-(0,3) [-0.749; 7.883]

(2,1)-(2,0) [-2.628; 5.961]

(2,1)-(0,1) [-0.810; 6.950]

(2,2)-(2,0) [ 0.028; 8.705]

(2,2)-(0,2) [ 0.531; 8.408]

(2,3)-(2,0) [ 3.728; 12.405]

(2,3)-(0,3) [ 1.928; 10.605]
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AVE-test for the existence of an efficacious combination

tave=2.4260, pave=0.0050

MAX-test for the existence of an efficacious combination

tmax=4.365, pmax<0.0001

Contrast with maximum test statistic: (2,3)

The multivariate-normal method proposed by Hung, Chi and Lipicky (1993) and Hung

(2000) is available if the value "hung" is specified to the argument method, which has

the default value "bootstrap" that was implicitly used above. The underlying code

was implemented by Hellmich and Lehmacher in the context of their 2005 paper and is

available at the URL http://www.medizin.uni-koeln.de/kai/imsie/homepages/mar-

tin.hellmich/mfd.html. For the confidence intervals, the calculations are based on the

R package multcomp where algorithms by Genz, Bretz and Hothorn (2001) are used for

numerical evaluation of multidimensional integrals for the multivariate t-distribution.

The commands are

mintest(hung,test="ttest",method="hung")

confint(hung,test="ttest",method="hung")

avetest(hung,test="ttest",method="hung")

maxtest(hung,test="ttest",method="hung")

The output is given in the same format as above, but the particular results are not repro-

duced here as they were also given in Chapter 4. For binary data applications, a list of

binary data, e.g. coded as 0 and 1 for “event” or “no event”, respectively, can be specified

to construct carpet objects. The value "ztest" can then be given to the argument test

of the analysis methods such that e.g. the results for the AML example from Chapter 5

can be calculated. The graphical vizualization of this was displayed in Figure 1.1b. Note

that no implementation of an analytical approach exists for this as nothing of this kind is

available from literature.

All the methods except the graphical tools are also available for k = 3 designs. The

source code of the package bifactorial can be downloaded from the CRAN network

and it is distributed under the General Public License (GPL). The package vignette is

attached on the following pages.
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