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Chapter 1

Introduction

The aim of this thesis is to study multistability properties of synchronized neuronal
dynamics caused by time-delayed coupling and spike-timing dependent plasticity, as
well as to investigate theoretical models of deep brain stimulation (DBS) and their
possible applications. The work is relevant not only from the mathematical point of
view, but also for medical application, namely, for the development of novel brain
stimulation techniques for the treatment of Parkinson’s disease (PD) or essential
tremor.

Parkinson’s disease is a movement disorder characterized by a broad variety of symp-
toms, e.g., predominant resting tremor at a frequency range 4− 8 Hz, akinesia (in-
ability to initiate movement) and rigidity (an increase in muscle tone leading to
a resistance to passive movement throughout the range of motion). The patho-
logical hallmark of this disease is the destruction of dopaminergic neurons leading
to a decrease in the striatal dopamine content [9]. The neuronal mechanisms of
parkinsonian resting tremor are nowadays rather unclear [17, 22].

We mention two hypotheses on mechanisms underlying parkinsonian symptoms.
Both hypotheses involve the pathological neuronal activity in the basal ganglia. The
basal ganglia are a group of subcortical brain nuclei involved in voluntary movement,
association, emotion and cognition. Their schematic model is depicted in Figure
1.1. The key concepts for the basal ganglia are the direct and indirect pathways of
the neuronal signaling [2]. The direct pathway is a neuronal circuit going directly
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CHAPTER 1. INTRODUCTION

from striatum to the output of the basal ganglia, globus pallidus internal (GPi) and
substantia nigra reticulata (SNr). This pathway is responsible for initiation and exe-
cution of voluntary movements. The indirect pathway is another circuit, connecting
striatum and GPi with SNr via globus pallidus external (GPe)- subthalamic nucleus
(STN) nuclei. This pathway helps to prevent unwanted muscle contractions from
competing with voluntary movements. As mentioned above, Parkinson’s disease is
characterized by a decrease of dopamine contents in the striatum. This results in a
depression of the direct pathway and an abnormal activation of the indirect pathway.
We mention two hypotheses of the mechanisms of appearance of the symptoms of
PD.

1. This hypothesis is based on the idea of a STN-GPe pacemaker, which is de-
picted in Figure 1.1 by dashed rectangle. It was shown by in vitro studies of the
neuronal cultures from the brain of a rat [60] that significant part of neurons
from STN and GPe demonstrate synchronized activity on several frequencies
ranging from 0.4 to 1.8 Hz. The phase shifts between different synchronized
neurons were either close to zero (in-phase oscillations) or to π (anti-phase
oscillations). It was also revealed that both components of the excitatory-
inhibitory loop are needed for the demonstrated strong synchronization. Since
the above studies have been carried out under the condition of the dopamine
depletion, it has been concluded that the conditions of this in vitro study were
similar to the PD state. Thus, abnormal synchronization of the STN-GPe loop
may cause symptoms of Parkinson’s disease.

2. The second hypothesis is that basal ganglia loops lose their ability to separately
process information [8, 57, 67]. This hypothesis is a result of in vivo studies
of MPTP-treated monkeys. It has been revealed that neurons in different
nuclei of basal ganglia demonstrate coherent firing, whereas they oscillate in an
uncorrelated manner in a healthy monkey. Neuronal activity is synchronized
not only within a single nucleus in basal ganglia, but also between different
nuclei.

Summarizing both hypotheses, the most probable reason of the PD symptoms can be
a pathological neuronal synchronization in the basal ganglia. Abnormally synchro-
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CHAPTER 1. INTRODUCTION

nized activity may result in the increasing of the inhibiting GPi→thalamus output,
which leads to akinesia and rigidity, whereas the strongly synchronized oscillations
in the basal ganglia loops may cause parkinsonian tremor [9]. Moreover, a study of
the directionality of the brain-muscle interaction [76] revealed a nonlinear driving of
the muscles by the subcortical oscillations.

The characteristic property of the correlated neuronal activity in the basal ganglia
is the change of the firing patterns of neurons. High-frequency tonic activity is usual
for a healthy state, whereas low-frequency bursting in the basal ganglia is one of the
characteristics of PD [12, 99]. Thus, rhythmic bursting activity at frequency bands
4 − 10 Hz and 15 − 30 Hz was observed in the STN, GPe and other parts of the
basal ganglia [9, 16,47,57].

The basal ganglia 

Striatum

GPe

STN

SNr and GPi
SNc

Cortex

Thalamus

Midbrain
Brainstem

Figure 1.1: Schematic model of the basal ganglia. The basal ganglia is marked by
rose rectangle. Green arrows depict the dopaminergic connections, red arrows depict
the glutamatergic connections and blue arrows depict the GABAergic connections.
Dashed box depicts the STN-GPe pacemaker.

Oscillations at tremor frequencies (4−8 Hz) are common in recordings of brain activ-
ities [9]. A significant coherence between STN neurons and muscle electromyogram
(EMG) activities on the tremor frequencies has been shown [3]. Such coherence
has been found to be significant for 76 out of 145 (52.4%) neurons, whereas the
coherence in the beta band occured only in 10 out of 145 (6.9%) neurons. This
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CHAPTER 1. INTRODUCTION

study also established that synchronous neuronal activity in subthalamic nucleus at
the tremor frequency contributes to the pathogenesis of Parkinsonian tremor. The
cerebro-muscular coherence during rest tremor was found not only in a tremor fre-
quency range, but also in a double tremor frequency range [95]. On the other hand,
the prominent high-frequency (15-30 Hz) synchronization has been revealed in the
STN between different neurons [51].

We can conclude that strongly synchronized neuronal activity in the STN-GPe loop
in the basal ganglia is involved in the pathogenesis of the PD symptoms generally.
Along this line, there are studies showing that reduction of the synchrony in the basal
ganglia is tightly connected with the clinical improvement in Parkinson’s disease.
Thus, it has been found [50] that dopaminergic medication reduces a high-frequency
(15-30 Hz) synchrony between different STN cells. It was shown that a levodopa-
induced reduction of the peak in the frequency band 8−35 Hz is strongly positively
correlated with an improvement of the motor score [17,47] . Such a correlation sup-
ports the hypothesis that levodopa-induced suppression of synchronized oscillatory
activity in a 8−35 Hz band may be related to an improvement in Parkinsonism, e.g.
akinesia and rigidity. Therefore, the suppression of the pathological synchronization
is an important problem for the therapy of Parkinson’s disease.

In the case of advanced PD or essential tremor where patients do not respond to
drug therapy, depth electrodes are permanently implanted in target areas, such as
ventral intermedius nucleus (Vim) or the subthalamic nucleus [5, 6, 15, 98]. The
high-frequency electrical stimulation is administered via the implanted electrodes.
High-Frequency (HF) DBS has been developed empirically based on intraoperative
observations mainly. Nowadays HF DBS is the golden standard, but it may have
some side effects, its clinical effect decreases with time, or the patients do not respond
to this therapy in spite of the proper electrode placement [68].

In order to improve the deep brain stimulation and to avoid possible unwanted side
effects, novel methods of stimulation based on nonlinear dynamics and statistical
physics have been developed by P. Tass, O. Popovych and C. Hauptmann [30, 34,
35,61,79,83–85].

The goal of these techniques based on resetting principles and delayed feedback is to
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CHAPTER 1. INTRODUCTION

selectively counteract the pathological synchronization process. The advantages of
the mentioned methods are their robustness with regard to the parameter variation
and mildness, e.g., decay of the stimulation strength under the improving of the
system state, i.e., breaking down the synchrony.

In previous papers [34, 90] several stimulation techniques were reviewed. The stan-
dard HF DBS is compared in a modelling approach with the following novel tech-
niques

• coordinated reset (CR) stimulation,

• multisite delayed feedback (MDF) stimulation,

• nonlinear delayed feedback (NDF) stimulation.

The novel methods are based on the idea of suppression of the synchronization in the
target neuronal area by re-establishing a normal physiological activity in a highly
synchronized population of neurons. On the other hand, the outcome of the HF
DBS is a significant modulation of the neuronal activity. It has been shown [72,78]
that the effect of the high-frequency stimulation is similar to the tissue lesioning,
i.e., it results in the suppression of the neuronal activity, but with less pronounced
unwanted side effects. It has been also revealed [24, 25] that HF DBS can induce
effect resembling the overactivation of the neuronal firing with the frequency of the
HF stimulation. HF DBS uses a high-frequency pulse train permanently applied via
the stimulation electrode. The numerical simulations of the HF stimulation and its
impact on the basal ganglia were performed in the work [70].

CR stimulation employs short pulse trains to sequentially reset the individual sub-
populations of the neuronal network inducing clustered state. This type of stimula-
tion is the main object of investigation in this thesis. The stimulation is applied via
a small number of stimulation sites, which are equally spaced in the neuronal popu-
lation. Stimulation signals administered via individual stimulation contacts induce
the resetting of the neuronal subpopulation assigned to the corresponding stimula-
tion site. Furthermore, in this thesis we will consider the dependence of stimulation
effects on the stimulation parameters, such as stimulation intensity and spread of
the electrical current in the brain tissue. The effect of desynchronization is achieved
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CHAPTER 1. INTRODUCTION

here by utilizing self-organization principle [29] based on the slaving principle ap-
peared due to the pathological neuronal interactions. We investigate a transient
from the stimulation-induced clustered state to the synchronized state, which goes
through the desynchronization [83].

During the last years many theoretical modeling studies [35, 36] have been devoted
to coordinated reset stimulation. These works revealed that CR stimulation can
achieve an effective desynchronization in neuronal networks. It was supposed that
systems under consideration involve spike-timing dependent plasticity for the cou-
pling strength. The important effects of rewiring and long-lasting desynchronization
imposed by the CR stimulation have been found. Summarizing, we can conclude that
CR stimulation is a perspective technique providing an effective desynchronization in
neuronal population. The clinical study of coordinated reset stimulation is currently
being performed at the Institute of Neuroscience and Medicine-Neuromodulation
(INM-7), Research Center Juelich in collaboration with the Clinic for Stereotaxy
and functional Neurosurgery of the University of Cologne.

The MDF stimulation and NDF stimulation techniques utilize delayed feedback to
stabilize a desynchronized state, which is supposed to be the closest one to the
physiological healthy state. The local field potential (LFP) of the population to be
desynchronized is measured, preprocessed, multiplied by some factor, delayed and
fed back into the target neuronal population.

Short description of MDF stimulation: The delayed LFP is applied via a small
number of stimulating contacts where each administered stimulation signal has its
own time delay. The temporal evolution of the delayed LFP signal controls the onset
of cell bursting in the corresponding neuronal subarea. Providing the appropriate
choose of time delays for all contacts, neuronal subpopulations from the vicinity of
the corresponding sites start their activity at different times, which gives rise to the
desynchronization. This method was described in the articles [30,31].

Short description of NDF stimulation: The measured and delayed LFP is nonlinearly
combined with the instantaneous signal and is applied via a single contact. Such
combined signal compensates the synchronized synaptic input for all cells in the
population and the synchronization is breaking down. Investigation of this method
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CHAPTER 1. INTRODUCTION

was performed in works [61,62].

The first goal of the present thesis is to study the coexistence of different states in the
complex neuronal systems modeling neuronal networks with spike timing-dependent
synaptic plasticity and interaction among neurons with time delay. Several coexist-
ing states, which can be considered as desired (healthy) and undesired (pathological)
modes of the neuronal activity, allow to switch the dynamics of neuronal population
from the pathological to the healthy state. The coexistence of different states (mul-
tistability) means that these states are simultaneously stable for the same parameter
values. Therefore, different initial conditions can give rise to the qualitatively dif-
ferent states. For the real applications multistability allows to obtain a long-lasting
therapeutic effect of the stimulation. Indeed, if the system has been switched to the
healthy state, it stays in this state for a long period of time.

Another part of the study is devoted to CR stimulation technique. This method
provides an effective desynchronization of a strongly synchronized neuronal system
even in the case of a single attracting pathological state, i.e., without coexistence
of different states. The aim of the present study is to describe the mechanism of
action and to find the optimal parameter values for this stimulation technique. As
we will show in Chapter 4 different values of CR stimulation parameters can lead
to different dynamical states. We study the efficiency of this stimulation in the
corresponding Chapter for different parameter values. The main parameters, which
need to be considered, are the intensity of the stimulation, the stimulation period
and the coefficient of the current decay in the neuronal tissue with the distance to
the stimulation site. We also consider the robustness of CR stimulation with respect
to parameter variations in detail.

1.1 Mathematical models in neuroscience

1.1.1 General characteristics of neurons

During the last hundred years biological science has accumulated a huge amount of
knowledge about the structure and functions of the human brain. The elementary
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CHAPTER 1. INTRODUCTION

processing units of the central nervous system are neurons, and their connections
form a very complex network. For example, in the cortex there are more than 104

cells and several kilometers of their "connections" per cubic millimeter [26]. Not only
neurons, but also another types of cells, namely glia cells, which are involved into
energy supply processes, are present in the cortex.

A typical neuron consists of three functionally different parts: dendrites, soma and
axon, see Figure 1.2. Dendrites can be considered as ’input devices’ of the neuron,
collecting signals from other cells and transmitting them to the soma. The soma
performs nonlinear signal processing in such a way that, if the total input overcomes
some threshold, an output signal is generated. This output signal is transmitted via
an axon providing output to other neurons. Many of axonal branches are quite short
and have an influence only on the neuronal neighborhood, but axon can also have
length of several centimeters and reach neurons in other brain areas. The connection
between two cells, transmitting signal from one cell to the other, is called synapse.
Neuron sending the signal is usually denoted as a presynaptic cell, whereas the
neuron obtaining the signal is identified as a postsynaptic neuron. A typical cell
receives more than 10000 inputs from other neurons [26,40].

Figure 1.2: Schematic model of the neuron. In the inset a the typical action potential
is shown. Source: [26].

The inputs imply electrical transmembrane currents changing the membrane poten-
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CHAPTER 1. INTRODUCTION

tial of the neuron. Thus, synaptic currents produce post-synaptic potentials (PSP).
Small input currents generate small PSPs, larger currents produce significant PSPs.
Post-synaptic currents can be amplified by the voltage-sensitive ion channels in the
cell membrane and lead to the generation of action potentials or spikes. Spike is a
sharp and fast change of the membrane potential, which propagates to other neu-
rons. Action potentials have usually an amplitude of ∼ 100 mV and duration of
1− 2 ms. Spikes are the main means of communication between neurons. The main
patterns of activity of a single neuron are silence, tonic spiking and bursting.

The silent neuron in the absence of external input stays in the resting state, i.e.,
its membrane potential does not change and equals ∼ −65 mV. If the incoming
current is not large enough, neuron responses by a small post-synaptic potential,
whereas its reaction on the quite strong input is the action potential followed by the
so-called refractory period of the cell. During this time the neuronal membrane is
hyperpolarized, i.e., its potential is lower than the resting potential level, and the
neuron is not able to produce a new spike even after a strong input. If we consider
such a neuron as a dynamical system, this state corresponds to a stable fixed point.

The tonically spiking neuron permanently produces the spike train, i.e., a sequence
of stereotypical events, which occur in regular or irregular time intervals. The action
potentials in a spike train are usually clearly separated by the refractory periods.
The main characteristic of such a neuron is usually the frequency spectrum of its
spiking. From the point of view of nonlinear dynamics, repetitively spiking neuron
corresponds to a stable limit cycle in the state space.

The bursting neuron produces so-called bursts, i.e., a series of spikes intermittent
by the periods of silence of the fixed or variable length. There is a great amount of
the theoretical studies devoted to the modeling of the bursting neurons, see [40,66,
74]. Such neurons are characterized by the presence of several time scales in their
dynamics. The fastest time scale is responsible for the spike emitting, whereas the
slowest scale is present in the intermittence of the silent/spiking states.

9



CHAPTER 1. INTRODUCTION

1.1.2 Classification of mathematical neuronal models

The first comprehensive mathematical description of the dynamical properties of
an excitable cell membrane was given in the work [38] where the famous Hodgkin-
Huxley model of the squid giant axon was presented. Nowadays such a formalism
is the paradigm for the neuronal behavior in many different models [20,40,94]. The
Hodgkin-Huxley method allows to build models with the different level of detaliza-
tion of the processes of interest, in order to achieve more complete physiological
description or to obtain a simpler model for further analysis.

There are numerous different models for the single neurons, which differ by their
complexity and by the neuronal properties demonstrated by the models. The
single-neuron models can be subdivided in five groups as conductance-based models,
generic bifurcation models, threshold-type models, phase models and rate models.
The different classes of models correspond to the different levels of detalization in
modeling of their dynamics. All these types have their own fields of applications
and also some limitations.

Conductance-based models are described by complicated systems of ordinary or par-
tial differential equations, which take into account the effects of ionic currents going
through membrane, gating variables etc. The advantage of using conductance-based
models is that all parameters and variables have clear physiological meaning and
could be found experimentally. These models usually have the same properties as
the original cells. However, these models are mostly too complicated for the ana-
lytical study. Also, the numerical simulations of these models are comparably time
consuming. Therefore, under certain conditions it is reasonable to use simpler mod-
els for simulations of large neuronal networks. The most known example of the
models of this type is the Hodgkin-Huxley model [38].

Generic bifurcation models are not intended for precise modeling of activity of the
certain cell. The aim of these models is to achieve qualitatively the same behavior as
neurons. Generic bifurcation models are usually described by ordinary differential
equations or maps. These models are simpler from the point of view of computer
simulations and usually allow precise analytical description of their behavior. The
well-known examples of this type are FitzHugh-Nagumo model [23] modeling spiking
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neuron dynamics and Hindmarsh-Rose model [37] modeling bursting activity.

Threshold models represent neurons as a series of spikes. These models reflect
an evolution of membrane potential up to the moment where it reaches a certain
threshold. This moment is fixed as a point of spike emission, and membrane potential
is reset to some initial value. Such a process gives a so-called spike train. The main
idea of such models is to discard information about the exact form and amplitude of
spike and to consider only spike timing, i.e., times between different spikes. These
models are comprehensively described in works [26,40].

Phase models give the phase from of neuronal processes. It is well known that
periodic processes allow their phase representation [48, 59, 101] if we discard the
amplitude dynamics from the model. These models have a huge advantage of their
numerical simplicity allowing to study large neuronal networks. On the other hand,
phase models are very similar to the threshold models and, as a consequence, are not
able to imitate the complex neuronal dynamics, e.g., bursting activity. The phase
models allow to detect different characteristic macroscopic phenomena in the model,
e.g., synchronized or clustered states of the system. Therefore, we will consider the
phase Kuramoto model as one of the main object of the study in this thesis. Indeed,
due to the large number of neurons in populations it is relevant to consider them
as phase oscillators. We will describe the methods of representation of the typical
neuronal dynamics in terms of phases below.

Rate models do not take into account spike timing information and model only the
neuronal spiking rate. These models are studied in works [39,42,75].

The detailed description of the phase models and generic bifurcation models will
be given in the following chapters of this thesis. The brief describtion of the
conductance-based models will be presented below.

Conductance-based models

Electrical activity of neurons is sustained and propagated through cell membrans via
ionic currents. There are four main types of ions involved in majority of transmem-
brane currents: sodium Na+, potassium K+, calcium Ca2+ and chloride Cl− [40].

11
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These ions have different concentrations inside and outside the cell giving rise to
electrochemical gradients, which are the main driving forces of the neural activity.
Thus, the extracellular liquid has high concentration of Na+, Cl− and Ca2+, whereas
there are high concentrations of K+ and negatively charged molecules A− inside the
cell. The cell membrane contains large protein molecules, which are the channels,
providing flow of ions, but not A−, through neuron membrane.

The total current via membrane is formed by the above ionic currents. If we do not
take into account variabilities of all conductances, the dynamics of the membrane
potential V is given by the equation

CV̇ = −IK − INa − ICa − ICl − Isyn + Iext, (1.1)

where C is the membrane capacitance. Writing the ionic currents in a more detailed
way we obtain

CV̇ =− gK (V − EK)− gNa (V − ENa)− gCa (V − ECa)−

− gCl (V − ECl)− Isyn + Iext
(1.2)

where gK, . . . , gCl are the constant conductances for the corresponding ions, Isyn is a
synaptic current from other neurons, which will be described below, and Iext is some
external current. The value of V providing zero net current via membrane, which
corresponds to zero value of the right-hand side of equation (1.2), is called resting
potential. The real neurons have variable conductances. This property is reflected
in the neuronal models [38, 40] where the gating variables governed by differential
equations are introduced. For example, the Hodgkin-Huxley model contains three
gating variables. Each conductance is given by a product of powers of one or several
gating variables.

Because of its high dimensionality, original Hodgkin-Huxley model is complicated
for the analytic study as well as for the modeling of networks with large number
of elements. That is the reason for attempts of its simplyfication. The famous
example of the simplified Hodgkin-Huxley model is the two-dimensional Morris-
Lecar system [55]

V̇ = −gL (V − VL)− gKw (V − VK)− gCam∞(V ) (V − VCa) + Iext,

ẇ = ε (w∞(V )− w) cosh ((V + 0.1)/0.3)
(1.3)
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where VL = −0.1, gL = 0.5, gK = 2, VK = −0.7, gCa = 1, VCa = 1, ε = 0.1, and the
functions m∞(V ) and w∞(V ) are given by

m∞(V ) = 0.5 (1 + tanh ((V − 0.01)/0.145)) ,

w∞(V ) = 0.5 (1 + tanh ((V + 0.1)/0.15)) .

Detailed analysis of the bifurcations in this system has been carried out in works
[55,66].

Synaptic connection Here we present a brief description of the synaptic mecha-
nism allowing to transmit signal between two neurons, from the presynaptic to the
postsynaptic cell. Activation of the presynaptic neuron leads to the release of neu-
rotransmitters in synapse from vesicles into the synaptic cleft, i.e., space between
axon and dendrite. The molecules of transmitter diffuse in the cleft and activate
receptors on the post-synaptic side leading to the opening of ionic channels. This
results in the change of the membrane potential of the dendrite of the post-synaptic
neuron. The synapses can be subdivided into two classes, excitatory and inhibitory
ones. Activation of the excitatory synapse leads to the depolarization of the post-
synaptic cell (increase of the membrane potential), while the activation of inhibitory
synapse implies the hyperpolarization of the post-synaptic neuron (decrease of the
membrane potential). An example of inhibitory neurotransmitter is GABA, and
glutamate is a typical excitatory transmitter.

The mathematical models of the synaptic currents transmitted via a so-called chem-
ical synapses are usually written in the following way:

Isyn = gsyns (V − Vsyn) (1.4)

where gsyn is the coupling strength and s is some delayed indicator characterizing the
state of the pre-synaptic neuron. Vsyn is a reversal potential determining the type of
the synapse. Thus, for an excitatory synapse Vsyn is larger than usual values of the
membrane potential V , and for inhibitory synapse Vsyn is smaller than usual values
of the membrane potential V . An indicator variable s ∈ (0, 1) is usually modelled
by the following differential equation

ṡ = αH(Vpre)(1− s)− βs
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where H(V ) is a (smoothed) Heaviside function, and α and β characterize the ve-
locity of synapse.

Phase representation of the neuronal dynamics Here we briefly describe
two methods of the phase representation of the neuronal dynamics. Introduction of
phases allows to study the macroscopic effects in neuronal populations like phase
synchronization or clusterization. It also justifies using of the phase models for
investigation of the neuronal behavior.

The first technique is based on the Hilbert transform [59, 92]. For a given signal
v(t) the complex analytical signal v(t) + iw(t) is constructed. Afterwards the phase
can be calculated as an angle in the complex plane C between the real axis and the
vector connecting origin with the point v(t) + iw(t) in this plane.

The second technique defines so-called event-related phases [59]. This method is
suitable if dynamics of the original signal to be analyzed is characterized by the
prominent events at the time moments {tk : k ≥ 1}. For the cases of spiking (or
bursting) neurons these events can be the spike (or burst) beginnings. This technique
is illustrated in Figure 1.3. Between the kth and (k+ 1)th events phase is supposed
to grow linearly from 2πk to 2π(k + 1). The expression for phase is then given by
the formula

Figure 1.3: Exemplary time courses of the membrane potential of (a) spiking neuron
and (b) bursting neuron. Events are depicted by red segments.
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θ(t) = 2πk + 2π t− tk
tk+1 − tk

, t ∈ [tk, tk+1]. (1.5)

1.2 Structure of the thesis

This thesis consists of three logical parts. The first part presented in Chapter 2 gives
a theoretical description of the model of a neuronal system with synaptic plasticity.
First of all, the general properties of the usual Kuramoto system of N oscillators
are given. Afterwards, a new theoretical model of synaptic plasticity is introduced
and its properties are described. Thus, we consider the stability of different dynam-
ical states under the variation of system parameters. The coupling structures for
different states revealing the rewiring mechanism of the synaptic plasticity are also
considered. We investigate the impact of the variables defining the time scale of
the plasticity learning rules and the coupling strength among the oscillators on the
system dynamics. Discussion about possible applications of the obtained results to
the DBS techniques concludes this chapter. The main results of this chapter have
been already published in the work [53].

In the second part given in Chapter 3 two modifications of the Kuramoto system of
two oscillators coupled with delay are considered. Each oscillator of these systems
simulate the behavior of some large neuronal subpopulation, inside which all neurons
are synchronized. This approach allows to consider each subpopulation as a single
oscillator. It is supposed that neurons are coupled with time delay, which reflects,
e.g., the brain activity under multiple sclerosis [43]. The role of the coupling strength
between the oscillators and the time delay is studied. We thus find that increasing
time delay or coupling strength leads to the larger number of stable states. The
main results of the chapter have been published in the work [52].

The goal of the mentioned two parts of the present thesis is to study different
cases and conditions for multistability in systems of coupled oscillators. As an
important part of these chapters, sizes and structures of the basins of attraction
of the different stable states are considered. This approach allows to estimate the
parameters of DBS applied to reach some predefined dynamical state. The property

15



CHAPTER 1. INTRODUCTION

shared by both physiological phenomena, by the spike-timing dependent plasticity
and the coupling delay, is the coexistence of different stable states. This phenomenon
is extremely important for the real applications since shift of the system dynamics
from the pathological to the healthy state performed by DBS results in a long-lasting
therapeutic effect.

The last part of the thesis given in Chapter 4 studies two different models of neuronal
networks under impact of coordinated reset stimulation. The first model is based on
the Kuramoto system of coupled phase oscillators and the second model represents
the population of FitzHugh-Nagumo neurons. The main attention is paid to the
study of the effectiveness of the stimulation under parameter variation. The main
parameters to be studied are the period of stimulation and stimulation strength
since these parameters can be changed in the real application of the method. We
also consider distibution width σ of the current spread in the neuronal population
with the distance from the stimulation site. This parameter is difficult to control
since it depends on the electrochemical properties of the brain tissue. Therefore,
we have to know the optimal values of the other stimulation parameters for any
values of σ. Consequently, the decay rate σ is one of the important parameters
in the present study. For the estimation of the stimulation effectiveness the order
parameter technique is used. The second estimation technique is based on the
length of the post-stimulus transient time when the stimulation is switched off.
This method is particularly important since the general idea of the coordinated
reset stimulation technique is to decrease the total duration of the stimulus in order
to prevent unwanted side effects. Transient time allows to estimate for how long the
stimulus can be switched off without resynchronization of the system. Therefore, the
longer transient time is, the more effective the stimulation is. We also estimate the
extent of desynchronization in the system during the transient time. The Kuiper
index technique is used to quantify the state of the system during and after the
stimulation.

A modification of CR stimulation protocol corresponding to the real application with
the rest periods between the stimulation intervals is considered in subsection 4.1.6.
We investigate the dependence of the stimulation effect on the lengths of the active
and rest intervals in this stimulation protocol.
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For a system of coupled FitzHugh-Nagumo oscillators considered in section 4.2 we
use two different techniques for the estimation of CR stimulation effect. The first
approach is based on the values of the order parameters. Since we use phase-based
order parameters, we also introduce the phases for the FitzHugh-Nagumo oscillators.
The second technique utilizes the mean field of the neuronal population to estimate
the impact of the stimulation. We use the standard deviation of the system’s mean
field under CR stimulation.

Conclusions and prospects complete the thesis.
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Chapter 2

The Kuramoto model with
synaptic plasticity

2.1 The Kuramoto system of coupled oscillators

The Kuramoto model is a large system of weakly coupled phase oscillators, modelling
synchronization transition in large ensembles of interacting oscillatory units. It
has been shown [48] that, as coupling strength among oscillators increases, the
large fraction of the ensemble starts to oscillate with the same frequency, whereas
the natural frequencies of its elements are different. This phenomenon is called
synchronization and numerous natural biological examples of it are described in [27,
59]. Among them we can mention networks of heart pacemakers [58], synchronous
activity of the fireflies [18] and circadian rhythms of all living organisms.

An important example of synchronization between electrical activity in the human
brain (MEGmeasurements) and muscles (EMG-signal) was revealed in the work [92].
It was found that EMG-signals with frequency ∼ 6 Hz are 2 : 1 synchronized with
MEG-signals with frequency ∼ 12 Hz. This means that for one oscillation of the
EMG signal one in average observes precisely two oscillations of the MEG signal.

In terms of the phases of oscillatory signals we can give a general definition of n : m
synchronization as follows.
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Definition [59]: Two oscillators with phases φ(t), ψ(t) are n : m synchronized
if for some positive integers n and m there exists a constant C such that for all
t > 0 : |nφ(t)−mψ(t)| < C.

One of the first mathematical description of synchronization was given in work [100].
He considered an ensemble of coupled phase oscillators described by the following
system of differential equations:

θ̇i = ωi +
 N∑
j=1

F (θj)
Z (θi) , i = 1, N (2.1)

where N is the number of oscillators in the ensemble, θi are the oscillator phases,
and ωi are the natural frequencies. Each oscillator performs a phase-dependent
influence F (θj) on all other elements. Response of the ith oscillator depends on its
phase and is given by the sensitivity function Z (θi). It was shown that model (2.1)
can reach synchronized state (what means that the whole system behaves with the
common frequency as a single oscillator, maybe with presence of some "wild" units,
oscillating with other frequencies). The synchronization is achieved if the spread
of natural frequencies is comparably small and the system shows desynchronized
behavior otherwise.

The Kuramoto model was firstly presented in the book [48] to describe behavior of
a large system of nearly identical limit-cycle oscillators with weak coupling. The
model has a universal form as a system of phase oscillators:

θ̇i = ωi +
N∑
j=1

Γij (θj − θi) , i = 1, N, (2.2)

where Γij denotes the interaction functions, which can be calculated as an integral
from original limit-cycle model. Model (2.2) represents huge simplification of the
original system and, nevertheless, it is still quite complicated because of the possibil-
ity to have arbitrarily many Fourier harmonics and unspecified connection topology.
Further definition of the Γij function is given by the following expression [48]:

Γij (θj − θi) = K

N
sin (θj − θi) , K ≥ 0,

where K is the coupling strength and 1/N factor provides a mean-field meaning of
the system coupling among oscillators and guarantees that the system will be well
behaving as N →∞.
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It is supposed that the natural frequencies ωi are distributed according to some
probability density function g(ω), which is unimodal and symmetric, i.e., exists
some Ω such that for all ω : g(Ω + ω) = g(Ω − ω). According to the rotational
symmetry of the model, it is possible to redefine the variables θi → θi+Ωt, i = 1, N .
This variable ansatz allows us to go into a coordinated frame rotating with frequency
Ω. We can therefore claim that, without loss of generality, the mean value of g(ω),
in other words, the mean frequency of the ensemble, equals zero.

Order parameter

One of the most fruitful approaches to study the synchronization phenomenon in the
Kuramoto system is the method of the order parameter. Formally, the mth complex
order parameter is given by the following expression [29,48]:

Rmeiψm = 1
N

N∑
j=1

eimθj . (2.3)

O

R
1

ψ1

Figure 2.1: Schematic illustration of the order parameter in the complex plane
(x, y). Red circles depict N = 10 oscillator phases θj where the coordinates xj =
cos θj, yj = sin θj, the green segment connects the complex order parameter (2.3)
for m = 1 with origin where the length of the segment is its absolute value R1.

The order parameter is a macroscopic quantity used to estimate the collective
rhythm of the whole population. An example of the distribution of the phases and
the corresponding order parameter for m = 1 are shown in Figure 2.1. R1 quantifies
coherence of the phases, whereas ψ1(t) gives the mean phase. Fully coherent state
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where all phases are equal to each other corresponds to R1 = 1. Desynchronized
state where the phases are uniformly distributed on the unit circle (center is situ-
ated in origin and radius equals one), is characterized by the order parameter values
close to zero. The order parameters of higher degree (m > 1 in Eq. (2.3)) are used
to detect the clustered state in the system where the oscillator phases split into m
groups called clusters such that the phases are coherent within each cluster, but
not among the clusters. For example, a perfect m-cluster state is characterized by
R1 = R2 = . . . = Rm−1 = 0, and Rm = 1, here the oscillator phases split into m
equal-size clusters, which are symmetrically distributed on the unit circle. In what
follows we will call the absolute value Rm of the complex order parameter (2.3) also
as the (real) order parameter of the mth degree.

With the use of the first complex order parameter (m = 1 in Eq. (2.3)) the original
Kuramoto system

θ̇i = ωi + K

N

N∑
j=1

sin (θj − θi) , (2.4)

can be rewritten in a compact form. For this, we divide Eq. (2.3) (for m = 1) by
eiθi , which gives

R1ei(ψ1−θi) = 1
N

N∑
j=1

ei(θj−θi).

Taking the imaginary part of this equality we obtain

R1 sin (ψ1 − θi) = 1
N

N∑
j=1

sin (θj − θi) ,

and the Kuramoto system (2.4) can be now written in the following form:

θ̇i = ωi +KR1 sin (ψ1 − θi) , i = 1, N. (2.5)

The mean-field character of the Kuramoto system follows from the latter equation.
Indeed, as it is shown by Eq. (2.5), each oscillator is "uncoupled" from the others,
but there is a clear coupling between every oscillator and the mean field Z1 = R1eiψ1

of the system, characterized by R1 and ψ1.

There are two typical forms of dynamics of the Kuramoto system:
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1. If the coupling strength is small, the oscillators rotate with different frequencies
and, thus, are desynchronized where their phases are uniformly distributed on
the unit circle. Then the magnitude of the order parameter R1 is small being
of order O(N−1/2).

2. If the coupling strength in the ensemble (2.4) becomes larger than a certain
threshold value K = Kth, a large group of the oscillators spontaneously starts
to oscillate with the same frequency forming a synchronized cluster. This state
is characterized by large positive values of R1 ∈ (0, 1], which depend on the
coupling strength.
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Figure 2.2: Properties of the first order parameter: (A) Time course of R1 in syn-
chronized (green curve) state and in desynchronized (red curve) states. (B) Values of
R1 averaged over time versus coupling strength. Kth denotes the coupling threshold
value of the onset of synchronization in the Kuramoto model (2.4).

The exemplary behavior of the first order parameter in different system states is
shown in Figure 2.2. As we can see, the bifurcation transition over the value Kth in
the picture (B) is not very prominent due to the finite dimension of the system.

In the case of the infinite number of oscillators in the system (2.4) (thermodynamic
limit) the value of Kth can be found explicitly by the formula [48]:

Kth = 2
πg(0) , (2.6)
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where g(ω) is the density of distribution of the natural frequencies ωi in the system,
g(ω) is unimodal (has only one maximum) and the point of this maximum is 0 [48,77].

2.2 Spike timing-dependent plasticity and its
model

Spike timing dependent-plasticity (STDP) is a fundamental mechanism for mem-
ory and learning in nervous systems [1, 14, 21, 54]. Synapses transmit signals from
presynaptic to postsynaptic neurons. Synaptic strength strongly depends on the
timing between the firings of two neurons. It was shown in the above papers that
if the presynaptic spike advances the postsynaptic one, the synapse is potentiated
(its synaptic weight increases), otherwise the synapse is depressed (synaptic weight
decreases). The typical dependence of the changes of synaptic weight is shown in
Figure 2.3 where potentiation corresponds to the upper part of the diagram (relative
change > 1), depression – to the lower part (relative change < 1). Data points show
the results of experimental measurements, whereas solid curves fit these results by
the exponential functions. Such type of plasticity is often called asymmetric, be-
cause of non-symmetry of left and right parts of the diagram in Figure 2.3. Different
types of plasticity for different types of neurons are shown in the work [1]. There are
several studies devoted to the theoretical models of the synaptic plasticity [41, 73].
Thus, in the work [41] an oscillatory system with combined excitatory and inhibitory
coupling was considered. It was supposed that excitatory interactions are plastic,
i.e., the corresponding coupling intensities were varying. It was shown using both
analytical and numerical methods that in the case of a balance between synap-
tic potentiation and depression a network of heterogeneous oscillators converges to
a globally synchronous state under a wide range of the model parameters. Some
neurons also demonstrate symmetric plasticity where relative synaptic change does
not depend on the sign of neuronal timing. Several studies of neuronal networks
with so called "mexican hut"-type plasticity (symmetric one) have been performed
in works [35, 36, 89]. In the present work our attention will be concentrated on the
plasticity of the asymmetric type. We show that the crucial role in the system be-
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havior is played by the fact, that decay coefficients in the exponential functions of
the plasticity rule are different.

Figure 2.3: Experimental observations of STDP in hippocampal neurons: Change
of synaptic weight versus synaptic timing. Source: [13].

The main attention is focused on the macroscopic effects of STDP, namely, on the
questions of synchronized (desynchronized) modes in the neuronal activity, their
coexistence, and connectivity patterns in the system. To build the model of neuronal
network with synaptic plasticity, we incorporate variable synaptic weights (coupling
strengths) into the Kuramoto model of phase oscillators. The system of differential
equations can be written now in the following form:

θ̇i = ωi + 1
N

N∑
j=1

Kij sin (θj − θi) , i = 1, N, (2.7)

where Kij are the time-dependent coupling coefficients. High-dimensional model of
this type was deeply studied in the work [91]. The main attention there was paid
to the questions of coexistence of synchronized and desynchronized modes of the
system as well as of the system response to the coordinated reset (CR) stimula-
tion [84, 85]. In the present work we study a low-dimensional model with synaptic
plasticity in greater detail in order to get the better understanding of the multi-
stability mechanism. Further, the considered plasticity rules are different (we use
the continuous plasticity rules given by the differential equations, whereas in the
above work the discrete changes of coupling strengths are implemented). We show
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that spike timing-dependent plasticity generically implies coexistence of the differ-
ent stable system states, such as synchronized as mentioned above, desynchronized
and cluster states.

For the further analysis of the system dynamics we have to introduce the averaged
frequencies ωi

ωi = lim
t→∞

θi(t)− θi(0)
t

, i = 1, . . . , N.

These values characterize the averaged speed of phase increasing for the correspond-
ing oscillators. We will use the {ωi} values to detect synchronized clusters in the
model (2.7). We utilize this approach since the oscillators in the synchronized cluster
have the same averaged frequencies.

In the standard finite-dimensional Kuramoto model without plasticity, i.e., Kij =
K = const, there exists a critical value of coupling Kc providing the fully synchro-
nized state in the system for K > Kc since the support of the distribution of the
natural frequencies {ωi} is bounded. In the fully synchronized state all oscillators
are included into a single synchronized cluster of size N .

Therefore, for K > Kc all averaged frequencies ωi are equal to the mean natural
frequency Ω = 1

N

∑N
i=1 ωi. If the coupling strength K decays from Kc to zero,

the averaged frequencies of individual oscillators ωi split from the common mean
frequency Ω and the total number of different frequencies ωi grows with further
decreasing of K. At some value K = Kd we have fully desynchronized state where
all values of ωi are different. It is believed that the system (2.4) has a single attractor,
but this problem is not solved nowadays [77].

In order to implement the mechanism of plasticity in the Kuramoto model, we
assume that synaptic strengths Kij in Eq. (2.7) are changed according to the STDP
learning rule in such a way: A presynaptic spike from the jth neuron arrives at the
ith neuron at time tpre, and a postsynaptic spike occurs in the ith neuron at time tpost.
It is supposed that the value of Kij increases (synaptic potentiation) or decreases
(synaptic depression) depending on the sign of the timing difference ∆t = tpost−tpre.
We have synaptic potentiation if the postsynaptic spike follows the presynaptic one:
∆t > 0. Correspondingly, a depression takes place if ∆t < 0. The experimental
works [13, 14] show that change of synaptic weight depends exponentially on the
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spike timing:

∆Kij = εp (α−Kij) exp (−∆t/τp) , εp < 1, (∆t > 0),

∆Kij = −εdKij exp (∆t/τd) , εd < 1, (∆t < 0)

The multiplier α − Kij in the first equality is added to avoid the unphysiological
growth of the synaptic weights. In this way all synaptic weights Kij are nonnegative
and lie in the interval [0, α]. As we can also see that for the weak synapse (Kij small)
potentiation is strong and depression is mild, whereas the situation is reversed for
large values of Kij close to α.

In order to simplify the further analysis we can also write this learning rule in the
form of differential equation taking into account slow variation of Kij comparing to
the fast phase dynamics:

K̇ij = ε

 (α−Kij) exp {(θi − θj) /τp} , (θi − θj) ∈ [−π, 0]
−Kij exp {− (θi − θj) /τd} , (θi − θj) ∈ (0, π],

(2.8)

where ε is a fixed small parameter.

Now we have the Kuramoto model with incorporated plasticity rule, which consists of
N ordinary differential equations for the phase variables {θi} andN(N−1) equations
for coupling variables {Kij} (it is supposed that we do not have self-coupling items
{Kii}, therefore the number of coupling variables is N2 − N = N(N − 1)). Thus,
the total dimensionality of the model (2.7) and (2.8) equals N2. This system is
defined on the direct (Cartesian) product of theN -dimensional torus TN of the phase
variables θi and the N(N − 1)-dimensional Euclidean space RN(N−1) of the coupling
coefficients Kij. Generally, time coefficients for potentiation τp and depression τd

in Eq. (2.8) are unequal, giving us the necessary asymmetry of the plasticity rule.
The experimental estimations show the following values of these time constants:
τp ≈ 16.8 ms and τd ≈ 33.7 ms. In our numerical simulations values τp = 0.15 and
τd = 0.3 will be used.

The plasticity model (2.7) and (2.8) reflects several important properties of the
real neurons. Indeed, as we can see from equations (2.8), strong synapses undergo
relatively smaller potentiation than weak ones (because of multiplier (α−Kij)) and,
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on the other hand, relative depression does not depend on the synaptic strength as
follows from the second equation in (2.8). Another important property, prevalence
of depression compared to potentiation, is determined by the unequal exponents
τd and τp where τd > τp. It will be shown below that this asymmetry of STDP
learning rule is crucial for the phenomenon of multistability. This phenomenon can
be declared as coexistence of synchronized, desynchronized and different clustered
states in wide enough domains in parameters space. As will be further shown, this
property is robust with respect to the variation of parameter ε (for small enough
values). The main dynamical properties of the studied dynamical regimes remain
the same in the considered system if the discontinuous learning functions in equation
(2.8) are approximated by smooth ones.

2.3 The role of STDP asymmetry

In this section we investigate how sensitive is our model (2.7) and (2.8) to the vari-
ation of parameter difference τd − τp. Two different cases can be distinguished:
symmetric (with τd = τs) and asymmetric case (τd > τp). The process of desynchro-
nization (under decreasing of maximal coupling strength α) can develop according
to two dynamically different bifurcation scenaria: whether in a supercritical (soft)
way for the symmetric case τd = τd or in a subcritical (hard) way provided τd > τp.
The typical pictures for the desynchronization transition for N = 2 and N = 3
oscillators are shown in Figure 2.4.

If we have equal values of τp = τd, then there is no multistability, and desynchro-
nization happens in a soft way at the value α = αc where the fully synchronized
state disappears in a saddle-node bifurcation. Therefore, for α < αc a desynchro-
nized state characterized by different values ω1 6= ω2 is stable. Otherwise, if the
STDP rule is asymmetric, i.e., τd > τp, there exists the multistability interval of the
parameter values α.Thus, for the system of N = 2 oscillators the fully synchronized
state and a desynchronized state coexist on the parameter interval α ∈ [αc, αs], see
Figure 2.4(c). For the system of N = 3 oscillators the fully synchronized state, the
fully desynchronized state and the two-cluster state with the averaged frequencies
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Figure 2.4: Averaged frequencies of the oscillators for the system of N = 2 ((a),(c))
and N = 3 ((b),(d)). Red line depicts fully synchronized state with common fre-
quency Ω = ω1; blue curve: fully desynchronized states; green curve: two-cluster
states with ω1 = ω2 6= ω3. Value of ε: 0.5; (a),(b) – no multistability for symmetric
STDP rule (τp = τd = 0.3); (c), (d) – multistability is present for asymmetric STDP
rule (τp = 0.15, τd = 0.3).

ω1 = ω2 6= ω3 are stable for α ∈ [αc, αd], see Figure 2.4(d).

Summarizing, the multistability interval of α arises due to the asymmetry of the
STDP rule, i.e., if τp becomes smaller than τd. There is also additional restriction
providing existence of multistability interval, namely, parameter ε should not be
too large (ε < εM ≈ 60.95). The next Figure 2.5 reveals the dependence of the
multistability interval on value of τp. Value of τd is fixed and equals 0.3. As it is
mentioned before, if τp becomes equal to τd = 0.3, multistability interval disappears.
Reasonable to make a suggestion, that length of the multistability interval (αc, αs)
grows to infinity, while τp converges to zero.

Now we will consider the multistability mechanism in the simplest case of N = 2
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Figure 2.5: Different dynamical modes in the plane (α, τp) for the system of N = 2
oscillators. Parameters are τd = 0.3, ε = 0.5, ω1 = 2 and ω2 = 1.

oscillators, and the whole system consists of four equations (2.7) and (2.8). The
state space of the system of differential equations is T2 × R2 (two phase variables
and two coupling strengths). But the actual system dynamics is three-dimensional,
because it is enough to consider phase difference ϕ = θ1 − θ2 instead of two phase
variables θ1 and θ2. Then the model (2.7) and (2.8) can be written in the following
reduced form:

ϕ̇ = ∆1 −
K12 +K21

2 sinϕ,

K̇12 = ε

 (α−K12) exp {ϕ/τp} , ϕ ∈ [−π, 0]
−K12 exp {−ϕ/τd} , ϕ ∈ (0, π],

(2.9)

K̇21 = ε

 −K21 exp {ϕ/τd} , ϕ ∈ [−π, 0)
(α−K21) exp {−ϕ/τp} , ϕ ∈ [0, π],

where ∆1 = ω1 − ω2 is the difference of natural frequencies. The fully synchronized
state can be given in these new variables (ϕ,K12, K21) by a stable fixed point O of the
system (2.9) with coordinates: (arcsin (2∆1/α) , 0, α), whereas the desynchronized
mode is represented by a stable periodic orbit Pst.

As parameter α in system (2.7), (2.8) decreases, the desynchronization transition
takes place at αc = 2∆1 (see Figures 2.6 and 2.7) where the stable node O and
a saddle Q = (π − arcsin (2∆1/α) , 0, α) merge and disappear in a saddle-node
bifurcation at the point OSN = (π/2, 0, α).
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Figure 2.6: Schematic description of the transformations of the vector field in the
plane (K21, ϕ) in system (2.9) as the maximal coupling strength α increases. The
symmetric case τp = τd is considered.

The course of the desynchronization transition is qualitatively different in the case
of symmetric (τd = τp) and asymmetric (τd > τp) plasticity. Indeed, in the sym-
metric case the saddle-node bifurcation at the moment α = αc is alsoa homoclinic
bifurcation for the saddle Q, which gives rise to a stable periodic orbit Pst. It exists
for all α < αc and corresponds to the desynchronized state of the original model
(2.7), (2.8) where the averaged frequencies ω1, ω2 of the oscillators are different.
The evolution of the vector field of the reduced system, when α increases over αc,
in such symmetric case is shown in Figure 2.6.

In the asymmetric case τd > τp the saddle-node bifurcation does not coincide with
the homoclinic bifurcation and, correspondingly, does not imply the emergency of
the periodic orbit. The stable limit cycle (periodic orbit) is born for such a system
at some larger parameter value αs > αc as a result of a cycle saddle-node bifurcation
for limit cycles where the stable cycle Pst appears together with an unstable saddle
periodic orbit Psd. The vector field transformations for asymmetric case are shown
in Figure 2.7. As we can see, homoclinic bifurcation of the saddle Q occurs at the
parameter value αh, αc < αh < αs, Figure 2.7(d). This bifurcation takes place if
the saddle unstable manifold (wu in Figure 2.7(d)) is attracted to the same saddle
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point Q. Bifurcation of this type can give rise to the stable or unstable limit cycles
depending on the eigenvalues of the saddle [49]. In our system we have appearance
of the unstable cycle Psd.

The unstable periodic orbit Psd, which is born as a result of a homoclinic bifurcation,
approaches the stable cycle Pst with further increasing of α. The value of α = αc

corresponds to the saddle-node bifurcation of cycles Psd and Pst, merging together
and disappearing in this bifurcation. The curve of the homoclinic bifurcation is
shown in Figure 2.5 and is depicted by H. We can also see that, as τp decreases
to zero, αs tends to infinity, whereas H-curve is bounded and tends to some value
α0
H ≈ 2.25.
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Figure 2.7: Schematic description of the transformations of the vector field in
the plane (K21, ϕ) in system (2.9) as maximal coupling strength α increases. The
asymmetric case τp < τd.

Now we will describe synchronized and desynchronized dynamical states of the model
(2.7) and (2.8). The synchronized state O has common frequency Ω = ω1 and
is characterized by an interesting property of unidirectional coupling: the faster
oscillator θ1 drives the slower one θ2. Indeed, as we can see from equations (2.9),
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phase-locked state (with the constant phase difference ϕ > 0) implies K12 = 0,
K21 = α. The phase difference ϕ equals π/2 at the bifurcation moment α = αc and
decreases to zero under further increasing α to infinity. In the case N = 2 it is easy
to calculate the first order parameter for the synchronized state:

R1 =

∣∣∣∣∣∣12
2∑
j=1

eiθj

∣∣∣∣∣∣ = 1
2

√√√√√2
1 +

√
1− 4∆2

1
α2

.
Therefore, one can see, that R1 → 1 if maximal coupling strength α tends to infinity.

Now we will consider the desynchronized state of the system. In this state coupling
strengths K12 and K21 lie in the interval (0, α). In the symmetrical case the equality
K12 + K21 = α holds. Indeed, taking the sum of the differential equations for the
coupling strengths in Eq. (2.9), we obtain

d
dt (K12 +K21) = α− (K12 +K21) .

This differential equation implies that the unique stable fixed point for the sum of
the coupling strengths (K12 +K21) is α. On the other hand, in the asymmetrical
case (τd > τp) we have inequalities 0 < K12 +K21 < α. The exemplary dynamics of
these coefficients for the desynchronized state is shown in Figure 2.8.

If we consider the case of N = 3 oscillators, then the original system (2.7) and (2.8)
has N2 = 9-dimensional state space, and the actual dynamics is eight-dimensional
(it is possible to consider phase differences) and acting on T2 × R6. The general
course of desynchronization is similar to the previous system of N = 2 oscillators,
as one can see from Figure 2.4(b,d). However the bifurcation structure is much
more complicated. For the system of N = 3 oscillators we also have the stable
fully synchronized state with the same averaged frequencies ωi, equal to the natural
frequency of the fastest oscillator Ω = ω1. This state disappears with decreasing α
via a saddle-node bifurcation (the explicit expression will be given for critical value
α = αc in the next section). Two nonsynchronized states (fully desynchronized and
2-cluster one characterized by the averaged frequencies ω1 = ω2 6= ω3 forming two
different synchronized clusters of size two and one) cease to exist with increasing α
via cycle saddle-node bifurcations at αd and αs values, respectively.
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Figure 2.8: An examples of the time courses of K12(t), K21(t) and their sum in the
desynchronized state. System parameters are α = 3, τp = 0.15, τd = 0.3, ε = 0.5,
ω1 = 2 and ω2 = 1.

2.4 Properties of the synchronized state

In this section we describe the features of the synchronized phase-locked state of the
system (2.7) and (2.8). This state is supported by the fixed point O mentioned in
the previous section. O corresponds to the stable equilibrium of the reduced system,
which can be obtained if we consider the phase differences ϕi = θ1 − θi+1:

ϕ̇i = ∆i−
1
N

(K1,i+1 +Ki+1,1) sinϕi +
N−1∑

j=1,j 6=i
(K1,j+1 sinϕj +Ki+1,j+1 sin (ϕi − ϕj))

 ,
(2.10)

where ∆i = ω1 − ωi+1, i = 1, N − 1. At the fixed point O each coupling strength
Kij is equal to either 0 or α, which follows from equations (2.8) with an additional
condition of the phase-locking (phase differences are fixed). Without loss of general-
ity, we can suppose that all natural frequencies are ordered in the descending order,
i.e., ω1 > ω2 > . . . > ωN . Indeed, it is always possible to renumber the oscillators to
achieve such order (for the simplicity we consider only systems with different nat-
ural frequencies). As follows, we obtain Kij = α for i > j, and Kij = 0 otherwise.
Substitution of these values of Kij into Eqs.(2.10) allows us to find equilibrium O
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from the system

∆i −
α

N

sinϕi +
i−1∑
j=1

sin (ϕi − ϕj)
 = 0, i = 1, N − 1. (2.11)

We can now solve system (2.11) (or prove that there is no solution, which depends
on the system parameters) by sequentially finding the values of ϕi, i = 1, N − 1:

∆1 −
α

N
sinϕ1 = 0 ⇒ ϕ1 = arcsin (N∆1/α)

∆2 −
α

N
sinϕ2 −

α

N
sin (ϕ2 − ϕ1) = 0 ⇒ ϕ2 = . . .

(2.12)

If this system is solvable, then it has two solutions: stable and unstable one. Also,
we can find that the common frequency of the synchronized state Ω equals ω1, which
is the maximal natural frequency. Indeed, because equation (2.7) can be written for
the first oscillator just as θ̇1 = ω1 and all phase-locked oscillators have the same
frequencies the entire ensemble oscillates with the common frequency Ω = ω1. For
system (2.11) the existence of the synchronized phase-locked state depends only on
the natural frequencies ωi and the maximal coupling strength α and does not depend
on parameters τp, τd, ε.

Summarizing at this point we can formulate the following results for the synchro-
nized phase-locked state. There exists some critical parameter value αc, which is
determined by the values of natural frequencies ω1, . . . , ωN and does not depend on
the constants τ1, τ2, ε > 0, such that:

1. For the maximal coupling strength α ≥ αc, our plasticity model (2.7) and (2.8)
has the stable synchronized state O corresponding to the solution of system
(2.11). This state is characterized by the hierarchical unidirectional structure
of coupling where the fastest oscillator drives all others.

2. There is no synchronized states for α < αc.

As an exemplary values of αc we can give:
N = 2: αc = 2∆1;
N = 3: αc = max

{
3∆1; 3∆2

2
2
√

∆2
2−∆2

1

}
.
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2.5 Multistability in system of N = 3 oscillators

In this section we consider different types of multistability in the system (2.7) and
(2.8) of N = 3 oscillators. One example of the dynamics for such a system has
been already shown in Figure 2.4(d). System of N = 3 oscillators is characterized
by a possibility to have the simplest clustered state (2-cluster state, where 2 of 3
frequencies coincide providing existence of two clusters of size one (single oscillator)
and two (two synchronized oscillators), correspondingly). The clustered states in the
model (2.7) and (2.8) have the coupling patterns involving the hierarchical structure
within each cluster and oscillating couplings between the oscillators from different
clusters.

Here we introduce the concept of resonant tongues since it will be used further in
this section.
Definition: A parameter set for the system (2.7) and (2.8) is said to belong to the
resonant (Arnold) tongue Dp/q if there exists a stable solution with the averaged
frequencies ω1, ω2 and ω3 satisfying

p/q = (ω2 − ω3) / (ω1 − ω3) . (2.13)

The particular examples of resonant tongues are 0/1 and 1/1 tongues. Here we
present the explanation of their structure in order to give the better understanding
of this concept. Considering the 0/1 tongue we obtain the expression for its averaged
frequencies ω2 = ω3. This tongue corresponds to the 2-cluster state where the first
cluster consists of the single 1st oscillator and the second cluster contains 2nd and
3rd oscillators with the same averaged frequencies. Similarly, for 1/1 resonant tongue
we obtain ω2 = ω1. Therefore, this tongue also corresponds to the 2-cluster state
with the synchronized 1st and 2nd oscillators, the 3rd oscillator forms cluster with
one element. Thus, these two mentioned clusters are partially synchronized states
where two of three oscillators are synchronized. On the other hand, the resonant
tongues Dp/q satisfying 0 < p/q < 1 give rise to the fully desynchronized states since
such values of p/q provide three different averaged frequencies ωi.

Different possible stable states in the parameter plane (ω2, α) are shown in Figure
2.9. As we can see, many dynamical states may coexist for the same system pa-
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Figure 2.9: Multistability diagram in the plane (ω2, α), other parameters are fixed:
ω1 = 2, ω3 = 1, τp = 0.15, τd = 0.3, ε = 0.5. ω2 changes on interval [1, 2] between
ω3 and ω1. Yellow domains: cluster ω1 6= ω2 = ω3 is depicted as tongue 0/1; cluster
ω1 = ω2 6= ω3 is depicted as tongue 1/1. The tongues 1/2, 2/3, 3/4 are also shown.
Border of the synchronization region: bold curve αc, border of desynchronization:
curve αd.

rameters. Solid black curves αc and αd limit the regions of stability of the fully
synchronized and desynchronized state. Yellow regions (partially synchronized) cor-
respond to the different 2-cluster states. Orange domain depicts their overlapping
(coexistence). What is especially interesting, the resonant tongues (shown in green,
blue and violet) also have some narrow domains of overlapping. This means that
there exists some parameter set where the system have different stable desynchro-
nized states. The most interesting region from the point of view of multistability
(maximal number of different overlapping domains) is depicted in red in Figure 2.9.
Generally, there are infinitely many resonant tongues originating from the corre-
sponding points on the line α = 0, but in the Figure 2.9 only the most prominent,
i.e., with the largest basins of attraction, tongues are shown.

As the next step we build the diagram of the averaged frequencies of oscillators versus
parameter α, see Figure 2.10. This figure is analogous to Figure 2.4(d) with the
difference that here we consider ω2 = 1.4, which is the most interesting parameter
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value (from the point of view of multistability). As we can see in Figure 2.10,
there is coexistence of fully synchronized state O, two-cluster states D0/1 and D1/1

(here we use the notation of the resonant tongues for the corresponding dynamical
states) and desynchronized state (actually, there are several different desynchronized
states, e.g., D1/3, D1/2 and D2/3) on interval α ∈ [1.9.., 2.7..]. Blue arrow indicates
approximately the region where several desynchronized states are stable. In this
figure we can see, how rich the system dynamics can be even in the simplest case
(N = 3) demonstrating several coexisting dynamical modes.
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Figure 2.10: Dependence of the averaged frequencies ωi on parameter α for the
system of N = 3 coupled oscillators with ω1 = 2, ω2 = 1.4, ω3 = 1. Red line depicts
synchronized state, orange and green curves indicate two different 2-cluster states,
and blue curves stand for different desynchronized states.

2.6 High-dimensional systems

Behavior of the model (2.7) and (2.8) becomes more complicated with increasing
number N of oscillators. In this section we briefly consider stable dynamical states
of the system for N = 5, N = 10 and N = 20 oscillators. Unfortunately, it is too
difficult to perform such a detailed analysis, as was done for the systems of N = 2
and N = 3 oscillators. The main attention is devoted in this section to the transition
between synchronized and fully desynchronized states under variation of parameter
α.
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Figure 2.11: Frequency diagram for N = 5 oscillators. System parameters are
ω1 = 2, ω2 = 1.75, ω3 = 1.5, ω4 = 1.25 and ω5 = 1, all other parameters are the
same, as in the previous Figures 2.9 and 2.10.

Figure 2.11 reveals that there are different stable clustered states in the system. The
numbers in the cluster notations show how much oscillators are locked in each cluster.
For example, 3 : 1 : 1 depicts 3-cluster state, for which ω1 = ω2 = ω3 6= ω4 6= ω5. We
found that the 4 : 1, 3 : 1 : 1, and 2 : 1 : 1 : 1-clustered states are present for such
system. All these clustered states have a similar structure in the sense that clusters
with number of involved oscillators greater than 1 consist of elements with maximal
natural frequencies, whereas other clusters consist of single oscillators. α-interval of
coexistence of the fully synchronized state O with different clustered/desynchronized
states is denoted as [αc, αs].

In Figure 2.12(a) we plot the frequency diagram for the system of N = 10 oscillators.
Here, the fully desynchronized state exists for the values α < 1.52... As α increases,
this state disappears and the clustered state 24 : 12 becomes stable (this notation
means that there are four 2-element clusters and two separate oscillators). With
further increasing of α the following cluster states appear: 2 : 18, 32 : 2 : 12, 3 : 17,
3 : 23 : 1, 42 : 12, 5 : 2 : 13, 6 : 2 : 12, 7 : 13, 8 : 12 and 9 : 1. The fully synchronized
state becomes an unique attractor for α > αs. The clustered states 23 : 14, 2 : 18,
5 : 2 : 13 and 9 : 1 are depicted in the diagram 2.12(a) by solid violet, blue, maroon,
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Figure 2.12: Frequency diagram for (a) N = 10, (b) N = 20 oscillators. System
parameters are ωi = 2− (i− 1)/(N − 1), all other parameters are the same, as in
the previous Figures 2.9, 2.10.

and green lines correspondingly.

Figure 2.12(b) reveals the transition between the fully synchronized and desynchro-
nized states for the model of N = 20 oscillators. As in the previous figures, one can
see different stable clustered states. We here mention that some clustered states,
such as 27 : 16, 2 : 118 and 3 : 117 are "close" to the desynchronized state 120,
whereas the other clustered states like 18 : 2, 19 : 1 and 18 : 12 are close to full
synchronization.

We estimate the size of basins of attraction for different stable states in the systems
of N = 5 and N = 10 oscillators. In order to investigate this problem, parameter
α = 2.0 will be fixed (this parameter value implies multistability of the synchronized
and several clustered states, see Figures 2.11 and 2.12(a)) and a set of random initial
conditions will be taken. For the case of N = 5 oscillators the number of different
initial conditions is 2000, whereas for the system of N = 10 oscillators the number
of trials is 1000. This procedure allows us to estimate the relative sizes of basins of
attraction for different stable modes. For each given state its size is obtained as a
fraction of the number of initial points leading to it to the mentioned entire number
of trials. The results of calculations are shown in Figure 2.13.

The first order parameter of the corresponding solutions found by the above cal-
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Figure 2.13: Relative sizes of basins of attraction to different stable states shown
in square braces for the model (2.7) and (2.8). Number of oscillators: (A) N = 5,
(B) N = 10.

culations is shown in Figure 2.13 on the top of each bar. The sizes of basins of
attraction are also shown as percents of the entire volume of initial conditions. Ac-
tually, these percentage values correspond to the heights of bars in histogram. Since
the total number of different stable states for the system of N = 10 oscillators (Fig-
ure 2.13(B)) is too large to display them on such histogram, we have shown only
the states with the relative volume greater than 1%. As we can see, the sizes of the
basins of attraction for different states are large enough, providing the possibility
of switching between these modes by appropriate perturbations of the system with
STDP (2.7) and (2.8).

2.7 Conclusions

In this section we have investigated multistability in the low-dimensional systems
of coupled phase oscillators with spike timing-dependent plasticity. The underlying
mechanism has been described in detail for the models of the low dimensionality
(N = 2 and N = 3). We can conclude that STDP implies fascinating coexistence
of many different dynamical states ranging from desynchronized up to the fully
synchronized one, and this multistability keeps for different sizes of system N . The
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plasticity mechanism allows to perform an effective rewiring in the model. An appro-
priate perturbation of the system dynamics also change the coupling topology in the
model since the different stable states are characterized by the different structure of
the coupling matrix Kij. It was shown that the couplings within each synchronized
cluster form a hierarchical one-directional structure, whereas between the oscilla-
tors from different clusters coupling strengths demonstrate oscillations around some
moderate values.

Plasticity gives us also the possibility to perform a desynchronizing stimulation in
a very mild way (just to switch between different basins of attraction), giving rise
the long-lasting effects due to the changes of connectivity structure. The theoretical
study investigating such type of stimulation, was already done in the work [91]. Our
results should be considered just as a first step performed for a simple model, which
can be further extended to more realistic ones, e.g., involving spiking or bursting
neuronal models with synaptic coupling.
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Chapter 3

Multistability in the delayed
Kuramoto model

In this chapter we will investigate systems of phase oscillators coupled with de-
lay. During the last time influence of time delay was an object of interest of many
works [19, 44, 64, 104]. Delay naturally arises in systems due to the finite speed of
signal propagation between their elements. Large delay can also arise in the neu-
ronal systems, e.g., in the case of multiple sclerosis, see [43]. Appearance of delay
can crucially change the dynamics (a system of ordinary differential equations has
a finite dimensionality, whereas delayed system is infinite-dimensional). Time delay
can induce effects of amplitude death [4,64] or coexistence of different states [71,104].
There are many published works studying different types of delayed feedback. We
mention here a few studies, which are the most relevant to the scope of the present
work [30, 61, 62, 69]. In the present work we will concentrate on the multistabil-
ity (coexistence) of different synchronized and desynchronized states in systems of
coupled phase oscillators with delay. We formulate the necessary conditions for the
multistability phenomenon.

It is well known that phenomenon of multistability can be found for the systems of
limit cycle oscillators coupled with delay (system of large number of phase oscillators,
which are situated in a two-dimensional plane, has been investigated in the work
[56]). A simplified model of delay-coupled phase oscillators has been considered
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by [104]:

θ̇i = ωi + K

N

N∑
j=1

sin (θj(t− τ)− θi(t)) , i = 1, N, (3.1)

where θi are the phase variables and τ > 0 is an interaction time delay. The model
(3.1) is a generalization of the standard Kuramoto model (2.4) providing the delayed
coupling between oscillators.

We will consider two different systems of two oscillators coupled with delay. The
first system has been introduced in the work [71]. It has been found that the model
can have several stable synchronized solutions with different frequencies. We will
concentrate on the coexistence of different synchronized and desynchronized modes
and also on their basins of attraction. This model will be considered in the section
3.1. Our main interest concerns the structure of the basins of attraction of different
stable states and the total number of coexisting modes. The aimed findings follow
the goal of the application of this theory to the medicine. In order to suppress the
undesirable synchronized activity in the brain of PD patients we look for a mild
stimulation technique switching the system from one state to another stable one
with further stay in this mode without any stimulation.

The second model is system (3.1) for the case of N = 2 oscillators. Its distinction
from the first model is an additional "self-feedback" term in the right sides of the
differential equations. Nevertheless, the behavior of the system changes crucially
that will be shown in the following section.

3.1 Kuramoto model with delayed interaction

In this section we consider a system of two coupled phase oscillators where the
interaction between the oscillators takes place with some time delay τ . The model
can be written in the following form

θ̇1 = ω1 +K sin [θ2(t− τ)− θ1(t)] ,
θ̇2 = ω2 +K sin [θ1(t− τ)− θ2(t)] .

(3.2)

Note, the difference between this system and that given by Eq. (3.1) is that in system
(3.2) the term of type sin(θi(t− τ)− θi) is absent. The system with this term, i.e.,
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system (3.1) of two oscillators, will be studied in the next section.

The model (3.2) was originally studied in the work [71]. The main finding was the
revealed coexistence of different synchronized states of the type: θ1,2(t) = Ωt±α/2.
One can substitute these expressions into the system equations (3.2) and obtain
equations for Ω and α, which can be solved numerically. Applying the standard sta-
bility analysis for the mentioned synchronized solutions, i.e., using the linearization
of system (3.2) around the analyzed solution, one can distinguish stable and unstable
synchronized states. We will demonstrate this technique below. The total number
of synchronized states grows linearly with increasing of the coupling strength K and
of the time delay τ . In the works [102,103] it was also shown that the coexistence of
the synchronized and desynchronized (with the non-equal averaged frequencies 〈θ̇1〉
and 〈θ̇2〉 of the oscillators) states in the model (3.2) is also possible, moreover, this
phenomenon can be found for the values of delay approximately τ > π/ |ω1 − ω2|
and the number of coexisting stable states increases under further increasing of τ .

One of the main mentioned tasks is to understand the structure of the basins of
attraction. Unfortunately, it is impossible to describe it precisely because of infinite
dimensionality of the delayed system. We use technique originally proposed in the
work [71]. The idea is to consider a two-dimensional manifold M = (Ω, α), which
consists of the solutions originating from the initial conditions of special type such
that θ0

1,2 = Ωt ± α
2 , t ∈ [−τ, 0]. Synchronized states lie in this manifold, we can

depict them as points in plane (Ω, α). We will also demonstrate the dynamics
of unstable solution starting from the border between two basins of attraction of
the synchronized states. For these initial conditions the trajectory is attracted by
some solution of the saddle type, i.e., by the unstable solution with one positive
eigenvalue. The information about the behavior of unstable solutions can be useful
for applications since it usually takes more time to reach some stable state if the
trajectory starts from the vicinity of an unstable solution. Therefore, the unstable
solutions can be objects of interest from the point of view of transient after applied
stimulation.
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3.1.1 Detecting synchronized states

Here we consider the synchronized solutions of system (3.2) and their stability. We
are looking for solutions of the form

θ1,2(t) = Ωt± α

2 , (3.3)

where Ω is the frequency of the synchronized solution and α is the phase difference
between the two oscillators. Now we can substitute (3.3) into Eq. (3.2) and obtain
equations for Ω and α:

ω − Ω = (−1)iKtan(Ωτ)
√

cos2(Ωτ)− (∆ω)2

4K2 , i = 1, 2, (3.4)

where ω = (ω1+ω2)/2 is the mean natural frequency of the system, and ∆ω = ω1−ω2

is the frequency detuning. Each of these two equations gives the values of Ω. Then
the corresponding values of α can be found as

α =



π − arcsin
(

∆ω
2K cos(Ωτ)

)
, if cos(Ωτ) > 0, i = 1,

2π + arcsin
(

∆ω
2K cos(Ωτ)

)
, if cos(Ωτ) < 0, i = 1,

arcsin
(

∆ω
2K cos(Ωτ)

)
, if cos(Ωτ) > 0, i = 2,

π − arcsin
(

∆ω
2K cos(Ωτ)

)
, if cos(Ωτ) < 0, i = 2,

, for∆ω > 0, (3.5)

For the identical oscillators, i.e., ω1 = ω2 = ω and ∆ω = 0, the synchronized solution
is determined by the values of (Ω, α), which are the solutions of one of the following
four systems of equations

1. ω − Ω = K sin(Ωτ), α = 0, 3. sin(Ωτ) = 1, K cos(α) = ω − Ω,
2. ω − Ω = −K sin(Ωτ), α = π, 4. sin(Ωτ) = −1, K cos(α) = −ω + Ω.

In what follows we mostly concentrate on the case of nonidentical oscillators. In
order to understand the behavior of roots of equations (3.4) we plot the functions
of Ω, corresponding to the both sides of these equations: f1(Ω) = ω − Ω and
f2(Ω) = Ktan(Ωτ)

√
cos2(Ωτ)− (∆ω)2/(4K2) in Figure 3.1.

Synchronized solutions of system (3.2) correspond to the intersections of the straight
line given by the f1(Ω) in Figure 3.1 with the "butterflies" representing the functions
±f2(Ω). Points with different colors in the butterflies indicate the stability of the

45



CHAPTER 3. MULTISTABILITY IN THE DELAYED KURAMOTO MODEL

Figure 3.1: Left side of Eqs. (3.4) is shown as function f1(Ω) (straight line) and
the right sides of Eqs. (3.4) are shown as ±f2(Ω) (butterflies). Red points on the
butterflies correspond to the stable solutions, green points correspond to the unstable
solutions with one positive eigenvalue and blue points depict the unstable solutions
with two positive eigenvalues. Parameters are ω1 = 3.5, ω2 = 2.5, τ = 1 and K = 4.

corresponding solution. Thus, the red points depict the stable solutions, the green
ones correspond to the saddle unstable solutions, i.e., with one positive eigenvalue,
and the blue points indicate unstable solutions with two positive eigenvalues. With
increasing coupling strength K the butterflies are stretched in the vertical direction
such that their size increases linearly with parameter K. Therefore, more and more
intersections with the straight line appear. We can conclude that the total number
of the synchronized modes increases linearly with increasing K, and approximately
one fourth of all solutions is stable. Indeed, each butterfly gives in general case four
intersections for large enough K, among which only one corresponds to a stable
synchronized state. A typical diagram for the dependence of the frequencies of syn-
chronized solutions Ω and the corresponding phase shifts α on the coupling strength
K is shown in Figure 3.2. It is worth mentioning here that there are two types of
the stable synchronized solutions. Solutions of the first type have phase shift close
to zero, i.e., α tends to 0 for K →∞. Solutions of another type have α close to π.
This question will be important when we compare our model with model (3.7) with
self-feedback term in the following section 3.2.

The central points of the butterflies (shown in Figure 3.1) are determined by the

46



CHAPTER 3. MULTISTABILITY IN THE DELAYED KURAMOTO MODEL

0 5 10 15 20 25 30
0

10

20

30

40

K

Ω
Stable

Unstable +2

Unstable +1

(a)

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

K

α
Stable

Unstable +1

Unstable +2(b)

Figure 3.2: (a) Frequencies of the synchronized states Ω = Ω(K). Different colors
depict different types of stability of the solutions. (b) Corresponding values of the
phase difference α = α(K). System parameters are ω1 = 6π + 2, ω2 = 6π − 2 and
τ = 0.225.

equality tan(Ωτ) = 0 and, correspondingly, Ω = πn/τ , n ∈ Z. This can be important
from the point of view of the symmetry in diagram 3.2(a). If the mean natural
frequency ω = 0.5 (ω1 + ω2) equals one of these values πn/τ , then the straight
line in Figure 3.1 passes through the center of some butterfly. This results in the
symmetry of Figure 3.2(a), there exists a value of Ω = ω such that the diagram is
symmetric with respect to the line Ω = ω. There is the second symmetrical case
where the line f1(Ω) passes exactly between two butterflies, this corresponds to the
value ω = π(n+ 0.5)/τ .

In order to investigate the stability of the obtained synchronized modes we will apply
the standard technique of linearization of the system in a vicinity of the solution
to be analyzed. We consider characteristic quasipolynomial S(λ), which can be
written in the form of determinant of the matrix (A + Be−λτ − λE). Here A is
the partial derivative of system (3.2) taken over the variables (θ1, θ2), and B is the
partial derivative taken over the variables (θ1(t− τ), θ2(t− τ)). Then the equation
for λ has the following form

S(λ) = K2 cos(Ωτ − α) cos(Ωτ + α) + λK (cos(Ωτ − α) + cos(Ωτ + α)) +
+λ2 − e−2λτK2 cos(Ωτ − α) cos(Ωτ + α) = 0, λ ∈ C.

(3.6)

The spectrum of the analyzed solution of the original model (3.2), i.e., synchronized
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solution with common frequency Ω and phase shift α, consists of complex roots of
equation (3.6). The total number of these roots is infinite, and stability is determined
by roots with the maximal real part. Stable modes have spectrum completely located
in the left half-plane of the complex plane, i.e., Reλ < 0. The only root with zero
real part is λ = 0, corresponding to the shift along the trajectory. In Figure 3.3
we compare spectra of the three cases of stability discussed above for the coupling
strength K = 14. From Figure 3.2 we can see that for this coupling strength system
(3.2) has 6 phase-locked state, and spectra of three of them are depicted in Figure 3.3
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Figure 3.3: Three different types of stability in the model (3.2). (A) Stable solution
with Ω ≈ 25.64, (B) unstable solution with Ω ≈ 21.59 has one positive eigenvalue,
(C) unstable solution with Ω ≈ 11.45 has two positive eigenvalues. See also Fig-
ure 3.2. System parameters are ω1 = 6π + 2, ω2 = 6π − 2, τ = 0.225 and K = 14
(the same parameter set, as in Figure 3.2)

3.1.2 Coexistence of different stable modes

As follow from equation (3.4) system (3.2) has phase-locked solutions only for large
enough coupling strength K. More precisely K must be larger then ∆ω/2 for the
delay τ = 0. For the case τ ≥ 0 dependence Kcr = Kcr(τ) is shown in Figure 3.4.
System (3.2) has only desynchronized solutions for K < Kcr where the oscillators
rotate with different frequencies 〈θ̇1〉 and 〈θ̇2〉. Let us consider briefly some basic
properties of the curve Kcr(τ) in Figure 3.4. It has prominent minima and maxima
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points, which we now describe explicitly. Kcr(τ) reaches its minima in the cases
where the straight line f1(Ω) (from Figure 3.1) passes exactly through the center of
some butterfly. It provides the existence of synchronized solutions (intersections of
butterflies with this line) for butterflies of any size. The smallest singular butterfly
is a point and exists for K = ∆ω/2. Therefore, K ≥ ∆ω/2. In order to find points
τn of minima of Kcr(τ) we have to equate the centers of butterflies (πn/τ) with
the intersection of line f1(Ω) with the axis x (ω). In this way points of minima in
Figure 3.4 are given by the expression

πn/τmin
n = ω ⇒ τmin

n = π

ω
n, n ≥ 0.

We can also write explicitly the values of Kcr in these points. For such τ a syn-
chronized solution exists for any coupling strength K, for which the square root in
equation (3.4) is defined, i.e., radicand is non-negative. This is provided by value
Kcr(τmin

n ) = ∆ω
2 .

Figure 3.4: Dependence of critical coupling value Kcr on time delay τ . Region
marked as ’Desynchronization’ contains only desynchronized solutions. System pa-
rameters are ω = π and ∆ω = 1.

On the other hand, points of maxima of the graph Kcr = Kcr(τ) in Figure 3.4
correspond to the cases where the line f1(Ω) passes exactly between two butterflies.
From this condition we obtain the points of maxima given by

τmax
n = π

ω

(
n+ 1

2

)
, n ≥ 0.
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For K > Kcr there are stable synchronized solutions. It has been shown in works
[102,103] that they can coexist with different desynchronized solutions. We illustrate
this coexistence in Figure 3.5. The synchronized modes are shown in these diagrams
by red points and the desynchronized solutions are shown by black, blue and green
points. Desynchronized solutions are shown by pairs of the different frequencies
〈θ̇1〉 6= 〈θ̇2〉, whereas each synchronized state is represented by the single point
〈θ̇1〉 = 〈θ̇2〉. As one can see, there is no coexistence for the small value of delay
τ = 0.2, whereas the diagram becomes more complicated with increasing τ . For
τ = 0.6 we observe the coexistence of one synchronized and one desynchronized
state, and for τ = 2.0 we have already coexistence of four desynchronized states
and one synchronized (for the value of K = 2.8). We can estimate the value of τ
providing such coexistence as τ ≈ π/(2∆ω).
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Figure 3.5: Averaged frequencies 〈θ̇1,2〉 versus coupling strengthK for different values
of τ : (A) τ = 0.2, (B) τ = 0.6 and (C) τ = 2.0. Natural frequencies are ω1 = 16.5
and ω2 = 11.5.

The similar diagram is shown in Figure 3.6 for τ = 5 in the case of symmetric
frequencies of the synchronized solutions, see p. 47. Indeed, Figure 3.6 is symmetric
with respect to the line ω = 4.6π ≈ 14.45. It is also revealed by diagrams 3.5(c)
and 3.6 that the oscillator frequencies form horizontal "shelves" under variation
of K. This phenomenon has been found already in work [103]. We can see in
Figure 3.6 that all stable modes have quantized frequencies. Indeed, there is some set
of numbers that for all states in the system (synchronized as well as desynchronized)
oscillator frequencies approximately equal numbers from this set. This mechanism is
clear for the synchronized solutions since their frequencies are the roots of equation
(3.4) and quantization follows from the structure of "butterflies" (see Figure 3.1).
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But in the case of desynchronized solutions it is much more difficult to explain this
fascinating phenomenon.

The differences between the numbers in the above mentioned set are approximately
equal to m · π/τ , m ∈ N (due to the quantization). The minimal value is, corre-
spondingly, equal to π/τ . This minimal value tends to zero as τ increases. For some
desynchronized solution with averaged oscillator frequencies Ω1,2 both frequencies
belong to the interval [ω2, ω1] and their difference is bounded by 0 and ∆ω = ω1−ω2.
Moreover, interval of values of K providing the existence of desynchronized solutions
is almost the same for different values of τ .
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Figure 3.6: Averaged frequencies 〈θ̇1,2〉 versus coupling strength K. Red points
depict synchronized solutions, and the points of other colors depict desynchronized
solutions. System parameters are ω1 = 4.6π+ 2.5, ω2 = 4.6π− 2.5 and τ = 5, which
correspond to the symmetric case for the frequencies, see page 47 (symmetry with
respect to the line Ω = 4.6π).

In order to estimate the whole picture of coexisting states and its changes under vari-
ation of τ , we will use the following form of representation. The averaged frequencies
of all stable solutions will be shown in the plane (Ω1, Ω2) as separate points. These
diagrams for τ = 5 and τ = 10 are shown in Figure 3.7. To build such pictures sys-
tem (3.2) has been numerically solved for some selected set of initial conditions and
the corresponding values of Ω1 and Ω2 have been obtained. As the set of initial con-
ditions the following functions have been taken: θ1(t) = a1t+α/2, θ2(t) = a2t−α/2
where a1, a2 have been equally distributed in the segment [8 . . . 18] with stepsize
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0.1, whereas α – from the segment [0 . . . 6.2] with the same stepsize. This method
has one sufficient disadvantage where we cannot guarantee that all stable solutions
have been found. On the other hand, we can conclude that solutions, which have
been found by this method and are shown in Figure 3.7 have the largest basins of
attraction among all stable solutions in the space of initial conditions considered
above. In Figure 3.7(A) (τ = 5) the minimal difference between the neighboring
points is approximately 0.55 and there are totally 16 desynchronized solutions coex-
isting with an unique synchronized solution marked by S. In Figure 3.7 (B) (τ = 10)
the picture is more complicated where the stepsize between two points decreases by
factor 2 resulting in more dense structure. For this value of delay there are already
43 desynchronized solutions and 3 synchronized solutions.
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Figure 3.7: Averaged frequencies of the stable solutions illustrated in the plane
(Ω1, Ω2). Synchronized solutions are marked by letter S. System parameters ω1,2 =
4.6π ± 2.5, K = 3, (A) τ = 5, (B) τ = 10.

3.1.3 Basins of attraction of synchronized states

Now we will study the basins of attraction of the synchronized states θ(i)
1,2(t) =

Ω(i)t ± α(i)/2 and the allocation of these stable states in the state space for the
system (3.2). Because of the infinite dimensionality of the system with delay (3.2)
it is impossible to describe the structure of the state space precisely. To overcome
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this problem we will use the following method. Let us consider a two-dimensional
manifoldM of coordinates (Ω, α). Then we consider the initial conditions for system
(3.2) in the form of initial functions θ1,2(t) = Ωt ± α/2 defined in the interval
t ∈ [−τ, 0]. Synchronized solutions belong to the manifold M by definition. We
estimate the in-manifold basins of attraction for the synchronized modes. We also
describe the structure of the boundaries between different basins of attraction in the
manifold M . The basin boundaries consist of the stable manifolds (separatrixes) of
the unstable synchronized solutions θ(u)

1,2 = Ω(u)t ± α(u)/2 of the saddle type, i.e.,
those having one positive eigenvalue.

In the framework of the mentioned approach, the basins of attraction will be ana-
lyzed in the two-dimensional plane (Ω, α). Each point Ω = Ω0; α = α0 in the plane
corresponds to solution θ1,2(t), t ≥ −τ of system (3.2) with the following initial
conditions:

θ1(t) = Ω0t+ α0

2 , θ2(t) = Ω0t−
α0

2 , t ∈ [−τ, 0].

Typical examples of the basins of attraction for the delayed Kuramoto model (3.2)
in the plane (Ω, α) are shown in Figure 3.8. Parameters of the system are ω = 6π,
∆ω = 4 and τ = 0.225. Basins are calculated for three different values of the
coupling strength K = 30, K = 50 and K = 70. Unstable and stable modes are
depicted by gray and black dots respectively. The unstable solutions with one posi-
tive eigenvalue, i.e., called the saddles, are denoted by Si. The unstable modes with
two positive eigenvalues, the nodes, are labeled by Ni. As we can see, boundaries
of basins of attractors contain unstable states being stable manifolds of the saddle
states Si. In the first panel in Figure 3.8 (K = 30) we plot two exemplary trajec-
tories (solutions), which are projected onto the plane (Ω, α). One orbit starts at
some point inside the green region (basin of the mode O2), and the second trajec-
tory starts at some point on the boundary separating basins of O1 and O2. These
projections have been built in the following way: for each moment of time t = t′ > 0
the interval of length τ , namely (t′ − τ/2, t′ + τ/2) is fixed and the phases θ1 and
θ2 are approximated on this interval by linear functions found by the method of
least squares. The spirals in Figure 3.8 (K = 30) consist of the points (Ω = 〈θ̇1〉,
α = θ1(t′) − θ2(t′)) where 〈θ̇1〉 is the result of the least square approximation of
phase θ1 on the interval. Now we analyze behavior of these two trajectories. One
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of them (black spiral) starts from the basin boundary and converges to the saddle
point S1, because this basin boundary belongs to the stable manifold of S1. The
second trajectory (blue spiral) starts from the point inside the basin of attraction
of stable state O2 and converges to this state.
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Figure 3.8: Basins of attraction for three different coupling strengths: K = 30,
K = 50 and K = 70. Stable and unstable solutions are depicted as black and gray
dots respectively: stable synchronized solutions (points Oi), unstable synchronized
solutions with one positive eigenvalues (saddles Si), unstable solutions with two
positive Lyapunov exponents (nodes Ni).

We found an interesting feature of basins of attraction, which we can observe in
Figure 3.8. The shape of basins of attraction for different stable states starts to
resemble a rhomboidal form as K increases.
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3.2 The delayed Kuramoto model with feedback

In this section we will study the two-dimensional model of the type that was firstly
considered in the article [104]. In that work the high-dimensional systems and the
thermodynamical limit where the number of oscillators tends to infinity were inves-
tigated. A similar two-dimensional model with delayed feedback and instantaneous
interaction between different oscillators was studied in the article [45].

3.2.1 Model and its synchronized solutions

We consider a system of two delayed differential equations (3.7):

θ̇1 = ω1 + K
2 [sin (θ1(t− τ)− θ1(t)) + sin (θ2(t− τ)− θ1(t))] ,

θ̇2 = ω2 + K
2 [sin (θ1(t− τ)− θ2(t)) + sin (θ2(t− τ)− θ2(t))] ,

(3.7)

where ω1 and ω2 are the natural frequencies, K is the coupling strength and τ is
the time delay. Comparing this model with the model with delayed interaction
(3.2), which was considered in section 3.1, one observes that the equations have an
additional sin-term with self-delayed feedback sin (θi(t− τ)− θi(t)), i = 1, 2. The
presence of this term makes the behavior of the system much more complicated, as
we will show below in this section.

In order to get better understanding of the system dynamics, we analyse the exis-
tence and stability of the synchronized solutions analogous to those studied for the
system (3.2). We are looking for solutions of system (3.7)

θ1,2(t) = Ωt± α

2 (3.8)

where Ω is the frequency of the synchronized solution and α is its phase difference.
These two values are to be found. Substituting expressions (3.8) into the system
equations (3.7) we obtain the following equations for Ω

ω − Ω = K

2 sin(Ωτ)
1− (−1)i 1

cos(Ωτ)

√
cos2(Ωτ)− (∆ω)2

K2

 , i = 1, 2 (3.9)

where ω = 0.5 (ω1 + ω2) is the mean natural frequency, and ∆ω = ω1 − ω2 is the
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frequency detuning. The corresponding values of the phase difference α are

i = 1 : α =

 arcsin
(

∆ω
K cos(Ωτ)

)
, if cos(Ωτ) > 0,

π − arcsin
(

∆ω
K cos(Ωτ)

)
, otherwise

i = 2 : α =

 π − arcsin
(

∆ω
K cos(Ωτ)

)
, if cos(Ωτ) > 0,

2π + arcsin
(

∆ω
K cos(Ωτ)

)
, otherwise.

(3.10)

In order to estimate the stability of the obtained solutions, we have to use the
standard method of system linearization around the solution to be studied. As
in the section 3.1, we write characteristic equation for complex eigenvalues λ as
det(A+ Be−λτ − λE) = 0 where A and B are the partial derivatives of our system
(3.7) with respect to θ1,2(t) and θ1,2(t − τ), respectively. Then the characteristic
equation attains the form(

e−λτ · K2 cos(Ωτ)− λ− K

2 (cos(Ωτ) + cos(Ωτ + α))
)
×

×
(
e−λτ · K2 cos(Ωτ)− λ− K

2 (cos(Ωτ) + cos(Ωτ − α))
)
−

−e−2λτ · K
2

4 cos(Ωτ + α) cos(Ωτ − α) = 0, λ ∈ C.

(3.11)

The exemplary diagrams for the frequencies Ω = Ω(K) and the corresponding phase
shifts α = α(K) versus the coupling strength K are shown in Figure 3.9. One can
see in these graphs that one of the stable solutions undergoes a Hopf bifurcation. We
will discuss this bifurcation in the following subsection 3.2.2. The phase difference
α of the stable synchronized solutions is close to zero or close to π, similarly as for
the phase shift for model (3.2) without feedback.

3.2.2 Special features of the delayed model with feedback

In this section we show that the special properties of model (3.7) are different from
those of the delayed model (3.2) considered in the previous section 3.1. First of all,
for the standard model (3.2) the stable synchronized solutions with different phase
shifts, i.e., with α ≈ 0 and α ≈ π, appear consecutively one after another, but the
model with self-feedback (3.7) has an unique stable solution θ1,2 = Ωt ± α/2 with
α ≈ π (anti-phase solution) only if the following condition holds

cos(ωτ) < 0, ⇔ 2πn+ π/2 < ωτ < 3π/2 + 2πn, n ∈ Z
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Figure 3.9: Frequencies Ω and phase shifts α for the synchronized solutions of system
(3.7). (A) Ω = Ω(K), (B) α = α(K). Red points depict stable solutions, whereas
green points correspond to unstable ones. Parameters are ω = 4π, ∆ω = 0.3 and
τ = 0.225.

otherwise the system has only in-phase (α ≈ 0) stable solutions. Figure 3.9 was
created for parameter values providing existence of an anti-phase stable solution
with cos(4π · 0.225) = cos(0.9π) < 0. The next important feature of the system
is that the stable anti-phase solution loses its stability as K increases via a Hopf
bifurcation, as shown in Figure 3.9. Hopf bifurcation is characterized by a pair of
eigenvalues (roots of Equation (3.11)) simultaneously crossing the imaginary axis
from the left half-plane to the right half-plane. The examples of the spectrum of the
anti-phase synchronized solution are shown in Figure 3.10 for three different values of
coupling strength K: before bifurcation, at the moment of bifurcation and after the
bifurcation. These diagrams are created for the same system parameters used for the
diagrams in Figure 3.9. The point of bifurcation is denoted by an arrowK = 7.34336
in Figure 3.9. As a result of supercritical Hopf bifurcation, synchronized solution of
the form (3.8) loses its stability and a new solution becomes stable. This solution has
the same averaged frequencies, but the phase difference oscillates around the value
α. If we increase the coupling strength further, this new solution undergoes a series
of period doubling-bifurcations with respect to the mean period of oscillations of the
phase difference and transition to chaos. Afterwards the anti-phase synchronization
in system (3.7) is lost via a boundary crisis.

We derive the explicit expression for the bifurcation value Kbif of the Hopf bifur-
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Figure 3.10: Spectra of the synchronized anti-phase solution undergoing Hopf bi-
furcation. (A) K = 6.5, before the bifurcation, (B) K = 7.34336, at the moment of
the bifurcation, (C) K = 8, after the bifurcation, also see Figure 3.9.

cation for the system (3.7) of identical oscillators, i.e., with the natural frequencies
ω1 = ω2 = ω. For this we consider the solution of system (3.7) with the common
frequency Ω = ω and the phase shift α = π. For the solution θ1,2(t) = Ωt ± π

2

the characteristic quasi-polynomial (3.11) can be written in the following simplified
form

λ
(
λ−Ke−λτ cos(ωτ)

)
= 0, λ ∈ C. (3.12)

In order to find the bifurcation value of the coupling strength, we have to find such
a value of K that implies the presence of roots of equation (3.12) of the type λ = ix,
x ∈ R \ {0}. We explicitly look for a pair of purely imaginary eigenvalues since
the bifurcation moment is characterized by that a pair of eigenvalues crosses the
imaginary axis Reλ = 0. Substituting such imaginary roots into (3.12) we obtain

x = π

2τ , and

Kbif = − π

2τ cos(ωτ) . (3.13)

We briefly consider the stability of the in-phase synchronized solution in the case
of identical oscillators (ω1 = ω2 = ω) θ1(t) = θ2(t) = Ωt. The frequency Ω of the
in-phase synchronized solution can be found from equation

K sin(Ωτ) = ω − Ω. (3.14)
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The solution of equation (3.14) always exists, and we will write the conditions of
its stability. The characteristic equation (3.11) can be rewritten for this case in the
following way:

(λ+K cos(Ωτ))(K cos(Ωτ)(e−λτ − 1)− λ) = 0, λ ∈ C. (3.15)

Analyzing equations (3.14) and (3.15) we can conclude that the in-phase synchro-
nized solution for the system of identical oscillators (3.7) is stable if K is greater
than some critical value Kcr

Kcr =

 min
n∈Z

∣∣∣∣ω − 1
τ

(
π

2 + πn
)∣∣∣∣ , if cos(ωτ) < 0.

0, otherwise.
(3.16)

In Figure 3.11 we illustrate dependencies of Kcr and Kbif on the mean natural
frequency ω for the case of identical oscillators ∆ω = 0. The numerically obtained
values Kcr and Kbif are plotted versus ω in Figure 3.11 also for the case of non-
identical oscillators for ∆ω = 1 and ∆ω = 2. The graphs of Kbif are shown by the
solid lines and the graphs of Kcr are depicted by the dashed lines. We can see that
as frequency detuning ∆ω increases the values of Kcr and Kbif also increase.

Figure 3.11: The bifurcation values of Kbif (solid lines) and Kcr (dashed lines) are
shown versus ω = 0.5(ω1 + ω2) for three fixed values of ∆ω: ∆ω = 0 (red curves),
∆ω = 1 (blue curves) and ∆ω = 2 (green curves). Time delay τ = 0.225.

A more general diagram in the plane (ω,K) describing the system dynamics for the
case of identical oscillators is presented in Figure 3.12. A similar diagram for the case
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of non-zero detuning is presented in Figure 3.13. Figure 3.12 in particular illustrates
what kind of the stable states system (3.7) of identical oscillators exhibits as the
coupling strength K increases. In the parameter regions denoted in Figure 3.12 by
the letters A-D we observe the following dynamics in system (3.7): (A) only an anti-
phase solution is stable; (B) stable in-phase synchronized solution appears; (C) the
stable synchronized anti-phase solution undergoes a supercritical Hopf bifurcation
and loses its stability and a solution with the same frequency but with oscillating
phase difference is born; (D) the oscillating solution loses its stability via a boundary
crisis and only in-phase solutions are stable.

Figure 3.12: System (3.7) of identical (∆ω = 0) oscillators, for τ = 0.225. (A)
The system has an unique stable anti-phase synchronized solution; (B) Appearance
of the in-phase synchronized solution; (C) After a Hopf bifurcation, a synchronized
solution with oscillating phase difference is stable; (D) After boundary crisis: only
in-phase synchronized solutions are stable.

In Figure 3.13 we can see much more rich dynamics of system (3.7) in the case of non-
zero detuning (∆ω = 3.25). The lowest (blue) curve corresponds to the appearance
of the first synchronized solution in the system where the central part of the curve
corresponds to the anti-phase solution and the side parts of the curve show the
appearance of in-phase solutions, see also Figure 3.11 and rose line in Figure 3.13.
The red curve depicts the points of the Hopf bifurcation of the anti-phase solution
where a new synchronized solution with oscillating phase difference becomes stable.
Black curve shows the boundary crisis of this synchronized solution. The most
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interesting part of the diagram is a green region where desynchronized (with the
different averaged frequencies) solution is stable, although the coupling strength is
large enough. In this region system (3.7) demonstrates multistability in the sense
that the synchronized in-phase solutions and the desynchronized solution are stable
for the same parameter values. Such a situation is preserved in all parameter regions
of ω satisfying condition cos(ωτ) < 0.

Figure 3.13: System (3.7) of non-identical oscillators with the frequency detuning
∆ω = 3.25 and τ = 0.225. Green region corresponds to the existence of stable desyn-
chronized solution for large coupling K. Blue curve indicates the appearance of the
synchronized solution. Rose curve Kcr = Kcr (ω) depicts appearance of the in-phase
synchronized solution. Red curve indicates a Hopf bifurcation Kbif = Kbif (ω) of the
anti-phase solution, see also Figure 3.11. Black curves correspond to a boundary
crisis of the anti-phase solution (lower line) and of desynchronized solution (upper
line surrounding green domain).

The parameter regions where system (3.7) exhibits different dynamical behavior
are depicted in Figure 3.14 in (∆ω, K)-parameter plane for the fixed value of ω =
π/τ − 1, time delay is τ = 0.225

Red and violet curves in Figure 3.14 depict the bifurcation curves of the appearance
of the first synchronized anti-phase solution and the curve of Hopf bifurcation of
the synchronized anti-phase solution Kbif , correspondingly, see also Figure 3.11.
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Figure 3.14: Parameter regions of different dynamical regimes of system (3.7) in
the plane (∆ω, K), τ = 0.225 and ω = π/τ − 1 ≈ 13.86. Red line indicates the
appearance of the synchronized anti-phase synchronized solution. Violet line Kbif

depicts the Hopf bifurcation of the anti-phase synchronized solution. Green color
depicts a region where the desynchronized solution of the system with self-feedback
(3.7) is stable.

The main object of interest in Figure 3.14 is the green region of stability of the
desynchronized solution with different averaged frequencies. Part of this region
below the curve Kcr is easy to understand: here the coupling strength is not large
enough to synchronize system (3.7) and the desynchronized solution is stable. For
the small values of ∆ω the border of this region coincide with the appearance of the
stable anti-phase solution. Therefore, there is no multistability for the small values
of ∆ω and K. Much more interesting for us is the upper part of the green region
above the curve of Kcr where synchronized and desynchronized solutions coexist for
system (3.7) indicating the multistability in the system for such parameter values.
One observes in Figure 3.14, however, the presence of "tongues" of the green domain.
If we consider ∆ω fixed and change the coupling strength, there will be several non-
connected intervals of stability of desynchronized solution what we have not observed
in the previous section 3.1 devoted to the delayed system without self-feedback.

Figure 3.15 reveals the dependence of the averaged frequencies of the stable solution
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of model (3.7) on the coupling strength. The considered parameter values correspond
to the case cos(ωτ) < 0 where one synchronized solution with the common frequency
Ω = 2π loses its stability via a Hopf bifurcation and a new solution depicted by
orange points appears.
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Figure 3.15: The averaged frequencies of the stable solutions of the system (3.7)
with parameters ω1,2 = 2π ± 0.15 and τ = 2.5. Red points depict phase-locked
synchronized solutions, orange points indicate synchronized solution with oscillating
phase difference, which appears as a result of Hopf bifurcation, and blue and green
points correspond to desynchronized solution.

As mentioned above, in Figure 3.15 we see two non-overlapping parameter intervals
of stable desynchronized solutions. The first region of desynchronization (for K <

0.315) almost has no overlapping (multistability) with the synchronized solutions,
whereas the second one (0.665 ≤ K ≤ 3.04) has prominent overlapping with interval
of stable synchronized solution indicating multistability.

The system with self-feedback (3.7) has the same property of frequency discretization
as the previous model (3.2). The frequencies of synchronized solutions tend to the
values from some grid with increasing coupling strength where the step of this grid
is proportional to 1/τ . It follows from the properties of equation (3.9) determining
the frequencies Ω of the synchronized solution. The functions of the right side of
Eq. (3.9) have structure close to that was shown in section 3.1 (butterflies). Thus,
solutions of Eq. (3.9) tend to values from some grid with the stepsize proportional
to 1/τ as coupling strength K increases. Concerning the averaged frequencies of

63



CHAPTER 3. MULTISTABILITY IN THE DELAYED KURAMOTO MODEL

the desynchronized solutions, we will demonstrate the quantization effect in the
following Figure 3.16.
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Figure 3.16: The averaged frequencies of the solutions of system (3.7) with ω1,2 =
2π± 1.0. (A) τ = 5, (B) τ = 10. Red points depict synchronized solutions, whereas
black, blue, green and turquoise points correspond to different desynchronized solu-
tion.

As follows, an increase of τ , for example, in two times results in the corresponding
decrease also in two times of the step of the frequency "grid" for the synchronized
solutions as well as for the desynchronized states. Therefore, with increasing τ we
found linear increasing of the number of synchronized modes. We can conclude that
the total number of desynchronized solutions increases as τ 2 as in the case of the
system without self-feedback (3.2), see also Figure 3.7.

3.3 Conclusions

In this Chapter we have investigated two different models of two delay-coupled
oscillators. The main results of this study are different variants of multistability in
these systems. In the model with delayed interaction (3.2) number of synchronized
solutions grows linearly with time delay τ or coupling strength K, whereas the
number of desynchronized modes increases much faster under growing of time delay.
The set of desynchronized solutions correspond to some set of the points in plane of
the averaged oscillator frequencies

(
〈θ̇1〉, 〈θ̇2〉

)
. These points are situated in some

bounded domain and form a grid with stepsize proportional to 1/τ . We can see
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that for the case of N = 2 coupled oscillators the total number of all desynchronized
solutions increases quadratically with τ . Furthermore, we can expect that for such a
system of N oscillators (N > 2) number of different desynchronized states may grow
proportionally to τN as τ increases. The model with self-feedback (3.7) demonstrates
much richer dynamics, so it is more difficult to perform a comprehensive study of
it. But we can conclude that several features of both models are very similar, e.g.,
frequency discretization with increasing time delay τ .

These results are also important from the point of view of possible application to
the development of novel deep brain stimulation (DBS) technique. The main idea of
such novel technique can be implementation of the shift of the system dynamics from
some undesirable (synchronized) state to the desirable (desynchronized) one. Such
study in the case of the neuronal system with plasticity has been already performed
in the Chapter 2 of the present thesis and in numerous theoretical works, see [35,36,
89, 91]. The common approach in these two directions of the present thesis (spike
timing-dependent plasticity and time delay) is to consider multistability of different
states and also their basins of attraction. Structure of the basins of attraction
allows us to perform the mild perturbation providing long-lasting switching of the
system dynamics between different states. Since we expect that the behavior of
the delayed systems for N > 2 is similar to our result in the case N = 2, we
may hypothesize that some desynchronizing stimulation protocols may exploit the
special pathological features of networks, e.g., large delay or large coupling, to shift
the system to desynchronized state. Such an approach can be transformed to clinical
stimulation protocol with long-lasting therapeutic effects and, consequently, require
smaller amount of stimulation compared to the standard (HF) protocol.
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Chapter 4

Coordinated Reset Stimulation

In this Chapter we study dynamical properties of coordinated reset (CR) stimula-
tion protocol when the system and stimulation parameters vary. CR stimulation
technique was originally developed in the theoretical works [84, 85] in order to im-
prove the existing method of deep brain stimulation (DBS) [6, 15]. From the one
hand, CR stimulation method is aimed to be much milder decreasing the total
amount of administered electrical current in the brain tissue. On the other hand,
CR stimulation effectively desynchronizes neuronal population letting the individ-
ual neurons to fire in a perturbation-free transient desynchronous regime, which is
a very important feature of the new method. The latter property of CR stimula-
tion distinguishes it from the standard high-frequency deep brain stimulation (HF
DBS) technique, which is known to significantly alter the individual dynamics of the
stimulated neurons by suppressing or overactivating them [11, 72]. During the last
decade several desynchronizing stimulation approaches have been developed includ-
ing, among other, double-pulse reset stimulation [80–83]; multisite delayed feedback
stimulation [31,32,90], nonlinear delayed feedback stimulation [28,61–63,90].

Among these stimulation techniques CR stimulation is one of the most promising
from the point of view of application. The desynchronization effect of CR stimulation
is characterized by its robustness with respect to the change of the system and
stimulation parameters. The impact of the method on the behavior of the neuronal
system and optimal values of the stimulation parameters can be investigated with
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the methods of nonlinear dynamics, which attracts a great research interest to this
type of DBS technique [33,36,90,91]. In the present Chapter we theoretically study
coordinated reset stimulation protocol. However, the mentioned works utilized CR
stimulation with fixed parameters. The goal of the present investigation is to find
the optimal stimulation parameters using different estimation techniques.

We briefly overview the main results obtained in the above works. The main object
of study of the articles [84, 85] is the network of coupled phase oscillators (the Ku-
ramoto model) under impact of CR stimulation. The network was subdivided into
four equal subpopulations, assigned to four stimulation sites, being stimulated via
the corresponding stimulation site with the corresponding stimulation sign. More
precisely, the subpopulations are split into two pairs, the subpopulations in the same
pair are simultaneously stimulated with the similar stimulation signal having oppo-
site polarity. The onset of the stimulation in the second pair of the subpopulations
is shifted in time by T/4 where T is the period of oscillations of the oscillators.
After the offset of the stimulation the subpopulations form a four-cluster state uni-
formly distributed on the unit circle. The effective mechanisms of the choice of the
rest time interval between two subsequent stimulations were considered as (a) with
demand-controlled times of switching the stimulation on where the order parameter
R1 reaches value 0.5, (b) periodic stimulation with controlled length of individual
stimulus.

In the study [91] the behavior of the system (N = 100) of coupled phase oscillators
(the Kuramoto model) was considered where the oscillators are assumed to be ar-
ranged in the square-form grid. An important feature of that study was the involving
of spike timing-dependent plasticity (STDP) into the model such that coupling was
represented by a square matrix Kij(t) of the variable individual couplings between
ith and jth neurons. The stimulation was performed via four contacts, which are
situated in vertices of a smaller square. Such a system has an important feature of
multistability due to plasticity and stimulation allows to switch between two stable
states: synchronized and desynchronized ones. The novel stimulation technique was
compared with the standard high-frequency stimulation technique.

In the works [33,36,90] an ensemble of coupled neurons represented by microscopic
models was considered. Neurons were supposed to be arranged in a square-form
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grid like in the work [91]. There was considered a modification of the Morris-Lecar
model [55], which is able to demonstrate bursting activity, whereas the original
model produces only tonic spiking. Also, the STDP was implemented in this model.
The main attention of those studies was paid to the effectiveness of the novel CR
stimulation technique in comparison to the standard HF stimulation.

In this thesis we will investigate several models of neuronal networks. In the following
sections we consider phase model based on the Kuramoto system (section 4.1) and
a neuronal model based on the system of FitzHugh-Nagumo neurons (section 4.2).

4.1 Coordinated Reset of the system of phase os-
cillators

In this section the model of coordinated reset stimulation of the Kuramoto system
of phase oscillators is investigated. The considered model based on the phase os-
cillators cannot demonstrate such peculiar features of the real neurons as bursting,
excitability etc. Nevertheless, it is important to study such model due to its ability
to reflect some phenomenological macroscopic effects like synchronization, which is
one of the most interesting and important phenomena for the real applications.

4.1.1 Model of the CR stimulation

In order to introduce the model of coordinated reset stimulation let us first consider
a schematic description of the stimulating electrode for DBS with several contacts.
In the part (A) of Figure 4.1 we depict a schematic draw for 4-contact stimulating
electrode where the stimulation contacts are shown by red color, whereas insulator
inter-contact intervals are depicted by green color. The brain tissue surrounding
electrode can be considered (in the framework of our model) as cylindrical surface
S, which is built around the electrode’s longitudial axis. Therefore, all points of the
surface are equally distanced from the electrode.

Part (B) of Figure 4.1 shows the unwrapped cylindrical surface S, which was shown
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Figure 4.1: (A) Schematic draw of the stimulating electrode with four contacts. S
is a cylindrical surface equidistant from the electrode. Contacts are shown by red
color and insulator is shown by green color. (B) Unwrapped surface S.

in (A), surrounding the electrode. Unwrapping transforms cylinder to a rectangle
where the red color depicts the "rings" of the surface, which are exactly facing the
contacts of the electrode indicated by red color in Figure 4.1(A). If we consider the
neurons along a straight line L from the cylindrical surface depicted by the dashed
line in Figure 4.1(A), they correspond the neurons located along the dashed line L in
the rectangle shown in Figure 4.1(B). All such neuronal populations have the same
properties since they are placed on the same distance from the electrode and are fully
equivalent from the point of view of received stimulation from the electrode. We can
conclude that the properties of the neuronal population on the whole rectangle (B)
are identical to the properties of the neurons on the line L from the point of view
of the impact of the stimulation received from the stimulating electrode. Therefore,
we can restrict our consideration of the neuronal network on the surface S to the
case of neuronal population arranged in an one-dimensional lattice. The next step to
simplification of our model is to replace the red intervals on the line L corresponding
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to the stimulating contacts by their central points, which are shown in Figure 4.1(B)
as c1, c2, c3, and c4. We will model the behavior of the neuronal population, that is
arranged on line segment. The distances between the neighboring neurons are the
same, and the neurons’ coordinates xj, j = 1, N are given by expression (4.1). The
distance between two consecutive contacts is constant and is two times larger than
that between the first(last) contact and the corresponding end of the whole segment.
Thus, we suppose that all contacts are uniformly distributed over the segment [0, L].
In what follows, the length of the segment L = 10. If the number of contacts equals
Nc, then their coordinates ci are given by the first formula in expression (4.1).

ci = (i− 1
2) · L

Nc

, i = 1, Nc,

xj = j − 1
N
· L, j = 1, N.

(4.1)

Further we will use a system of N = 200 coupled phase oscillators. The schematic
draw for the oscillators and stimulating contacts is shown in Figure 4.2.
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Figure 4.2: Schematic representation of neuronal population and stimulating con-
tacts. The interval is of the length L = 10 of one-dimensional lattice and the number
of contacts Nc = 4. For the illustrational purposes we consider N = 100 oscillators.

The spatial structure, i.e., the arrangement of oscillators and contacts, is not impor-
tant if we consider pure dynamics of the Kuramoto model of globally all-to-all cou-
pled phase oscillators without stimulation. Nevertheless, if one studies the impact
of electrical stimulation on the neuronal population, the question of the topological
arrangement of the stimulated neurons and the stimulating sites becomes crucial.
Indeed, the influence of the electrical stimulation on the neuron strongly depends on
their relative spatial positions. This problem is considered in many works devoted to
the deep brain stimulation, see, e.g., [65,105]. In many theoretical works, see [31,91],
the current spread is supposed to have an exponential form, i.e., the strength of the
stimulation decays with increasing of distance between the contact and neuron as
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∼ exp(−α ‖xj − ci‖β) where α, β are some positive coefficients. In the present thesis
we will use quadratic decay of the stimulation, as it has been considered in [65]. The
following expression (4.2) describes the decay of the stimulation strength, which will
be used in our further analysis:

Ĩij(t) = Ii(t)D(xj, ci), i = 1, Nc, j = 1, N,

D(xj, ci) = 1
1 + |xj − ci|2 /σ2 .

(4.2)

Here, Ĩij(t) is the time-dependent strength of stimulation received by the jth os-
cillator from the ith stimulating contact, Ii(t) is the original stimulation signal of
the ith contact, D(xj, ci) is the decay coefficient with the values between 0 and 1,
|xj − ci| is the distance between the oscillator j and contact i. Parameter σ gives
us the distribution width of the stimulation current. This coefficient of the distri-
bution width is one of the most important parameters in our model. Indeed, this
parameter determines how large part of the whole neuronal population is under im-
pact of the single stimulation contact. Therefore, σ is one of the main parameters
under consideration in the following analysis of the system. We cannot influence
the changes of this parameter in the real stimulations since it is a property of the
brain tissue. However, we have to understand the special features of the system
behavior for different values of σ in order to provide the appropriate values of other
stimulation parameters. The next Figure 4.3 shows exemplary decay coefficients
D(x, ci), i = 1, 4 (for all four stimulating contacts) as functions of the oscillator
positions on the lattice x for the value of σ = 0.4, which will be used in some further
simulations. Here we should mention several important features of the decay coef-
ficients D(x, ci). First of all, the width of the graph peak depends on σ such that
small σ implies narrow peak, whereas large values of σ correspond to wide peak.
The height of all peaks is constant and equals to 1. Each oscillator in the lattice
(represented by the point in the interval [0, L]) is under influence of the stimulation
from all stimulating contacts. Figure 4.3 reveals the intervals in the segment [0, L]
where different contacts have the same or comparable impact on neurons from such
locations in the lattice (intervals around points 2.5, 5, 7.5, which are equidistant,
correspondingly, from the ci and ci+1, i = 1, 3). The presence of such intervals
significantly complicates the system dynamics making it very nontrivial. Indeed,
we cannot subdivide the whole neuronal ensemble on subpopulations assigned to
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a single fixed stimulating contact. As we can see in Figure 4.3, such intervals of
the overlapped stimulation current are relatively large already for σ = 0.4 and they
becomes larger with further increasing of σ (because of increasing peak width). To
understand the influence of such overlapping stimulation profiles on the outcome of
the CR stimulation method the CR-stimulated system requires detailed analysis.

0 2.5 5 7.5 10

D(x,c
1
) D(x,c

2
) D(x,c

3
) D(x,c

4
)

Figure 4.3: Decays of stimulation strengths D(x, ci), i = 1, 4, σ = 0.4, as functions
of oscillator position x ∈ [0, 10]. Red circles depict stimulating contacts.

Keeping in mind that the total stimulation strength for the jth oscillator is equal
to the sum of Ĩij(t) (see Eqs. (4.2)) over all i, we can write a model for a neuronal
system under coordinated reset stimulation. This model is based on the standard
Kuramoto system of coupled phase oscillators:

θ̇j = ωj + K

N

N∑
k=1

sin (θk − θj) +
(
Nc∑
i=1

Ii(t)D(xj, ci)
)

cos θj︸ ︷︷ ︸
stimulation term

, j = 1, N, (4.3)

where ωj are the natural frequencies of individual oscillators distributed according
to some predefined unimodal density function. In what follows Gaussian (normal)
distribution with the mean value ωmean = π and the standard deviation 0.02 will be
used. K is the coupling strength in the system. The value K = 0.1 will be taken in
our following analysis where the Kuramoto threshold coupling value of the transition
to synchronization for the mentioned distribution of ωj is ≈ 0.032. Therefore, our
coupling is strong enough and, as we will show later, it provides value of the first
order parameter R1 ≈ 0.98. As follows from the above distribution of the natural
frequencies, the mean period of the system is Tosc = 2π/ωmean = 2.
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The electrical stimulation of a real neuron is phase-dependent [10]. This means
that the neuronal response on external stimulation depends on the neuronal state.
For example, response of the firing neuron is insignificant, whereas the stimulus
application to the neuron in the resting state evokes spike or burst. Therefore, we
can write the external stimulation of the Kuramoto model as I cos θj where I is the
aggregate stimulation strength [79] providing the phase-reset (phase converges to
some fixed value) if stimulus is strong enough.

As the next step in the description of a model (4.3) we formulate the expression
for the stimulation protocol, which is determined by the time-dependent functions
Ii(t). The original idea of CR stimulation (see [85]) is to achieve a transient desyn-
chronized state in the system via a clustered state. We consider this outcome of
CR stimulation below in more detail. The clustered state can be reached by a
consecutive stimulation via different stimulating contacts. Indeed, such stimulation
protocol provides consecutive reset of different subpopulations and splits the original
one-cluster state into Nc clusters. During the stimulation through each stimulation
contact a short high-frequency (HF) pulse-train is administered. The expressions
for the functions Ii(t), i = 1, Nc are

Ii(t) = I · Indi(t) = I · I[tbegin, tend](t)×

×


∞∑
s=0

Np∑
p=1

I[0, δTp]

(
t−

(
tbegin + Ts+ T

Nc

(i− 1) + Tp(p− 1)
)) . (4.4)

Here I is the stimulation strength, Indi(t) is a function of t taking two values 0
and 1 and detecting whether the ith contact is stimulating in the time moment t.
IA(x) is an indicator function of the set A and equals 1 if x ∈ A and 0 otherwise.
[tbegin, tend] is a time interval where the stimulation is switched on. T is period of
CR stimulation and Tp is period of pulses in the high-frequency train. In other
words, T determines the period of the entire cycle of activity of all Nc stimulating
contacts. Period Tp is equal to the time between starts of two consecutive pulses in
one HF pulse-train. The sum over s is taken over the stimulation periods. Indeed,
if we consider the fixed value of s, we obtain the function defining Np pulses. This
pulse series is shifted from the start of stimulation tbegin on time Ts. Therefore, for
the fixed value of s we have the stimulation administered via the ith contact on the
(s + 1)th stimulation period. Variable p goes over the predefined number of pulses
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Np, which will be discussed later. All pulses have the same period Tp, which is much
smaller than the stimulation period T . In real applications it is smaller than 0.05T .
The exemplary real values are T = 0.25 s, Tp = 1/130 ≈ 0.0077 s. Indeed, Tp is
defined by the frequency of the standard HF stimulation, which is often taken as
130 Hz [7, 46]. In our further considerations we will use value of T = Tosc = 2 and
Tp = 0.05. In subsection 4.1.5 we study the dependence of the stimulation effect on
the stimulation period T where T is varying.

The pulse period Tp consists of two parts. The active part has the length δTp where
the stimulation is switched on and the rest part without stimulation has the length
(1 − δ)Tp. Therefore, coefficient δ ∈ (0, 1) determines the relative length of the
stimulation during one pulse period. To account this, we put an indicator function
of the segment [0, δTp] under the sum over all Np pulses. In the real applications
pulses have more complicated form, e.g., there are two parts with the opposite signs
in order to provide the charge balance of the stimulation. In the present study
we consider the simpler case with one positive pulse during the pulse period. In
all further simulations the value of δ = 0.5 is used. This means that stimulus is
switched on during one half of the pulse period. In expression (4.4) the part in the
figure braces gives a sequence of the pulse trains of Np pulses for ith stimulating
contact starting from the time tbegin. An indicator function I[tbegin, tend](t) restricts
the stimulation exactly to the time interval [tbegin, tend].

In the considered stimulation protocol we assume that during the stimulation pe-
riod T all Nc stimulation contacts administer their stimulation pulse trains to the
neuronal tissue. In this way we also assume that each stimulation contact is active
during the time interval of the length T/Nc. Therefore, the number of pulses in the
corresponding time interval is [T/(NcTp)] where square braces denote the integer
part of the number (maximal integer, which is not larger than expression in braces).
And the remaining interval of length T/Nc − Tp · [T/(NcTp)] is supposed to contain
one pulse if its length is larger than the width of the pure pulse, i.e., δTp. Sum-
ming this up, we can obtain the number of single pulses Np administered during the
stimulation period via a single stimulation site.

Np =
 T
Nc

+ (1− δ)Tp
Tp

 . (4.5)
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For example, if we consider a 4-contact model with parameters T = 2, Tp = 0.05 and
δ = 0.5, then Np is equal to 10. This system’s configuration is the most common in
our investigations. In the following Figure 4.4 the functions Indi(t) for the exemplary
case of Nc = 4 are shown.
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Figure 4.4: Stimulation signals of four contacts Indi(t), i = 1, 4 from Eq. (4.4).
System parameters T = 2, δ = 0.5, and Tp = 0.1 is taken for the illustrational
purposes, whereas in all simulations Tp = 0.05.

As we can see in Figure 4.4, the expressions for the stimulation activity (4.4) and
(4.5) correspond to the idea of coordinated reset stimulation. Indeed, we have a
consecutive stimulation via different stimulation contacts, and each contact performs
a HF pulse-train stimulation. The values of the stimulation parameters of pulse
period Tp, pulse width determined by values of δ, and the number of single pulses
Np in the pulse-train are fixed in this work and considered to be Tp = 0.05, δ = 0.5
and Np = 10.

In this subsection we have introduced model (4.3), which will be investigated in
detail in the following subsections. To understand the influence of different system
parameters on the stimulation outcome, we have to know the basic properties of
the model. Thus, the impact of a HF pulse-train stimulation on a single neuron
is important for the understanding of the entire dynamics of the system during
CR stimulation. In the following subsection 4.1.2 we consider several basic reset-
ting features of a HF pulse-train stimulation administered to the oscillators of the
model (4.3).
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4.1.2 Resetting properties of CR stimulation

In this subsection we will describe some fundamental properties of the coordinated
reset stimulation, which is necessary for further analysis. First of all, in order
to understand the dynamics of the system under impact of the CR stimulation by
several (Nc = 4) stimulating contacts, we have to study the behavior of the system in
the case of a single contact performing HF stimulation. It is well known [79,85] that
strong enough stimulation results in the resetting of the neurons, i.e., their phases
stop the natural growing and perform low-amplitude oscillations around some fixed
value. Here, we will give a numerical estimation of such a phenomenon.

Consider the Kuramoto model with a single stimulating contact, which is placed
exactly in the middle of the population segment [0, L], c1 = L/2.

θ̇j = ωj + K

N

N∑
k=1

sin (θk − θj) + I ·D
(
xj,

L

2

)
·

 ∞∑
p=0

I[0,δTp] (t− Tpp)
 cos θj, (4.6)

where function D(·, ·) is taken from Eq. (4.2). We can see that system (4.6) is a
simplification of the general model (4.3) for the case of a single stimulation contact
administering a permanent HF pulse train. In the following Figure 4.5 the averaged
oscillators’ frequencies are shown versus the stimulus strength I.

As revealed by Figure 4.5, if we consider frequency of some oscillator under variation
of the stimulation strength, this frequency decays from the level of the synchronized
system without stimulation, i.e., the common synchronized frequency is equal to
ωmean = π, to zero value. The zero value of the averaged frequency corresponds to
the full reset of the oscillator.

We can also see in Figure 4.5 that the resetting HF pulse-train stimulation can have
different impacts on the stimulated oscillators. If the stimulation is weak, it does not
significantly influence the frequency of the oscillator. For a stronger stimulation the
oscillators are quickly slowed down. Finally, the oscillators are completely blocked
where the frequencies vanish indicating that the stimulated oscillators are fully reset.
Another important property of such a stimulation is a heterogeneous impact of the
stimulus on the neuronal population due to decay of the stimulation strength. This
decay is given by function D(·, ·) from Eq. (4.2). We can see that different curves

76



CHAPTER 4. COORDINATED RESET STIMULATION

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

d=0
d=0.25
d=0.5
d=0.75
d=1

I

Fr
eq

ue
nc

y

σ=0.4, K=0.1, w
mean

=3.14, s
w

=0.02

frequency of the synchronized state

Figure 4.5: Impact of the permanent HF stimulation via a single contact, the aver-
aged frequencies of five oscillators vs. stimulation strength are shown. The legend
indicates the distances d between the placements of the corresponding oscillators
and the stimulation contact.

in Figure 4.5, which correspond to the different oscillators, are characterized by the
different critical values of I providing the full reset or start of the fast decay of the
averaged frequencies 〈θ̇j〉. The fastest resetting is demonstrated by the nearest to the
contact neuron corresponding to the black curve where position of neuron coincides
with the stimulating site. One can make conclusion that such a stimulation results
in the total reset of the whole population in the case of large I. Indeed, if I is
large enough, all neurons are suppressed and have zero averaged frequency. The
stimulation can theoretically lead to a partial desynchronization in the system since
all oscillators are stimulated with different strength, which results in the different
frequencies, i.e., in a partial desynchronization. As an example, it is possible to
consider the strength value I = 7.5, which is indicated in Figure 4.5 by dashed line.
It is evident that all shown oscillators have for this stimulation strength different
averaged frequencies and are thus desynchronized.

On the other hand, according to coordinated reset stimulation protocol, each stim-
ulating contact performs sequentially quite short of the length T/Nc high-frequency
stimulation. Therefore, the system behavior can be different from the above dyna-
mics considered under the permanent stimulation. Figure 4.5 cannot explain the
neuronal resetting in the case of moderate stimulation, e.g., in the interval of the
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frequency decay from the synchronized mode to zero, see the black curve for d = 0
and I = [1.75, 6.35]. To provide a necessary analysis, the cross-trial (CT) technique
can be useful. This method was discussed in detail in works [86,87]. This technique
allows to estimate how stereotypical the response of the oscillators on the stimulus
is. Here we give a short description of the CT technique and its application to our
problem.

The idea of the CT-analysis is to consider a large number (we use Ntrials = 1000)
of quite short stimuli to be analyzed in some specific manner. The series of the
mentioned stimuli is delivered at random times τ1, τ2, . . . , τNtrials . The length of the
time intervals between the stimuli is randomized according to

τk+1 = τk + w + ξk, (4.7)

where w is constant and large compared to the time scale of the system. ξk is
uniformly distributed in [0, 2π/ωmean]. We attach an identical time window [ta, tb]
to each stimulus. It is supposed that inequalities ta < 0 < tb and tb − ta < w hold.
The latter inequality guarantees the window length to be smaller than the length of
interstimulus interval. Each window has a time axis t′. Therefore, t′ ∈ [ta, tb] and
the onset of the stimulus in each window corresponds to t′ = 0. In what follows, we
drop the prime in t′ for the sake of simplicity. We can consider the time-dependent
distributions of the phase variables {θj (t+ τk)}k=1,...,Ntrials

.

The CT technique is utilized here for analysis of the behavior of the oscillator, which
placement coincides with the stimulating contact, i.e., xj = 5, j = 101. We take
ta = −10 and tb = 70. To quantify the extent of stimulus locking of phase θj for
each time t we use the first stimulus locking index λ(1)(t) [87].

λ(1)(t) =

∣∣∣∣∣∣ 1
Ntrials

Ntrials∑
k=1

exp [i θj (t+ τk)]
∣∣∣∣∣∣ . (4.8)

The main task of CT technique is to verify whether the response of the stimulated
oscillator on stimulation is stereotypical. This can be evaluated by considering the
large number of such "random" trials and estimating the response of the system on
the stimuli for a variety of initial conditions. As an approach to the above analysis
we use the stimulus locking index technique. Here, we base our analysis of the first
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Figure 4.6: Cross-trial analysis of the HF stimulation via a single contact. Stimu-
lation interval t ∈ [0, 0.5] and the number of trials Ntrials = 1000. (A) The first
stimulus locking index λ(1) of the phases of oscillator with xj = 5 (coincides with
the contact) for the different values of the stimulation strength I. (B)-(E) The cor-
responding phase distributions {θj(t+ τk)}k=1,...,Ntrials

at the moment t = 0.5 (end
of the stimulation) for four different stimulation strengths.

stimulus locking index λ(1)(t). The time courses of the index λ(1)(t) for different
values of the stimulation strength are shown in Figure 4.6(A). As we can see here, the
prestimulus interval t ∈ [−10, 0) is characterized by negligibly small values of the first
stimulus locking index λ(1) ∼ (Ntrials)−1/2. Indeed, these values correspond to the
uniform distribution of phases {θj(t+ τk)}k=1,...,Ntrials

, t < 0. After the stimulation
is switched on, we observe a fast increasing of λ(1) reaching its maximal value at the
end of stimulation of the length 0.5. This time interval corresponds to the length
of the active phase of a stimulation site in the case of CR stimulation administered
via four stimulation sites and the stimulation period T = 2. We note here that
the reached value of the stimulus locking index crucially depends on the stimulation
strength where the larger values of I imply the larger values of λ(1). Therefore,
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stronger stimulus results in more stereotypical response on the applied stimulation.

Subplots (B)-(E) in Figure 4.6 show distributions of phases after the end of stimu-
lation at t = 0.5 where the highest level of λ(1) is reached. We can see consecutive
transformation of the almost uniform distribution in the subplot (B) (λ(1) ≈ 0.185)
to the distribution with narrow peak in the subplot (E) (λ(1) ≈ 0.983). One can
note an interesting fact that after the end of stimulation we observe a process of
system relaxation where the limit value of λ(1) is prominently larger than its initial
value before stimulation. We present here a brief explanation of this phenomenon.
Before the stimulus the whole system is characterized by the random values of its
phases {θj (t+ τk)}k=1,...,Ntrials

, t < 0. Here, the phases are tightly locked, random-
ness is reached due to the random choise of τk, see Eq. (4.7). The stimulation affects
some subpopulation of oscillators according to the strength decay D(·, ·). Dynamics
of this neuronal subpopulation becomes stereotypical depending on the stimulation
strength, see Figure 4.6(B)-(E). Therefore, we can roughly say that after end of
stimulation we have two different subpopulations in the system. The first subpop-
ulation is unaffected by stimulation and has random phases. The second group
of neurons, which phases are determined, i.e., are distributed closely to π/2. As
the relaxation starts, the whole system resynchronizes to some intermediate state.
The values of θj(t) are not uniformly distributed on [0, 2π] due to non-zero size of
the second mentioned subpopulation. Therefore, the limit value of λ(1)(t) after the
relaxation is always larger than the values before the stimulation, i.e., those for
t < 0.

Summarizing our analysis of Figure 4.6, we obtain that short pulse-train stimulation
via a single stimulation site induces the reset of the neurons. Thus, the extent of
this reset depends on the strength I of applied stimulation. Since the impact of
the stimulus depends on the placement of the stimulated neuron, see Eqs. (4.2), the
extent of reset is different for the different neurons.

Now we illustrate the impact of coordinated reset stimulation on the Kuramoto
system of coupled phase oscillators. In Figure 4.7 three different states of the sys-
tem of coupled oscillators are shown. Without stimulation system can demonstrate
synchronized state for strong coupling (Figure 4.7(A)) or desynchronized state for
vanishing coupling (Figure 4.7(B)). The latter state could be a goal state for a desyn-
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Figure 4.7: Different states of the phase model (4.3). Upper subplots illustrate the
system states by points (xj, yj) = (cos θj, sin θj), j = 1, N on the unit circle where
{θj} are the phases of the oscillators. The normalized histograms of the phases
{θj} on interval [0, 2π) are shown on the lower subplots. (A) Synchronized state
of the system without stimulation, (B) desynchronized state in the system without
coupling. (C) 4-contact CR stimulation induces the 4-cluster state in a model (4.3) of
coupled phase oscillators where the stimulation parameters are I = 10 and σ = 0.4.

chronizing stimulation. Coordinated reset stimulation can induce in the stimulated
ensemble a so-called clustered state shown in Figure 4.7(C).

We have also shown in Figure 4.7 the corresponding values of order parameters
R1 and R4 calculated according to Eq. (2.3). Synchronized state is characterized
by large values of R1 and R4. A desynchronized state is characterized by small
values of R1 and R4. A four-cluster state is indicated by small R1 and large R4

values. We can conclude that CR stimulation indeed can lead to a clustered state
for some parameter values. In the following text the effect of such a stimulation
under parameter variation is studied in detail.
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4.1.3 Averaged state of the model under permanent CR sti-
mulation

In this subsection we will investigate the effect of coordinated reset stimulation for
different values of stimulation parameters. The main parameters to be varied are the
stimulus strength I and the distribution width σ of the stimulation strength. These
parameters were chosen due to the following reasons. Parameter σ characterizes a
decay rate of the current spread with the distance from the stimulating contact.
In what follows we will use for the parameter σ the term decay rate. Its values
strongly relate with electrochemical characteristics of the brain tissue, which are
neither exactly known nor controlable during the stimulation. Thus, we have to
be able to choose the appropriate stimulation for any value of the decay rate σ.
On the other hand, the stimulation strength is the most natural parameter of the
stimulation to be varried and which effect is quite easily to understand. Now we
will consider two-dimensional pictures in the plane (I, σ) allowing us to estimate the
stimulation effect.

The order parameter technique will be used to distinguish different types of the
stimulation induced states. For each fixed values of parameters (I, σ) we consider a
long permanent stimulation lasting for the time t ∈ [0, 800] = [0, 400T ]. We found
that during the stimulation system dynamics approaches a periodic trajectory. We
can see examples of such trajectory in Figure 4.8 where the exemplary dynamics
of two order parameters for different parameter values is shown. Dashed lines in
Figure 4.8 depict the end of periods of stimulation where all four stimulation contacts
sequentially administer their stimuli to the tissue.

Since the order parameters undergo quite strong oscillations, we consider R1,4 av-
eraged over time (actually, over one period of stimulation) in order to estimate
the effect of stimulation. The following Figure 4.9 describes the dependencies of
the averaged order parameters 〈R1〉 and 〈R4〉 on the stimulation parameters (I, σ)
where blue points correspond to the smaller values of 〈R1〉 and 〈R4〉, and red points
correspond to the larger values of the order parameters. We can see perfectly distin-
guishable orange island in the lower left corner on the picture for R4 corresponding
to the stimulation-induced four-cluster state. Indeed, in this region the values of

82



CHAPTER 4. COORDINATED RESET STIMULATION

〈R1〉 are small (dark blue) and 〈R4〉 is comparably large (orange).
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Figure 4.8: Oscillations of the order parameters R1 and R4 during 4-contact CR
stimulation. Parameter values are (A),(B) I = 10, σ = 0.4, providing clustered
state; (C),(D) I = 7, σ = 2, providing state, close to a desynchronized state.
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Figure 4.9: The averaged order parameters 〈R1,4〉 versus the stimulation strength
I and the decay rate σ. Depicted points are 1: I = 10, σ = 0.4, 2: I = 7, σ = 2.
Values of order parameters in point 1: R1 = 0.067, R4 = 0.578; 2: R1 = 0.245,
R4 = 0.167.

As we can see, the region of small values of 〈R1〉 has a band-like form leading to the
conclusion that for the small values of σ a large interval of admissible stimulation
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strength can be found. On the other hand, for large values of σ stimulation strength
should be small enough if we would like to prevent a suppression of oscillations.
Red regions in the right upper corners of both diagrams in Figure 4.9 correspond
to the suppressed oscillations caused by strong stimulation and large coefficient of
the decay rate σ. Indeed, oscillator phases {θj} do not perform full rotation on
the unit circle under the corresponding stimulations. Phases fluctuate near the
value θ = π/2 imposed by the stimulation protocol, see also Figure 4.6. Thus, CR
stimulation with these parameters mimics the effect of the HF stimulation since each
of Nc stimulating contacts administers reset of the entire neuronal population. This
results in large values of the averaged order parameters 〈R1〉 and 〈R4〉. Now we will
discuss two different states, which are characterized by small values of the averaged
order parameter 〈R1〉 corresponding to points 1, 2 in Figure 4.9.

Point 1: Coordinated reset stimulation with parameters I = 10 and σ = 0.4 leads to
a 4-cluster state. Indeed, this follows from the averaged values of order parameters
〈R1〉 = 0.067 and 〈R4〉 = 0.578 as well as from the normalized histogram of the
system phases shown in Figure 4.10(B) at the end of stimulation period, i.e., at
time t = nT , n ∈ Z. There are four prominent peaks in this histogram showing the
phase clusters in the model. An interesting fact is the presence of a "gap" in the
phase distribution around the point θ = π/2. The same effect will be present also
for the second parameter point under consideration and will be explained later.

In Figure 4.10(A) the time courses of the order parameters R1 and R4 are shown for
the case of the above stimulation parameters indicated by point 1 in Figure 4.9. In
Figure 4.10(A) we can see a synchronization process to the stable synchronized state
for t ∈ [0, 100] where R1 and R4 approach large values. Switching the stimulation on
at the moment t = 200 induces system clusterization where R1 decays almost to zero
and R4 oscillates in interval≈ [0.48, 0.61]. The enlarged pictures of these oscillations
are shown in Figure 4.8(A),(B). After the switching the stimulation off at time t =
600 we observe a transient process, which can be roughly subdivided into two phases.
The first phase lasting approximately to the time moment t = 640 is characterized
by the fast decay of the R4-value, and the system approaches a desynchronized
state with small values of both order parameters R1,4. After this period we observe
the second phase of resynchronization where the order parameters increase to their
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Figure 4.10: (A) Time courses of the order parameters of R1 and R4 under CR
stimulation for I = 10, σ = 0.4 and the stimulation interval [tbegin, tend] = [200, 600];
(B) 4-cluster phase distribution at the end of the stimulation period.

limit values of the fully synchronized state (time interval [640, 700]). More detailed
analysis of the post-stimulus transient and its properties will be given in the following
subsections. The precise technique of the estimation of a desynchronization in the
system, so-called Kuiper index, will be also applied to analyze the transient process
in our model (4.3).

Point 2: The stimulation with parameters I = 7 and σ = 2 does not induce a
clustered state, as we have observed in the previous case. This stimulation results in
a system state characterized by values of the averaged order parameters 〈R1〉 = 0.245
and 〈R4〉 = 0.167.

As we can see in Figure 4.11, such stimulation parameters give rise to much larger
amplitude of the oscillation of R1 in comparison with the previous case illustrated
in Figure 4.10. The enlarged diagrams for the order parameters for I = 7 and σ = 2
are shown in Figure 4.8(C),(D). As one can conclude from Figure 4.11(B), such
stimulation parameters imply a system state similar to the desynchronized state,
but with a gap in phase distribution around the value θ = π/2. Now we will give
the explanation of this fact (the similar phenomenon was mentioned for the previous
point 1).

In Figure 4.12 a snapshot of the phases of all oscillators is shown.
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Figure 4.11: (A) Time courses of the order parameters R1 and R4 under CR sti-
mulation for I = 7, σ = 2 and the stimulation interval [tbegin, tend] = [200, 600].
(B) Distribution of the system phases (after the whole stimulation cycle), close to a
desynchronized state.
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Figure 4.12: Phases of oscillators corresponding to the diagram Figure 4.11(B) versus
the number of oscillators at the end of the completed stimulation cycle.

The time moment of the snapshot matches exactly the end of one cycle of CR
stimulation. This means that the last stimulating contact was contact 4 coinciding
with the oscillator 176, what results in a horizontal "shelf" on this curve for j ∈
[150, 200] corresponding to the subpopulation around this contact. The gap in the
phase distribution in Figure 4.11(B) corresponds to the absence of points in the
band y ∈ [0.2, 2.2] in Figure 4.12. Excepting this interval, all phases demonstrate a
continuous curve, which appears due to the comparably large value of σ = 2. Under
this condition each stimulating contact affects neighboring oscillators, attracting
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them to the same phase value, see Figure 4.6(B)-(E). This results in such continuous
structure of the phase snapshot. On the other hand, the impact of the stimulating
contacts 1 and 4 is different from that of the contacts 2 and 3 placed in the inner
part of the neuronal ensemble. The former contacts may affect oscillators, which
are only on one side of the subpopulations surrounding the corresponding contact.
The 2nd and 3rd contacts affect neurons, which are situated on both sides of the
corresponding subpopulations. In other words, there is no impact of the 4th contact
on the oscillators surrounding the 1st contact and vice versa. Thus, if we consider
again Figure 4.12, the activity of the 4th contact is not able to decrease the gap in
the phase values of oscillators from the 1st and 4th subpopulations.

It is supposed by CR stimulation protocol (4.4) that neurons are affected by the
stimulation administered via the nearest contact on time interval of length T/4
during each stimulation period of length T . Therefore, in the case of the small σ all
neurons oscillate without external impact on the time interval of length 3T/4. Here,
the length 3T/4 corresponds to the entire stimulation cycle without activity of the
nearest stimulating contact. For example, the oscillators 1− 50 cannot perform the
whole rotation over the unit circle, which takes time T , during the time interval of
length 3T/4. Furthermore, for large values of σ the dynamics of these oscillators
is slowed down by the activity of the 2nd and 3rd stimulating contacts. Therefore,
these reasons result in a gap in the distribution of the neuronal phases, which is
revealed by histograms in Figures 4.10 and 4.11.

4.1.4 Post-stimulus transient dynamics

In this section we study the behavior of a model (4.3) analyzing transient dynamics
of the system after switching the stimulus off. In the stimulation-free regime the
ensemble returns back to its synchronized state. Understanding the transient dyna-
mics is important due to the practical aspects of the coordinated reset stimulation
technique since this stimulation is usually used with periodic rest intervals. This
question will be considered in more detail in the next subsection 4.1.6. Such rest
intervals allow to decrease the total duration of the stimulation resulting in a milder
stimulation technique. We are looking for a longer transient time from the state ob-
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tained as a result of stimulation. Such parameter values of the longest transient after
the stimulation belong to a set of optimal parameter values, which we investigate in
this subsection. Another important question to be studied here is the dynamics of
our system during and after the stimulation if the stimulation is stopped before CR
stimulation cycle is completed, i.e., at some earlier time moment than the standard
protocol.

First of all, we introduce the notion of transient time of the system.
Definition: Transient time (or, shortly, transient) ttr for model (4.3) is the time
after the end of stimulation tend, which it takes for the first order parameter R1(t)
to reach some predefined threshold Ltr. If R1 (tend) is already larger than Ltr, then
ttr is set to zero.

Therefore, the following equality holds in the case where post-stimulus value of R1

is smaller than the threshold value Ltr:

R1(tend + ttr) = Ltr,
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Figure 4.13: Illustration of the transient after switching the stimulation off. Dashed
line depicts threshold of resynchronization Ltr. Different curves correspond to three
different sets of natural frequencies. Stimulation parameters are tend = 600, Nc = 4,
I = 10 and σ = 0.4.

We illustrate the conception of the transient time in Figure 4.13 where the time
courses of the first order parameter R1(t) are shown after the end of stimulation
for three different sets of natural frequencies {ωj}Nj=1. The distributions of these
frequencies are the same with the mean ωmean = π and the standard deviation 0.02.
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Dashed line shows the resynchronization threshold Ltr = 0.9, which will be used also
in all further calculations. Note, the value of R1 in the synchronized state without
stimulation depends on the natural frequencies and the coupling strength, and its
values are around 0.98. As we can see, during the stimulation t ∈ (590, 600) is
shown in Figure 4.13 the oscillations of R1 are almost the same for the different
sets of natural frequencies. However, the transient times demonstrate significant
differences. For example, for the red curve ttr ≈ 74, for the black curve ttr ≈ 92,
and for the blue curve ttr ≈ 114.

In all further considerations of the transient time we will use the averaging tech-
nique. In order to determine the transient after the stimulation is switched off the
large number of different sets of natural frequencies {ωj}Nj=1 will be taken and the
obtained transient times are averaged afterwards. We demonstrate this method in
the following Figure 4.14 where the transients for different time moments of the
stimulation break are shown.
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Figure 4.14: Transient time versus the moment of stimulation break (T = 2 is one
stimulation period). Black points depict transients for single sets of the natural
frequencies. The red curve shows averaging over 100 different sets. The blue curves
correspond to the averaged value ± standard deviation. Horizontal axis indicates the
time of the stimulation break minus time of the standard end of CR stimulation.
Due to the periodic dynamics of the model (4.3) points −2 and 0 are identical.
These two points correspond to the standard end of the stimulation. Stimulation
parameters are Nc = 4, I = 10 and σ = 0.4.

We investigate stimulation cycle in order to find the optimal time to break the

89



CHAPTER 4. COORDINATED RESET STIMULATION

stimulation from the point of view of longer averaged transient. We perform a large
number of usual completed cycles of CR stimulation, but the last stimulation cycle
can be truncated in some desirable time moment. Therefore, we investigate how
the transient time dependes on the moment of time break. Thus, the time interval
of length T = 2 is studied. The values on the horizontal axis in Figures 4.14 and
4.15 equal the differences between the break time and the moment of the standard
end of CR cycle. Therefore, we obtain an interval [−2, 0] where points −2 and 0
correspond to the standard CR stimulation end. We should mention some specific
features of the diagram shown in Figure 4.14. The spread of the different transient
values is relatively large especially near the point of maximum value of the averaged
curve shown by red color, t ∈ [−1.75, −1]. This interval corresponds to the following
segment [T/8, T/2] in terms of the stimulation period. On the other hand, we can see
a prominent maximal and minimal value of the averaged transient line tmax = −1.475
(or ≈ 0.26T ) where the averaged transient equals ≈ 97, and tmin = −0.3 (or 0.15T )
with transient time ≈ 60, whereas the result for the usual end of stimulation is
ttr ≈ 79.

In the following figures we will compare transients for two different points (I, σ)
of the stimulation parameters at the points 1, 2 considered above, see Figure 4.9.
The objects of the consideration will also be two order parameters, R1 and R4. We
would like to link together the internal dynamics and state of the system, which are
determined by the order parameters and transient time ttr after the stimulation is
switched off.

The left part of Figure 4.15 corresponds to the stimulation parameters I = 10 and
σ = 0.4 providing a clustered state. The right part of Figure 4.15 corresponds to
the parameters I = 7 and σ = 2 implying a state, close to a desynchronized one
(see previous subsection 4.1.3). We should mention here that the optimal stimu-
lation break in the sense of the longest transient is close to T/4 for the clustered
state. On the other hand, for the second (desynchronized) state this optimal time is
≈ 0.41T . Therefore, for different parameters of stimulation (I, σ) the optimal time
of stimulation break can also be different, a detailed picture will be shown later. An-
other characteristic property of the transient, as we can conclude from Figure 4.15,
is a strong relationship between the minimal value of the first order parameter R1
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Figure 4.15: Averaged transient time (C) and the order parameters R1,4 (A,B) during
one stimulation period of the length T = 2. Parameters of the stimulation: 1: I = 10
and σ = 0.4; 2: I = 7 and σ = 2. Averaging was taken over 100 frequency sets.

and the optimal (maximal) transient time. Thus, for point 1 the minimal value of
R1 is reached at t = −1.475 and it coincides with the optimal point for transient.
Analogously, for point 2 the minimal value of R1 is reached at t = −1.125 and the
optimal moment for transient is t = −1.175. This property is observed for almost
all parameters of the stimulation. Another important feature is that the optimal
transients for these two points are almost equal, but for the clustered state (point
1) this maximum is not singular where the other breaks of the stimulation demon-
strate a relatively long transient. On the other hand, for point 2 there is one narrow
peak for the transient, and all other values are very small. For example, the whole
diagram for the transient in the clustered case shown in Figure 4.15(C1) lies over
the level of ttr = 60. The transient time for the second parameter set shown in
Figure 4.15(C2) overcomes this level only in a small region for t ∈ [−1.33,−1.03].

In Figure 4.16 we can see how the maximal averaged transient time depends on
the stimulation parameters. To build these pictures, the large number Nset = 40 of
different sets of natural frequencies with the same distribution density was taken,
and for each frequency vector the transient time is calculated versus the time moment
of the stimulation break. Thus, we obtain functions of transient time

F
(i)
(I, σ)(t) = ttr, t ∈ [−2, 0],
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Figure 4.16: (A) Maximal averaged transient time Fmax(I, σ) versus stimulation
parameters (I, σ), see Eq. (4.9). (B) Points of optimal stimulation break as part of
the stimulation period topt(I, σ) vs. (I, σ), see Eq. (4.10). Points 1, 2 correspond to
those in Figure 4.9. Number of stimulating contacts Nc = 4, period of stimulation
T = 2.

where index i denotes the number of the set of the natural frequencies in the
model (4.3). I is the stimulation strength and σ is the coefficient of decay rate.
Variable t corresponds to that from Figure 4.14 and equals the difference between
the time moment of the stimulation break and the standard end of CR stimulation,
see also Figure 4.15. Afterwards the averaging over all sets of frequencies was done.

F(I, σ)(t) = 1
Nset

Nset∑
i=1

F
(i)
(I, σ)(t),

For each point (I, σ) we find the maximal value Fmax(I, σ) of the averaged function
F(I, σ)(t) on interval t ∈ [−2, 0], which is reached in the point t∗(I, σ) ∈ [−2, 0].

Fmax(I, σ) = max
t∈[−2, 0]

F(I, σ)(t) = F(I, σ)(t∗(I, σ)). (4.9)

topt(I, σ) = (t∗(I, σ) − (−2))/2. (4.10)

The function Fmax(I, σ) is shown in Figure 4.16(A). The time moments of the op-
timal stimulation break, resulting in the maximal transient, are defined by values
t∗(I, σ) ∈ [−2, 0]. Since the stimulation period is T = 2, the relative time, i.e., the
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part of period where the stimulation is switched on, of the optimal stimulation break
is given by Eq. (4.10), topt(I, σ) ∈ [0, 1].

One can see that region of the maximal transients (dark red) mostly corresponds
to the parameters (I, σ) providing strongly clustered state (see Figure 4.9). On
the other hand, there is a region in Figure 4.16(A) where the maximal transient is
large, but the corresponding post-stimulus system state is far from being clustered
as compared to the system state at point 1. Point 2 belongs exactly to this region
where the post-stimulus system state is characterized by the small values of the
order parameter R1 as well as the small values of the order parameter R4.

The diagram in Figure 4.16(B) also reflects the fact that the optimal time breaks
for our points 1, 2 are different. The point 1 lies in the blue region of picture
(B) corresponding to the stimulus break close to 0.25T , whereas 2 belongs to the
domain, which can be roughly characterized as having optimal break, close to 0.5T .
In addition, in order to obtain the maximal transient at the parameter point 2 one
has to precisely hit an optimal time of the stimulation break, see also Figure 4.15.
This indicates a greater sensitivity of CR stimulation to the perturbations at point 2
as compared to the parameter values at point 1. We should keep in mind that under
the real application of CR the value of the decay rate σ is fixed. This corresponds to a
horizontal slice in Figure 4.16. Therefore, it is possible to find an optimal value of the
stimulation strength I and the time stimulation break, see Figure 4.16(B), providing
an effective stimulation with long post-stimulus transient. This corresponds to red
and dark red regions in Figure 4.16(A).

The following Figure 4.17 demonstrates the values of the order parameters R1 and
R4 at the moment of the optimal interruption of the stimulation t∗(I, σ), i.e., exactly
at the time, which is shown in Figure 4.16(B).

As mentioned above, the most important information, which we can extract from
Figure 4.17, is the fact that points 1, 2 are characterized by the similar values of
the first order parameter R1 at the moment of stimulus break, whereas the corre-
sponding values of R4 are different. This observation also confirms the fact that
the maximal transient time is closely related to the minimal value of R1, which
can be achieved during the stimulation. The second conclusion following from Fig-
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Figure 4.17: The order parameters (A) R1 and (B) R4 at the moment of the optimal
break of CR stimulation t∗(I, σ) (see Figure 4.16(B)).

ure 4.17(A) concerns the values R1 > 0.9, which are shown by dark red. For these
parameter values transient time is equal to zero and any analysis of the optimal
stimulation break with resynchronization threshold Ltr = 0.9 cannot be applied.

Now we will compare already obtained results concerning the optimal break of the
stimulation with results obtained by applying the standard full cycle of CR stimula-
tion. In terms of Figure 4.15 this means that it is necessary to compare the maximal
value of the corresponding curve with the values at points 0, −2. These two points
are equivalent due to periodicity of the system and stimulation and correspond to
the standard protocol of CR stimulation.

The transient time ttr versus stimulation parameters (I, σ) is shown in Figure 4.18.
The scale is the same as in the previous Figure 4.16(A). There are several specific
differences between this diagram in Figure 4.18 and the corresponding diagram for
the case of the maximal transient shown in Figure 4.16(A). First of all, the value
in each point (I, σ) in the case of the standard CR stimulation is smaller than in
the maximal case. This is an expected result since some fixed value from the set
cannot be larger, than maximal one. The most fascinating feature of the diagram
in Figure 4.18 is as follows. As we can see in Figures 4.16 and 4.18, large values in
Figure 4.18 (orange points) approximately correspond to the clustered state of our

94



CHAPTER 4. COORDINATED RESET STIMULATION

I

σ

 

 

0 5 10 15 20 25 30

0.5

1

1.5

2

2.5

3

3.5

4

0

20

40

60

80

100

1

2

Figure 4.18: Transient time after normal end of CR stimulation where the whole
cycle of the stimulation is administered versus stimulation parameters (I, σ).

model, see Figure 4.9. On the other hand, for the case of the optimal stimulation
break the same results can be obtained not only in the clustered state, but also
for some parameter regions leading to desynchronized state. For the stimulation
parameters corresponding to the points 1, 2, we will see that in the clustered state
1 the difference in transient between the usual and optimal cases is not significant.
On the other hand, for the parameters in point 2 the question of the optimal choice
of the interruption moment becomes more important.

In order to understand the phenomenon of system desynchronization after the sti-
mulation, we perform the analysis of the system state during its course to the syn-
chronized state. It is well known (see [88]) that, on its way from the clustered state,
system undergoes a desynchronization (utilizing the slaving principle [29]). After-
wards a resynchronization starts, which is characterized by increasing of all order
parameters (R1...4). The estimation of the desynchronization measure of the system
phases will be given below.

The measure of desynchronization is so-called Kuiper index. It was suggested to use
for the system of coupled oscillators in the work [88]. This index is the statistical
measure taking its values in interval [0, 1], showing us how close phase distribution
is to a fully desynchronized state. The value of Kuiper index 1.0 corresponds to the
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state characterized by phases uniformly distributed on interval [0, 2π), whereas the
zero value of Kuiper index indicates the state, which is far from being uniformly
distributed on [0, 2π].

Kuiper index Here we present an algorithm of numerical calculation of the Kuiper
index. The details can be found in work [88]. The Kuiper test is a modification of
the standard Kolmogorov-Smirnov test (KS test) for the case of the circular data.
We briefly present the algorithm of the calculation of the Kolmogorov-Smirnov (KS)
index.

Suppose, we have data sample of length l: θ1, . . . , θl ∈ [0, 1]. Let us denote by
G(θ) the cumulative distribution function corresponding to the sample {θj}. Then
we can write the maximal distance between two cumulative distribution functions:
empiric function G(θ) and the function, which is given by the uniform distribution
P (θ) = θ.

D = max
0≤θ≤1

|G(θ)− θ| ,

and the probability to reject the true hypothesis about the uniform distribution of
{θj} reads

PKS(d) = 2
∞∑
j=1

(−1)j−1 exp
(
−2j2d2

)
,

d = D ·

√ l

2 + 0.12 + 0.11
√

2
l

 .
In order to perform the Kuiper test we have to use the following value V instead of
D

V = D+ +D− where

D+ = max
0≤θ≤1

(G(θ)− θ), D− = max
0≤θ≤1

(θ −G(θ)),

Now we will analyze the evolution of the Kuiper index (KI) after the switching
stimulation off. In Figure 4.19 the different time courses of the KI are shown for
the different sets of the natural frequencies {ωi} for parameters I = 10 and σ = 0.4
given by point 1 in Figure 4.16. The stimulus break is chosen to be optimal, see
Figure 4.15.
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Figure 4.19: Examples of time courses of Kuiper index (50 trials). Zero corresponds
to the begin of the post-stimulus transient. Stimulation parameters are I = 10,
σ = 0.4 and tbreak = 0.525 after the last entire cycle of CR stimulation.

The main conclusion following from Figure 4.19 is a significant dependence of the
Kuiper index on the set of the natural frequencies. Therefore, to perform any
further analysis, it will be necessary to make an averaging over a large number of
frequency vectors. In what follows we will take 100 trials. We can also see that each
trial demonstrates increasing from value close to zero imposed by the stimulation
protocol and afterwards Kuiper index decays indicating the resynchronization.

The next Figure 4.20 reveals the averaged over 100 trials evolutions of the Kuiper
index for the parameter set given by point 1 providing the prominent 4-cluster
state during the stimulation. We consider three cases of stimulation the break.
The first case is the optimal break with the longest transient time, the second case
corresponds to the usual end of CR stimulation and the third case is the break,
which is characterized by the shortest transient.

The structure of all curves in Figure 4.20 is the same. There exists one prominent
peak with further decay of the index to zero. We can see that the optimal choice of
the stimulus break allows us to achieve much better desynchronization during the
post-stimulus transient.

In order to compare effects of the stimulation for the different values of parameters,
we consider similar pictures for point 2 for parameters I = 7 and σ = 2. Analo-
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Figure 4.20: The averaged over 100 trials Kuiper indices for three different cases
of the stimulation break. The red curve depicts the optimal stimulation break,
the black curve corresponds to the usual end of stimulation (the entire cycle of
CR stimulation) and the green curve depicts the worst from the point of view of
transient break. (A) Linear scales for both axes, (B) linear scale for the horizontal
axis and logarithmic scale for the vertical axis. Stimulation parameters are I = 10
and σ = 0.4 implying clustered state.

gously, we consider the time course of the averaged Kuiper indices for the optimal
stimulation break and for the usual one.

In Figure 4.21 one can see that the optimal stimulation break implies much better
(larger) maximum value of the Kuiper index than the usual end of CR stimulation.
Comparing Figure 4.21 with the previous Figure 4.20 we can see that clusterizing
stimulation provides much better approach to the desynchronized state during the
post-stimulus transient. Indeed, the maximal value of the averaged KI achieved
after the optimal break of the stimulation with parameters I = 10 and σ = 0.4,
i.e., implying a clustered state, is 0.242. On the other hand, the maximal value of
KI reached after the optimal stimulation break for the case of I = 7 and σ = 2 is
only 0.052. Therefore, we can conclude that CR stimulation imposing a clustered
state is better from the point of view of post-stimulus desynchronization than CR
stimulation leading to the state close to desynchronized. We should also mention
that for the clustered state the ratio of maximal value of KI for the optimal break
to the usual one is approximately 6.5, whereas for the second stimulation this ratio
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Figure 4.21: Averaged over 100 trials Kuiper indices for two different cases of
stimulation break. The red curve depicts the optimal case and the black curve
depicts the case of the usual end of stimulation (the entire CR cycle). (A) Diagram
with linear scales, (B) linear scale for the horizontal axis and logarithmic scale for the
vertical axis. Stimulation parameters are I = 7 and σ = 2 implying desynchronized
state.

has order of 10−8. We can again conclude that in the case of clusterizing stimulation
the difference between the optimal and usual break of stimulation is much smaller,
than in the case of stimulation imposing state close to desynchronized (point 2).

We have considered in subsections 4.1.3 and 4.1.4 CR stimulation effects for the
stimulation period T , which is equal to the natural period of the system of phase
oscillators (4.3). In the following subsection 4.1.5 we study CR stimulation where
the detuning between the natural system frequency and stimulation frequency is
present.

4.1.5 Effect of frequency mismatch on CR stimulation

We investigate how robust the effect of CR stimulation is with respect to the detun-
ing between the natural mean frequency of the system and the frequency of the CR
stimulation. This question is very important from the practical point of view since
the small difference between the frequency of the brain LFP and the stimulation fre-
quency can exist, e.g., due to the small fluctuations of the LFP frequency. Another
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aspect of the varying CR period is the following: if several different frequency peaks
are present in the spectrum of the system, then it is necessary to understand the
behavior of the model in the situation where the frequency detuning is large. This
case we will study under the following restriction. We suppose that the stimulation
period is a multiple of the internal period of the model (4.3).

The case of small detuning between the frequencies of the system and
stimulation. Here we consider the case where the periods of the system and ex-
ternal stimulation do not differ too much. In the following Figure 4.22 we can see
the averaged order parameters for the system under the stimulation with parameters
I = 10 and σ = 0.4, see point 1 in Figure 4.9. The period of the ensemble is fixed
to 2.
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Figure 4.22: The averaged values of the order parameters R1, . . . , R4 versus period
of CR stimulation. Other parameters of stimulation are Nc = 4, I = 10 and σ = 0.4.

As follows from Figure 4.22, the minimal value of the averaged first order parameter
〈R1〉 is imposed by CR stimulation with period T , which coincides with the period
of natural oscillations of the model. The natural period of the model equals 2.0 and
is shown in Figure 4.22 by a vertical dashed line. As it has been already shown
in Figure 4.9 in subsection 4.1.3, the mentioned stimulation parameters I = 10
and σ = 0.4 imply a 4-cluster state for the stimulation period T = 2. Thus, in
Figure 4.22 we can see a prominent peak of 〈R4〉 and small values of the averaged
order parameters 〈R1〉, 〈R2〉 and 〈R3〉 in vicinity of the point T = 2.
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If some detuning is present, then the averaged value of 〈R1〉 increases. The inter-
esting phenomenon is that CR stimulation with T < 2 implies larger values of 〈R1〉
than the stimulation with T ∈ (2, 3). This fact can be explained as follows. If the
stimulation period T < 2, then the neuronal subpopulations, which are reset by
the different contacts, do not have enough time during their unaffected dynamics of
length 3T/4 to unwrap the phases over the entire unit circle. On the other hand, the
stimulation period T > 2 allows the phases to unwrap on the unit circle. To estimate
under which detuning CR stimulation is still effective, we introduce some critical
value of the averaged order parameter 〈R1〉, which is not allowed to be crossed. We
use the value 〈R1〉 = 0.5 according to the work [85]. This value of 〈R1〉 = 0.5 is
depicted in Figure 4.22 by a dotted horizontal line. We can conclude that even in the
case of relatively large period mismatch, which can reach up to 20% of the natural
period of the model (4.3), the averaged order parameter 〈R1〉 is smaller than the
predefined critical value. CR stimulation protocol is thus quite robust to the small
changes of its period.

We should however mention that the change of the stimulation period T could
induce changes in the stimulation impact on the neuronal ensemble. As we can see
in Figure 4.22 for T = 2 a prominent 4-cluster state is induced, which is characterized
by large value of 〈R4〉 and small values of the averaged order parameters 〈R1〉, 〈R2〉
and 〈R3〉, see also Figure 4.10. Figure 4.22 reveals that values of the stimulation
period T larger than 2.0 can induce a desynchronized state where the averaged
values of the order parameters 〈R1〉, . . . , 〈R4〉 are small. This parameter region is
depicted in Figure 4.22 by an arrow "Desynchronization". In the next Figure 4.23(A)
we illustrate the behavior of the order parameters for the value of T = 2.33.

In order to illustrate the desynchronized behavior during such a stimulation, we
plot in Figure 4.24 the time course of the Kuiper index for two CR stimulations
with the different periods T (scale on vertical axis is logarithmic). The blue curve
corresponds to the case T = 2.33. It is evident that the values of the Kuiper index
for such stimulation are much larger than in the usual case of T = 2 shown by the
red curve. We can also see that the oscillations of the blue curve are not so regular,
as in the case of the standard period T = 2 of CR stimulation.

Summarizing our results, we can conclude that CR stimulation has a robust effect
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Figure 4.23: Coordinated reset stimulation with T = 2.33. (A) Time course of
the order parameters R1 and R4. (B) Normalized histogram of phases for the time
moment t = 500. Stimulation interval is [tbegin, tend] = [200, 1200].
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Figure 4.24: Time courses of the Kuiper indices during CR stimulations with the
different stimulation periods. The blue curve correspons to T = 2.33, the red curve
corresponds to T = 2. Stimulation parameters are I = 10 and σ = 0.4.

on the suppression of the first order parameter R1. Furthermore, increasing of
the stimulation period is characterized by a stronger suppression of R1 than the
corresponding decreasing of T . The second interesting phenomenon is that the
changes of T can induce different states in the stimulated neuronal ensemble. We can
observe clustered and desynchronized states for the same values of the stimulation
strength I and the decay rate σ.
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Large frequency detuning: the case of resonant relations between the
natural and stimulation frequencies. Here we consider the situations where
the stimulation period is equal to some multiple of the natural period, i.e., the period
of the stimulated neuronal ensemble.

T = kp · 2π/ωmean, (4.11)

where kp ∈ N and ωmean is the mean value of the natural frequencies {ωj}.

In the simplest case where the periods of the system and stimulation are equal
(T = 2π/ωmean), we have an ideal situation of the clustered state provided the ap-
propriate choice of other stimulation parameters, such as the stimulation strength
I and the decay coefficient σ. The number of clusters equals the number of stim-
ulating contacts Nc. It is possible to say that at some moment of time the system
phases {θj} are located around the following points on the unit circle ϕi = 2πi/Nc,
i = 1, Nc, giving us a perfect Nc-cluster state.

The situation becomes much more complicated if we have the stimulation period,
which is some multiple of the natural period of our model, i.e., kp ≥ 2 in the
expression (4.11). Now we can assert that the corresponding points on the unit
circle are ϕi = 2πkpi/Nc, i = 1, Nc. Therefore, it is possible for such stimulation
that some of these Nc points coincide.

There exist i1 and i2 ∈ [1, Nc] : 2πkpi1/Nc ≡ 2πkpi2/Nc (mod. 2π) ,

or, simplifying this expression,

there exist i1 and i2 ∈ [1, Nc] : kp (i1 − i2) ≡ 0 (mod. Nc) . (4.12)

The necessary condition for statement (4.12) is the following: (kp, Nc) > 1. The
braces here denote the greatest common divisor, i.e., the largest integer number,
which is a common divisor of two integer numbers in braces. This condition means
that numbers kp and Nc are not coprimes. The number of different points ϕi, i.e.,
the number of clusters under CR stimulation, equals

Nclusters = Nc

(Nc, kp)
. (4.13)
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One can see that formula (4.13) also holds for the case of the standard stimulation,
i.e., kp = 1 implies Nclusters = Nc. If kp and Nc are coprimes expression (4.13) also
holds, i.e., (Nc, kp) = 1 implies Nclusters = Nc. The important corollary from (4.13)
is the following, if kp = Nc, then the denominator of the ratio is equal to Nc and
the result value Nclusters = 1. This means that such CR stimulation does not have
clusterizing effect and implies synchronization.

Now we will demonstrate the above effects by the simulations of our model (4.3)
with the following periods of stimulation T = 4 (kp = 2), T = 6 (kp = 3) and T = 8
(kp = 4) in Figure 4.25. Note that the natural period of the stimulated ensemble
is 2. The diagram (A) in Figure 4.25 corresponds to the stimulation period T = 4
providing the evident 2-cluster state, which we can conclude from the histogram as
well as from the analysis of the averaged order parameters. Indeed, the largest order
parameter is R2, values of R1 and R3 are small, the value of R4 is comparably large.

The plots (B) and (C) in Figure 4.25 are built for the fixed number of HF-pulses
Np = 10 in the pulse train for each stimulating contact, see formula (4.4), p. 73,
instead of using the total "filling" of the time interval, corresponding to the contact,
by the pulses, which is given by (4.5). The case of Np = 10 pulses corresponds to
the stimulations with T = 2, Nc = 4. This number Np = 10 of HF pulse is sufficient
to perform the reset of the subpopulation of oscillators.

In Figure 4.25(B) we can see the result of CR stimulation with T = 6. This state
is close to the 4-cluster as indicated by the values of the order parameters where
R4 is large and the values of the other considered order parameters are small. The
plot (C) reveals a 1-cluster (fully synchronized) state, which is obtained under CR
stimulation with T = 8.

We can conclude that CR stimulation with the stimulation period being a multiple
of the natural period of the stimulated system induces a clusterization in the system.
The number of the stimulation-induced clusters can range from 1 cluster correspond-
ing to the stimulation-induced synchronization up to the number of stimulating sites
Nc clusters.
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Figure 4.25: Normalized histograms for the system phases on interval [0, 2π) for
the following values of the stimulation period. (A) T = 4, 2-cluster state, the av-
eraged values of the order parameters during the stimulation are (R1, R2, R3, R4) =
(0.11, 0.72, 0.23, 0.33). (B) T = 6, state, close to the 4-cluster one, the averaged
values of Ri during the stimulation are (R1, R2, R3, R4) = (0.16, 0.15, 0.17, 0.44).
(C) T = 8, 1-cluster (synchronized) state, the averaged values of Ri are
(R1, R2, R3, R4) = (0.99, 0.98, 0.95, 0.90).

4.1.6 On-Off stimulation

In this subsection we investigate the dynamics of the Kuramoto system of phase
oscillators (4.3) with one specific type of CR stimulation corresponding to the real
application of this novel stimulation technique to deep brain stimulation. Thus, we
study CR stimulation protocol including pauses between series of stimulation cycles.
The presence of pauses in the stimulation protocol allows to decrease the impact of
the administered stimulation on the brain tissue. This technique also utilizes the
slaving principle, see also [29], where the system after the stimulation is switched
off approaches a desynchronized state before resynchronization starts. We will use
the term "on-off CR stimulation" for this intermittent technique. Below we give the
definition of this stimulation protocol.

Definition: m : n on-off or intermittent CR stimulation protocol defines periodic
stimulation with period (m + n)T . Consider one period of the mentioned length,
the first part of the period with length Tactive = mT determines the interval where
the standard CR stimulation with period T is applied. The second part of period
with length Trest = nT gives the interval without stimulation.
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Thus, m : n on-off stimulation protocol implies the intermittent intervals of length
mT where CR stimulation with period T is applied and rest intervals of length nT
without stimulation. In what follows, we will use the value of T = 2π/ωmean = 2, i.e.,
equal to the natural period of the system. In the above definition the numbersm and
n can be positive real numbers. The main goal of this study is to consider dependence
of the m : n on-off stimulation effect on the numbers m and n. The notion of effect
of such a stimulation is based on the values of the first order parameter and will
be explained in detail later. In order to investigate the impact of the lengths of
stimulation and rest intervals, which are given by m and n, we fix other parameters
of CR stimulation. For further simulations we will use the values of the stimulation
strength I and the decay rate σ corresponding to the point 1 from Figure 4.9 with
I = 10 and σ = 0.4. This parameter values imply strong clusterization in our model
under CR stimulation, which has been analyzed above.

The following Figure 4.26 demonstrates exemplary functions of the contact activities
in the case of 4-contact 3.5 : 1.5 stimulation. Functions, corresponding to different
contacts, i.e., Indi(t), i = 1, 4, see Eqs. (4.3), (4.4), are shown by different colors.
The length of the complete cycle of the intermittent CR stimulation is (3.5+1.5)·2 =
10 where the rest interval has duration 1.5 ·2 = 3. As it is shown in Figure 4.26, the
active intervals are [0, 7] and [10, 17] and the rest intervals are [7, 10] and [17, 20].
The diagram also demonstrates the important property of the on-off stimulation if
m is not integer. We can see that the last cycle of CR stimulations between dotted
and dashed lines is incomplete since its length is smaller than one period of CR
stimulation. In this way the investigation performed in the previous subsection 4.1.4
devoted to the optimal stimulation break is also useful for the case of the on-off
stimulation.

We divide the investigation of the m : n on-off CR stimulation into the following
steps: first of all, the on-off stimulation with the integer values of m and n will
be considered; afterwards, we investigate the behavior of the system in the case of
integer m and real n, and only after that the most complicated case of both real m
and n can be studied.

We briefly introduce the criterion of the quality of the on-off stimulation based on
the values of the order parameter R1. We consider typical time courses of R1, which
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Figure 4.26: Schematic example of the stimulation signals for the 4-contact on-off
3.5 : 1.5 CR stimulation protocol. Brown dashed lines separate the stimulation and
rest intervals.

are shown in Figure 4.27 for the on-off 2 : 3 and 2.5 : 3 stimulations. In the case
of 2 : 3 stimulation its period 5T is a multiple of the natural system period T .
Then the dynamics of R1 is periodic with period 5T , see Figure 4.27(A). The order
parameter R1 reaches its maximal value at the end of each rest period, which are
marked by the red circles. Due to periodicity all these values are the same. In the
case of 2.5 : 3 stimulation dynamics of the system is much more complicated. Thus,
the maximal values of the order parameter R1 reached during the rest periods are
different as illustrated in Figure 4.27(B).

Thus, we can introduce the maximal values of R1 during the rest periods

rk = max
t∈Ik

(R1(t)) , (4.14)

where Ik is the kth rest interval, Ik = [(m + n)kT − nT, (m + n)kT ], k ≥ 1. As
a characterizing quantity we consider the mean value of a large number Nint of rk,
k = 1, Nint.

r = 1
Nint

Nint∑
k=1

rk. (4.15)

In our consideration the number of intervals will be Nint = 400. The behavior of
the system in terms of the quantity r will be now described for the case of integer
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Figure 4.27: Time courses of R1 during the on-off CR stimulation. (A) 2 : 3 on-off
stimulation and (B) 2.5 : 3 stimulation. Red circles depict the maximal values of
R1 on each rest interval, which coincide with the values of R1 at end points of rest
intervals.

m and n values. In Figure 4.28 the values of r are encoded by color and depicted
versus the numbers (m, n) ∈ [1..30]2.
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Figure 4.28: Quality of the on-off stimulation r versus integer (m, n) values, see
Eq. (4.15). Black line depicts delimiting level of r = 0.5.

We mention several important properties of the on-off CR stimulation with integer
(m, n) values. First of all, if the number of active periods m (vertical axis) is fixed
and the number of the rest periods n increases, then there is an evident growing of
r up to the maximal value of R1 for the synchronized state without stimulation, i.e.,
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approximately 0.98. As follows, with increasing of the rest interval the system has
enough time to complete the transient after the switching stimulus off and returns
to the fully synchronized state characterized by large value of the order parameter
R1. The second property is much more interesting and important and reflects the
fundamental feature of the system. We consider some level of r delimiting the
"desired" (small values of r) and "undesired" (large values of r) states of the system.
In the work [85] the chosen level was 0.5. The corresponding curve is shown as black
line in Figure 4.28. We can see that for large values of m this curve as a function
n(m) becomes constant. Indeed, if m is large, e.g., m > 30, then even larger
m, i.e., even longer stimulation does not bring any changes to the post-stimulus
transient dynamics of the system. System is already set to the same clustered
state and then it takes the same time for R1 to reach any predefined level, e.g.,
R1 = 0.5, after the switching the stimulation off. To illustrate this property, we plot
in Figure 4.29 the time courses of R1 for the different on-off stimulations with the
same values of n = 25 and different values of m. We consider large values of m = 30
and m = 45. The time courses of the order parameter R1 during the on-off CR
stimulation with the above parameters are depicted in Figure 4.29(A) for m = 30
and Figure 4.29(B) for m = 45. As we can see, even increasing in 1.5 times the
length of the stimulation subinterval in on-off stimulation does not give any positive
effect. After the post-stimulus transient the order parameter R1 reaches the same
maximal value irrespectively of the length of the stimulation.

Now we describe the dynamics of the model in the case of non-integer values of m
and n. In the following Figure 4.30 the values of r as functions of real n ∈ [1, 9] for
two fixed values of m = 5 and m = 8 are shown by red curves.

Figure 4.30 illustrates several important conclusions. First of all, the periodic struc-
ture of the graph R1(t) is present only for intervals of n near the integer values
where the standard deviation equals to zero where the blue curves coincide with
the red curve. We can also see that these windows of periodicity become more and
more narrow under increasing of n, e.g., in Figure 4.30(B) this window around the
point n = 2 has length ≈ 0.3, whereas the corresponding window around n = 8 has
length ≈ 0.17. We can also mention that between the windows of periodic behavior
around the integer values of n there are significant peaks of r characterized by large
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Figure 4.29: Time courses of the order parameter R1 for two different on-off CR
stimulations. Stimulation parameters are (A) 30 : 25 and (B) 45 : 25.
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Figure 4.30: Values r as functions of real n determining the length of the rest
interval in the m : n on-off CR stimulation are shown by the red curves. Values r±
std.dev {rk} versus n are depicted by the blue curves. The length of the stimulation
interval is given by the values of (A) m = 5 and (B) m = 8.

standard deviation. We can conclude that these intervals between periodic windows
are undesirable from the point of view of DBS implementation of on-off m : n CR
stimulation, because the stimulation admits large values of the order parameter indi-
cating strong synchronization in the neuronal population. The peak heights increase
with increasing n. Another peculiar feature of these diagrams is that for larger m
(m = 8) the heights and widths of the peaks of the graphs of the quantity r are
significantly smaller than those for smaller m (m = 5).
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All these facts can be explained by a resonance between the original system with
period T and the external force (stimulation) with period (m+ n)T . If we consider
integer values of m, there is a resonant behavior near the integer values of n where
the dynamics of the system perturbed by an external force is periodic, i.e., is locked
by this force. The periodic dynamics results in zero values of the standard deviation
of rk values since all rest intervals contribute the same values rk, see Eq. (4.14). The
strength of the external force is determined by relation between m and n values.
Increasing of m value keeping n fixed results in the larger strength of the external
force since the relative part of the stimulation subinterval increases. On the con-
trary, increasing n for the fixed value of m corresponds to the decay of the external
strength. Therefore, larger value of m provides larger sizes of resonant windows.
This phenomenon is similar to the resonant Arnold tongues with increasing width
as external strength increases. The opposite effect takes place if we increase duration
of the rest subinterval (determined by n) and the windows of periodicity shrink.
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Figure 4.31: Quality r of the on-off CR stimulation given by Eq. (4.15) versus real
values of (m, n) ∈ [1, 7] × [2, 10]. Other parameters of stimulation are I = 10 and
σ = 0.4.

We present a general picture for arbitrary positive real values of m and n, which
is shown in Figure 4.31. We can see an extremely complicated structure, which
can be explained as superimposing of a few different effects. The most prominent
detail in Figure 4.31 is the presence of red diagonal tongues, which are situated
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approximately along the lines m + n = P + 0.5, P ∈ Z. They correspond to the
peaks in Figure 4.30 and can be explained as strongly non-resonant cases of system
dynamics. Similarly, the bands between them (which lie along the lines m+ n = P ,
P ∈ Z) demonstrate better effect of the stimulation, i.e., smaller r, due to the
resonance between the extrernal stimulation and the oscillatory system. In the latter
case period of the external force is a multiple of the system period. Furthermore,
we can see in Figure 4.31 the horizontal dark blue lines reflecting the effect of CR
stimulation with an appropriate choose of the stimulation break moment. These lines
are situated above the "integer" lines m ∈ N matching with the corresponding result
from the previous subsections. Indeed, one may compare the discussed effects with
those from subsection 4.1.4 devoted to the transient analysis for the parameter point
1 where the optimal break of the stimulation has been found to closely approximate
the point T/4.

We also note the change of the width of the red non-resonant tongues. These tongues
are narrow for larger m and/or smaller n, similarly to the pictures in Figure 4.30.
As mentioned above, the reason of it is the resonance where the sizes of resonant
windows depend on the external force, which is given by relative length of the active
subinterval in one cycle of the on-off CR stimulation.

To link together results from Figures 4.31 and 4.28, we can recall that results from
the previous less general diagram 4.28 coincide with the separate points of an integer
grid in the general picture 4.31. Summarizing results of the mentioned diagrams, we
can describe the diagram of r versus real (m, n). The right lower corner, i.e., with
small m and large n values, is characterized by large values of r and is dark red.
There are red tongues originating from this region and stretching to the left upper
corner, which become more and more narrow for smaller n/larger m. Furthermore,
there exist dark blue horizontal lines situated approximately at the values of m =
k + 0.25, k ≥ 2, k ∈ Z.

In the present section 4.1 we have considered an impact of CR stimulation on the
neuronal population modelled by the Kuramoto system of phase oscillators. The
effect of the stimulation has been estimated utilizing different techniques. The main
attention was paid to the problem of the optimal values of different stimulation
parameters. In the following section 4.2 we consider a network of the FitzHugh-
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Nagumo neurons demonstrating tonically spiking behavior under CR stimulation.

4.2 Coordinated Reset of the system of the
FitzHugh-Nagumo neurons

In this section we investigate the behavior of the system of tonically spiking
FitzHugh-Nagumo oscillators under the impact of CR stimulation. The main goal
is to consider different effects of the stimulation revealed for the phase model (see
section 4.1) for the case of more complicated neuronal model involving amplitude
dynamics and different time scales characteristic for real neurons. The study of a
spiking FitzHugh-Nagumo (FHN) model contributes to the realistic modelling of the
neuronal dynamics under CR stimulation. First of all, we describe this model and its
well-known features in subsection 4.2.1. The system of coupled FitzHugh-Nagumo
oscillators under CR stimulation and its basic properties will be investigated in
subsection 4.2.2.

4.2.1 The FitzHugh-Nagumo model

The FitzHugh-Nagumo model is one of the modifications of the Van der Pol nonlinear
oscillator [96] describing relaxation oscillations in electrical circuits. This famous
relaxation oscillator is often used to describe behavior of biological systems, e.g.,
cardiac activity [97]. Our main object of interest, which is often called BVP model
(Bonhoeffer-van der Pol model), was presented in the work [23]. This model can
demonstrate several types of neural activity: silent excitatory neuron, which can
have several rest states, and tonically spiking neuron.

The classical FitzHugh-Nagumo neuronal model is described by two ordinary differ-
ential equations for the state variables v and w

v̇ = v − 1
3v

3 − w + I,

ẇ = ε (v + a− bw) ,
(4.16)

where ε is a small parameter, a and b are the model parameters, I is an external
current. The standard values of these parameters given in the original article [23]
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are a = 0.7, b = 0.8 and ε = 0.08. In the present thesis we will use the above
mentioned values of a and b. The used values of I and ε will be discussed below.

As in the case of the phase model, we suppose that all individual oscillators (neurons)
have different frequencies (firing rates), which are distributed according to a Gaus-
sian distribution density. In order to incorporate this property into a model (4.16),
we consider a network of coupled neurons having slightly different values of pa-
rameter. This is possible to perform in different ways, because the frequency of
oscillations of system (4.16) depends on all its parameters. As we will demonstrate
later, dependence of the spiking rate on the value of the small parameter ε is (un-
der some approximation) almost linear making this parameter quite convenient to
determine the frequency of each individual neuron.

To understand the dynamics of system (4.16), we find its fixed points given by the
following conditions: v̇ = 0, ẇ = 0. The equations of the corresponding nullclines
in the plane (v, w), i.e., curves providing the zero values of the derivatives, are

v̇ = 0 ⇒ w = v − 1
3v

3 + I,

ẇ = 0 ⇒ w = (v + a)/b.
(4.17)

These nullclines are shown in Figure 4.32 depicted by black and red curves.
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Figure 4.32: State space of the FitzHugh-Nagumo model with parameters a = 0.7,
b = 0.8, I = 1 and ε = 0.08. Red and black lines are nullclines (4.17) of the system.
Blue curve indicates a stable limit cycle of the model.

The intersection of two nullclines gives a fixed point (equilibrium) of the system,
which is indicated in Figure 4.32. To determine the stability of this fixed point, we
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should consider a linearized system (4.16) in the vicinity of the analyzed solution.
We consider the parameter values a = 0.7 and b = 0.8 providing a single fixed point
for a system (4.16). The following Figure 4.33 describes the bifurcation structure of
a system (4.16) if the value of I varies.
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Figure 4.33: System dynamics under the variation of the external current I. The
minimal and maximal values of the variable v of system (4.16) are shown versus
parameter I. Other parameters are a = 0.7, b = 0.8 and ε = 0.08. Blue curves
indicate stable fixed points, red curves indicate stable limit cycle. Dotted blue line
depict unstable fixed points.

We can see in Figure 4.33 the minimal and maximal values of v(t) of the dynamical
states for each fixed value I. At the fixed point the minimum and maximum of
v coincide with each other giving a single point for each value of I (blue curves).
On the other hand, a limit cycle in the plane (v, w) guarantees the presence of at
least two different point for the corresponding values of I. A stable limit cycles is
shown in Figure 4.33 by a pair of red points, depicting the interval of oscillations
of the variable v. There are small parameter intervals of multistability where two
attractors, the fixed point and the limit cycle, are present in the system for the
same parameter values, which is difficult to resolve in Figure 4.33. The equilibrium
loses its stability at the points IH1 and IH2 via subcritical Hopf bifurcations. The
corresponding unstable fixed point is depicted by the dotted blue curve.

For our simulations we need the spiking behavior of the FitzHugh-Nagumo oscillator.
For this we will take for all our further considerations the value I = 1 implying an
oscillatory state of the neurons.
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Another important conclusion, which can be drawn from the analysis of Figure 4.33
is that, applying a short and strong enough stimulus, i.e., increasing value of I, we
can shift the system dynamics from the stable limit cycle to the stable equilibrium.
This means that external stimulation can result in a system reset providing a stereo-
typical response of the system on the stimulus. In other words, the system state
after such a stimulation being a fixed point does not depend on the system state
before stimulation. The same behavior we have observed in the case of phase oscil-
lators, see section 4.1. Therefore, we are able to perform an effective CR stimulation
of the model of the FitzHugh-Nagumo oscillators since effect of CR stimulation is
based on a neuronal reset.

Now we consider the dependence of the frequency of oscillations (firing rate) on the
value of small parameter ε. The corresponding diagram is shown in Figure 4.34.
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Figure 4.34: (A) Oscillating trajectory v(t) of the system (4.16) with ε = 0.08.
T = 1/f is the period of oscillations where f is a frequency of oscillations. (B)
Frequency of FHN oscillating model (4.16) vs. small parameter ε (time unit in the
system is supposed to be equal to 1 ms). Parameters are a = 0.7, b = 0.8 and I = 1.

As we can see in Figure 4.34(B), the dependence of frequency of the oscillations on
the parameter ε is almost linear. This allows to consider an ensemble of neurons
oscillating with slightly different frequencies by simply varying ε value for each
neuron keeping all other parameters the same for all oscillators.
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4.2.2 FitzHugh-Nagumo neurons under CR stimulation:
model description

We introduce the model, which we will investigate in order to understand the effect
of CR stimulation on the system of neuronal oscillators. We suppose that the spatial
structure of our model is the same as in the case of the coupled phase oscillators, see
Figure 4.2, p. 70. Thus, all oscillators are arranged on a line segment of the length
L = 10 having coordinates

{
xj, j = 1, N

}
. We also consider Nc = 4 stimulating sites

with coordinates
{
ci, i = 1, Nc

}
. Each of N FitzHugh-Nagumo neurons is described

by the following differential equations based on system (4.16).

v̇j = vj − 1
3v

3
j − wj + I + Isyn + Istim,

ẇj = εj (vj + a− bwj) , j = 1, N,
ṡj = αH(vj)(1− sj)− βsj,

(4.18)

where a = 0.7, b = 0.8 and I = 1, these values have been already discussed above.
εj give us the frequencies of individual uncoupled oscillators, see Figure 4.34. In our
simulations the values of εj are distributed according to the Gaussian probability
density with the mean value εmean = 0.08 and the standard deviation εσ = 0.002.
The synaptic input Isyn from other neurons can be written in the following way with
the use of the approach from Eq. (1.4), p. 13.

Isyn = K

N
(Vsyn − vj)

N∑
k=1
k 6=j

sk. (4.19)

Here, K is the coupling strength, which is divided by N in order to provide a sta-
bility of the results with respect to the different number of cells in our model. Vsyn

is a reversal potential determining the type of synaptic connection. We consider
the case of excitatory synapses. Then Vsyn should be larger than the dynamical
values of vj(t). In all further simulations we will use the value Vsyn = 2. sj ∈ [0, 1]
are the indicator variables of each cell reflecting the appearance of each spike. As
follows from Eq. (4.18), if vj < 0, then the corresponding sj → 0, otherwise, sj
attains some positive value smaller than 1.0. The physiological meaning of the
variable sj(t) is the postsynaptic conductance generated by the presynaptic mem-
brane potential vj(t). H(vj) is a smooth approximation of the Heaviside function:
H(v) = 1.0/ [1 + exp (−λx)] where λ = 10.
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Figure 4.35: (A) Smoothed Heaviside function H(v) for λ = 10. (B) Exemplary time
course of the FitzHugh-Nagumo model represented by variable v (black curve) and
the corresponding trajectory s(t) (red curve), generated by the neuron. Parameters
are α = 2, β = 1 and ε = 0.08.

We can see in Figure 4.35 the function H(v) (part (A) of the Figure) and trajectories
of v(t) and s(t) (part (B)). The spikes of s(t) almost coincide with those of v(t),
which is supported by the comparably large values of α and β. In what follows we
will use the same values of α, β as in Figure 4.35. This type of synapse is called
the fast synapse characterized by the values of α and beta of order O(1). The slow
synapse has α of order O(1) and β of order O(ε) [93]. The height of s-spike is mostly
determined by the α and β values and is close to α/(α + β), see Eq. 4.18.

The external stimulation current Istim can be written similarly to the expression
(4.2), p. 71

Istim =
Nc∑
i=1

Ii(t)D (xj, ci) , (4.20)

where Ii(t) characterizes the strength and switching time of the stimulation via the
ith contact, and D(xj, ci) reflects the decay coefficient of the stimulation strength
in the neuronal tissue with the distance to the stimulation site.

Recalling the expression (4.4) for the functions Ii(t), we should note that the basic
pattern of the contact activity is a HF pulse train with pulse period Tp. In the case
of phase model, see section 4.1, we have used the value Tp = 0.05, which is equal to
1/40 of the oscillation period T = 2 of the synchronized system. As we have already
mentioned in Figure 4.34 for the neuronal frequencies, the periods of the oscillations
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of individual neurons are close to 40.0, which corresponds to the frequency 25 Hz.
In order to preserve the same ratio of the period of HF pulses to the period of
system oscillations, we will take the value of Tp = 1. The relative length of a single
stimulation pulse, which is determined by parameter δ, see Eq. (4.4), is taken to be
the same, as in the case of phase oscillators δ = 0.5.

4.2.3 Estimation of CR stimulation effect

In this subsection we investigate the impact of CR stimulation on the system of the
FitzHugh-Nagumo neurons (4.18). We will use two different techniques to perform
such analysis. The first technique is the method of the phase-based order parame-
ter and the second approach is themean field analysis. We give a short description
of these methods.

Method of the order parameter This technique is based on the idea to build a
phase representation for each individual FHN oscillator, i.e., to calculate the phases{
θj(t), j = 1, N

}
for each individual neuron. There are different methods to recon-

struct the phase of a given signal [59, 92], such as method of Hilbert transform or
event-related method. We will use the latter method due to its simplicity. The
algorithm of the phase reconstruction is the following. For an oscillatory trajectory
a sequence of characteristic events is defined such that each event corresponds to
the onset of single oscillation of the system. Taking into account the typical form
of the trajectory of membrane potential v(t), see Figure 4.35(B), we can consider
the appearance of v-spikes as such events. Therefore, we take as events the time
points {tk : k ≥ 0} of the intersection of the threshold line v = 0 by the increasing
trajectory v(t). Then the phase θ(t) can be written on the interval [tk, tk+1] in the
following way

θ(t) = 2πk + 2π t− tk
tk+1 − tk

, t ∈ [tk, tk+1]. (4.21)

Therefore, θ(t) is a piecewise linear function increasing on 2π per each oscillation
of the system trajectory v(t). We illustrate the dynamics of the phase in Fig-
ure 4.36(A).
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Figure 4.36: (A) Illustration of the phase reconstruction for the trajectory of FHN
neuron with parameters ε = 0.08, a = 0.7, b = 0.8 and I = 1. The membrane
potential v(t) is depicted by blue curve and the phase θ(t) mod 2π is shown by red
curve. (B) Kuramoto transition for the system of N = 500 FHN oscillators. The
blue curve corresponds to the values of the phase-based averaged order parameter
〈R1〉 versus the coupling strength K.

If the trajectory vj(t) does not intersect the threshold level v = 0, we set the
corresponding phase θ(t) ≡ 0 (silent neuron). After the introduction of the phases for
the FitzHugh-Nagumo neurons, we can calculate the values of the order parameters
Rm(t) based on the vector of N phases θj(t), see Eq. (2.3). The behavior of the first
order parameter R1 versus the coupling strength K is similar to that in the case of
the system of coupled phase oscillators. The course of the Kuramoto transition from
desynchronized state to the synchronized state as the coupling strength K increases
is shown in Figure 4.36(B) for the system of FHN oscillators. We can observe a
similar dynamics of R1 to that of the Kuramoto model shown in Figure 2.2(B),
p. 22. Based on the results shown in Figure 2.2(B), for all further simulations we
will take the value K = 0.11, which leads to a synchronized state in the model with
the value of the first order parameter R1 ≈ 0.952.

Mean field analysis This method is based on the analysis of the mean value of
all membrane potentials vj(t) in the system:

V (t) = 1
N

N∑
j=1

vj(t). (4.22)
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This variable has a physiological meaning as the local field potential (LFP) of neu-
ronal activity. This signal is usually measured and analyzed in practical applications
for example, via a deeply implanted macroelectrode used for deep brain stimulation.
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Figure 4.37: Subplots (A) and (C) reveal events (spikes) of the FHN neurons in
the model in desynchronized (K = 0.01) and synchronized (K = 0.11) states, re-
spectively. Point with coordinates (t, j) indicates that neuron j in the moment t
produces a spike. Subplots (B) and (D) reveal time courses of the mean fields V (t)
in desynchronized (B) and synchronized (D) states.

Diagrams (A) and (C) in Figure 4.37 show the space-time dynamics of the ensemble
of coupled neurons (4.18) without stimulation for different coupling strengths. In
the desynchronized case shown in Figure 4.37(A) the points form some irregular
structure. On the other hand, in the synchronized case shown in Figure 4.37(C)
there are clearly distinguishable vertical lines indicating that all cells produce spikes
almost simultaneously, which indicates a strong neuronal synchronization. In Figure
4.37(B),(D) we can see the corresponding trajectories of the mean field V (t) in
the case of desynchronized (K = 0.01, subplot (B)) and synchronized (K = 0.11,
subplot (D)) system (4.18). As follows the desynchronized state is characterized
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by much smaller amplitude of the oscillations of V (t). This characteristic property
of the mean field can be used to estimate the effect of CR stimulation from the
point of view of depression of unwanted pathologically strong synchronized activity
in the system. Therefore, our goal is to minimize the oscillations of V (t), what
corresponds to the real DBS application decreasing strongly synchronized activity
in certain frequency bands of the LFP signal. In order to estimate the strength of
LFP oscillations, we will calculate the standard deviation of the signal V (t).

SV
def=
√

E (V (t)− EV (t))2 (4.23)

where symbol E denotes mathematical expectation, i.e., the mean value. For ex-
ample, desynchronized state for K = 0.01 implies the value SV ≈ 0.13, whereas
SV ≈ 1.28 for the synchronized state for K = 0.11.

Effect of CR stimulation Now we investigate effects of CR stimulation on the
FHN neuronal ensemble. The results of numerical simulations are illustrated as
1-D pictures where the time averaged first order parameter R1 and the standard
deviation of the mean field signal SV will be plotted versus the stimulation strength
I for several fixed values of the decay rate σ. We also show the similar pictures
for the system of phase oscillators from section 4.1 where more general 2-D picures
have been calculated (see Figure 4.9). The 1-D diagrams for the Kuramoto model
are just slices from the already built 2-D pictures.

The averaged order parameter R1 for the case of permanent stimulation is shown in
Figure 4.38. Diagram (A) corresponds to system (4.18) based on FitzHugh-Nagumo
neuronal model, and diagram (B) reveals the results for the phase model (4.3). We
emphasize the common important properties of these diagrams. For small values of
σ, e.g., σ = 0.4, there is a fast decay of 〈R1〉 as the stimulation strength I increases.
Afterwards 〈R1〉 slowly increases. On the contrary, large values of σ imply fast
increasing of 〈R1〉 with increasing I. We can introduce a notion of an interval
of appropriate stimulation strength providing the values of 〈R1〉 smaller than some
predefined threshold level, e.g., R1 = 0.5.

This threshold level is depicted in Figure 4.38 by the horizontal black dashed line.
Figure 4.38 reveals that for large values of σ interval of the appropriate stimulation
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Figure 4.38: The averaged order parameter 〈R1〉 during the permanent CR stimu-
lation versus stimulation strength I for three different values of σ, 0.4, 1.5, and
4.0. (A) System (4.18) of coupled FHN neurons. (B) System (4.3) of coupled phase
oscillators.

strength becomes smaller. Therefore, the problem of the choice of the appropriate
stimulation strength is more complicated for large σ since the system behavior in
terms of 〈R1〉 is more sensitive to the variation of I than in the case of small σ.
We can also see in Figure!4.38 that strong enough stimulation can imply oscillation
death. Indeed, the blue curve in diagram (A) (σ = 4.0) achieves the maximal value
〈R1〉 = 1.0. Such value corresponds to situation that all neurons in the population
become silent. A very strong stimulation reset all neurons such that trajectories of
membrane potential

{
vj(t), j = 1, N

}
stop to oscillate and are kept by stimulation

in a region above the predefined threshold value v = 0. There is the similar situation
in the diagram for coupled phase oscillators Figure 4.38(B). Here, due to the strong
stimulation and large value of σ, each stimulating contact has strong impact on
the entire population. This results in the stereotyped behavior of all oscillators in
network where the oscillators die out. Unlike the system of FHN neurons, phase
oscillators demonstrate oscillations around the value of π/2, which is a stable point
imposed by the stimulation. Nevertheless, the phase slips, i.e., the rotation of phases
over the unit circle, are absent as well as in the case of FHN-based model.

Figure 4.39 reveals the dependence of SV value introduced by Eq. (4.23) on the
stimulation strength I for different values of σ, which are the same as in the previous
Figure 4.38. We can see that the general structure of the curves SV versus I is very
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Figure 4.39: Standard deviation of the mean field SV (4.23) for model (4.18) versus
stimulation strength I for three values of σ, 0.4, 1.5, and 4.0.

similar to that for the phase-based order parameter 〈R1〉. The presence of a well-
defined minimal value of SV for the cases of large σ (1.5, 4.0) is evident as well as
a slow increase of the variations of the mean field with increasing of I for σ = 0.4.
Since SV value is closely related to the neuronal activity in the human brain given
by the LFP signal of neuronal population, the similar behavior of the estimations
of the system state in terms of phase-based order parameter 〈R1〉 and of amplitude-
based standard deviation of meanfield SV is very important for the development and
simulations of novel DBS techniques.

4.3 Conclusions

In the present chapter we have studied the effect of CR stimulation on two different
models of neuronal population. For the first model (4.3) considered in section 4.1,
which is based on the Kuramoto system of coupled oscillators, we revealed the influ-
ence of such stimulation parameters as the stimulation strength I, the stimulation
period T and the decay rate σ on the effect of stimulation. One of the problems
to be solved by the present chapter was to understand the dynamics of the system
during CR stimulation. The main goal of the study was to find the optimal parame-
ter values. As estimation measure we have used two different approaches. The first
approach is based on the values of the order parameter parameters. As the second
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estimation of the CR stimulation quality the length of the post-stimulus transient
was taken. We have revealed the influence of the parameters I and σ of CR stimula-
tion on the order parameters and on the post-stimulus transient. The modification
of CR stimulation protocol with arbitrary stimulation break and its properties have
been also studied. We have also considered the on-off CR stimulation, which is
close to the real DBS algorithm, and found an influence of its parameters on the
stimulation quality.

For the second model (4.18) based on the system of FitzHugh-Nagumo neurons we
have considered two different estimation techniques. The first estimation technique
utilized the values of the phase-based order parameter R1. The second method was
based on the mean field analysis. Both methods revealed the system response on CR
stimulation similar to the response of the phase model (4.3). Thus, it has been found
that different values of the decay rate σ imply different responses of the models on
the applied CR stimulation.
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Conclusions

In the present thesis we investigated a number of mathematical models of the patho-
logical synchronization of the human brain activity and methods of its suppression.
The considered problems are of great importance within the medical field since many
neurological disease, e.g., Parkinson’s disease or essential tremor are closely related
to the abnormal synchronization in the human brain [9, 57, 60].

We have considered the model of the neuronal network involving spike timing-
dependent plasticity in Chapter 2 and two models of the neuronal systems with
time-delayed interaction in Chapter 3. In these two chapters we have studied the
dynamics of the corresponding models. The most important problem was to study
the conditions of abnormal synchronization in the models and to find out the re-
gions of multistability in the parameter space where several qualitatively different
solutions of the systems are simultaneously stable. These results allow to find the
proper perturbation of the system providing the switching of the dynamics between
different stable states. From the point of view of real application this means that ap-
propriate stimulation technique can change crucially the system behavior switching
it from unhealthy (pathologically) state to healthy (desynchronized) state. Stability
of the corresponding healthy states can provide long-lasting therapeutic effect of
the stimulation. In order to study this problem the basins of attraction for different
coexisting states have been investigated. We have also estimated the relative sizes
and structures of the basins of attraction.
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In Chapter 2 we have considered the Kuramoto system of phase oscillators involving
spike timing-dependent plasticity rule for the varying coupling strength. Systems
under consideration have small number of oscillators N = 2 and N = 3 allowing
to perform a detailed analysis of the rich system dynamics. This model reflects
the behavior of several neuronal populations where each group of neurons is sup-
posed to be strongly synchronized. In this way the interactions between different
subpopulations can be investigated. This assumption justifies the consideration of
a low-dimensional model. For the introduced model we have revealed coexistence
of synchronized, desynchronized and clustered dynamical states for a wide range of
parameter values. An important role of the non-equal values of the constants τp
and τd determining time scale for the synaptic potentiation/depression processes for
the multistability mechanism was also discovered. We have also described the cou-
pling structure of different dynamical regimes in the system (2.7) and (2.8). Thus,
the hierarchical unidirectional coupling structure for the synchronized solution has
been found. We have also illustrated a multistability under the variation of different
parameter sets. In particular the diagrams revealing the dependence of the aver-
aged oscillator frequencies on maximal coupling strength were calculated. These
diagrams describe the multistability in terms of different coupling strength among
the oscillators. Figure 2.9 illustrates the stability of different solutions in the (ω2, α)
parameter plane for different values of coupling strength and natural frequencies of
the oscillators. We have also considered systems of N = 5, N = 10 and N = 20
oscillators. These systems demonstrate the behavior similar to that in the case of
low-dimensional systems. We have found the relative sizes of basins of attraction
for different solutions of the systems of N = 5 and N = 10 oscillators. It was shown
that there are many different states with large enough basins of attraction allowing
the switching of system dynamics by appropriate perturbation.

In Chapter 3 we have considered two different phase models with time-delayed in-
teraction. Both models consist of N = 2 phase oscillators. Similarly to the low-
dimensional model in Chapter 2, these systems can reflect the behavior of two large
interacting neuronal subpopulations where each subpopulation is supposed to be
synchronized and to act as one large oscillator. The difference between two sys-
tems with time delay is that the first of them does not contain self-feedback term,
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whereas the second one includes self-feedback term as well as delayed term of in-
teraction between two oscillators. For the first system (3.2) we have investigated
the appearance and stability of the different phase-locked state as coupling strength
K or time delay τ increases. The fascinating coexisting of numerous desynchro-
nized and synchronized states has been revealed for large values of time delay τ .
It was shown that total number of stable synchronized states is proportional to τ ,
whereas the number of desynchronized stable solutions is proportional to τ 2 as τ
increases. The averaged frequencies of the oscillators are arranged on a grid with
the distance between the nodes proportional to 1/τ provided time delay τ is large
enough. We call this phenomenon frequency discretization. For the phase-locked
solutions we have also investigated the structure of basins of attraction, which can
be important for the development of stimulation techniques switching the system
dynamics between different stable states. The second system (3.7) considered in
Chapter 3 demonstrates even more complicated dynamics than the system without
self-feedback term. Thus, we have found a supercritical Hopf bifurcation of an anti-
phase synchronized solution. As a result of this bifurcation a synchronized solution
with oscillating phase difference appears. This solution also demonstrates a series
of period-doubling bifurcations leading to chaos. Another characteristic property of
this system (3.7) is the presence of a stable desynchronized solution for large values
of the coupling strength K provided the frequency detuning ∆ω is large enough.
Such specific states are shown in Figures 3.13, 3.14. The model (3.7) also exhibits
the frequency discretization similarly to the the model without self-feedback term
(3.2). Summarizing, we can state that models with delayed interaction (3.2) and
(3.7) demonstrate fascinating multistability, which can be utilized in the medical
application of this theoretical study.

The main part of the thesis, Chapter 4, was devoted to the coordinated reset (CR)
stimulation technique [84,85,91]. Since this stimulation technique allows to perform
mild deep brain stimulation (DBS) utilizing the internal properties of the stimulated
system, the obtained results contribute to the understanding of the mechanisms of
action as well as to the choice of the optimal parameter values of the coordinated
reset stimulation. The idea of the CR stimulation is to provide effective suppression
of the pathological synchronized activity in the certain brain areas like subthalamic
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nucleus (STN) or globus pallidus external (GPe). This novel technique was devel-
oped to perform the stimulation in a milder way and to decrease some unwanted
side effects of the standard high-frequency DBS. The goal of the study was to reveal
the dependence of the stimulation effect on the values of the stimulation parameters
and to find the optimal parameter set for the stimulation. We have considered two
models of the neuronal population under the CR stimulation. The first model stud-
ied in section 4.1 is based on the Kuramoto system of coupled phase oscillators and
the second model investigated in section 4.2 describes the population of FitzHugh-
Nagumo neurons. For both models we have introduced the mathematical model of
the CR stimulation.

As the first step of the study of the CR model based on phase oscillators, the influ-
ence of a single stimulation contact has been investigated. Afterwards the permanent
CR stimulation was considered in subsection 4.1.3. We have studied the state of the
system under stimulation reflected by the averaged over time order parameters, see
also Figure 4.9. This figure demonstrates our important finding that the system be-
havior during the CR stimulation crucially depends on the value of decay coefficient
σ. Small values of σ allows quite wide variation of the stimulation strength without
sufficient change of the stimulation effect. On the contrary, if the values of σ are
large, the system behavior is much more sensitive to the changing of the stimulation
strength I. This means that for large σ the stimulation strength has to be properly
adjusted in order to obtain a desired effect of the stimulation.

In subsection 4.1.4 we have investigated transient times after the stimulation is
switched off. The investigation of the post-stimulus transient is very important for
the practical application of the CR stimulation for DBS. Indeed, transient time al-
lows to estimate the duration of a pause where the stimulation can be switched off.
This technique allows to decrease the amount of the stimulation current adminis-
tered to the brain tissue [85]. We have also considered the transient time if CR
stimulation is terminated at some arbitrary moment. This study brings together
the information about the system state during the stimulation and the information
about the transient time from stimulus-induced state to the synchronized state dur-
ing resynchronization process when the stimulation is switched off. Thus, we have
investigated the optimal time of stimulation break providing the longest transient.
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The dependence of the optimal transient and the corresponding stimulation break
on parameters (I, σ) has been illustrated in Figure 4.16. The course of the tran-
sient process was also demonstrated by the Kuiper index technique. Summarizing
our findings devoted to the transient time, the optimal transient time does not al-
ways coincide with the standard end of the CR stimulation. The difference between
standard and optimal stimulation break is significant for large σ, whereas it is less
appreciable for small σ.

In subsection 4.1.5 we have studied the effect of the CR stimulation for different
values of the stimulation period since all previous results have been obtained for
the stimulation period.Two different cases have been considered. The first case cor-
responded to the small variation of the stimulation period around the period of
system oscillations. The second part of the study was devoted to the periods of sti-
mulation, which are multiples of the system period. Summarizing our main results,
we can state that the effect of the CR stimulation is robust with respect to small
changes of the stimulation period unless the resulting system state can be different
from the clustered state, which is the usual result of an appropriate stimulation.
Multiplication of the stimulation period on integer constant different from the num-
ber of stimulating contacts also preserves the stimulation effect. However, if the
multiplier equals the number of contacts, stimulation results in a strong undesired
synchronization of the stimulated neurons.

In subsection 4.1.6 we considered the on-off CR stimulation protocol used in the
real application. The intriguing dependence of the stimulation effect on the sum of
the lengths of the stimulation and rest intervals also called by period of the on-off
CR stimulation cycle has been discovered. The main result of this subsection was
illustrated in Figure 4.31. If period of the on-off CR stimulation cycle is in a reso-
nant relation with the natural mean period of the stimulated neuronal population,
then the desynchronizing effect of the on-off CR stimulation is more pronounced
than in the non-resonant case. The results of the optimal stimulation break from
subsection 4.1.4 are also reflected in the entire diagram of the on-off stimulation
effect.

The CR stimulation of the population of FitzHugh-Nagumo neurons was consid-
ered in section 4.2. To perform the analysis of the stimulation effect, two different
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techniques have been used. The first one is the method of the phase-based order
parameter where the event-related phases have been used. The second method is
based on the amplitude of the mean field of the entire neuronal population. The
standard deviation of the mean field has been taken as the estimated value. It was
shown that behavior of the system of the FitzHugh-Nagumo oscillators during CR
stimulation is similar to the case of the phase model. We have illustrated this phe-
nomenon by both mentioned estimation techniques. The corresponding diagrams
are shown in Figures 4.38 and 4.39.

The obtained theoretical results can contribute to the better understanding of the
mechanisms of the pathological neuronal synchronization as well as to the optimiza-
tion of the stimulation techniques designed for the deep brain stimulation in patients
with neurological diseases like Parkinson’s disease or essential tremor.

Prospects

In the present thesis we have considered a number of problems devoted to synchro-
nized oscillator systems and to the methods of their desynchronization. However,
there are several interesting aspects, which have been left for the future studies.
We can mention some of those topics. First of all, it is important to consider the
application of the CR stimulation to the system involving STDP (spike timing-
dependent plasticity) since the crucial role of the rewiring in the human brain is
nowadays well-known. The next direction of the investigation could be the study of
the CR stimulation in the case of more realistic neuronal models including bursting
neurons since in the present thesis only the phase model and FitzHugh-Nagumo
spiking model have been considered. Thus, one can investigate a more complicated
structure of the brain pacemaker, e.g., a system STN-GPe consisting of the neurons
of two different types, for instance, excitatory and inhibitory neurons.
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Summary

For an effective control of pathological neuronal synchronization characteristic for
Parkinson’s disease and essential tremor by deep brain stimulation a profound un-
derstanding of synchronization mechanisms in the neuronal networks is required.
This understanding can be then used to optimize the novel stimulation technique
based on the coordinated reset. A modelling approach utilizing the methods of
nonlinear dynamics is used to unfold the mechanism of multistability in neuronal
population. In the present thesis a number of mathematical models of synchronized
neuronal activity and coordinated reset (CR) stimulation are considered. The dy-
namical regimes of the models were investigated by analytical methods, bifurcation
theory and numerical simulations.

The first model describes a neuronal oscillatory network involving spike-timing de-
pendent synaptic plasticity (STDP). The considered systems consist of a small num-
ber of oscillators. For the introduced model the coexistence of synchronized, desyn-
chronized and clustered states was found. The stability properties of the above
states were investigated as system parameters vary. The basins of attraction of dif-
ferent states for the systems of N = 5 and N = 10 oscillators were described and
their relative sizes were estimated.

Other considered models involve delayed interaction between oscillators including
delayed feedback terms. The emergence of different stable states under variation
of the coupling strength and time delay was investigated. The phenomenon of
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frequency discretization for the coexisting stable synchronized and desynchronized
states was discovered and described in detail. In addition, the structure of the
basins of attraction for the different stable synchronized states was studied for the
model with delayed interactions. It was found that the delayed self-feedback term
induces a significant complication of the system dynamics leading to stabilization of
desynchronized states for large coupling strength.

The common characteristic shared by the considered models with STDP and time
delay was found to be the coexistence of different stable dynamical states, i.e., mul-
tistability. The obtained results allow to find a proper perturbation of the systems
by external stimulation resulting in an effective switching from undesired (patholog-
ical) to desired (healthy) state. Stability of a healthy state can provide long-lasting
therapeutic effect of the stimulation.

The main part of the thesis is devoted to the study of the CR stimulation technique
and its optimal parameter values. Two models of the neuronal networks under the
CR stimulation are considered. The first model is based on the Kuramoto phase
model, whereas the second model describes a network of the FitzHugh-Nagumo
oscillators. The system state imposed by the CR stimulation is described in terms
of the order parameters. The influence of the stimulation strength, stimulation
period and the characteristics of the neuronal tissue on the stimulation outcome
was described. The study of the system post-stimulus transient allows to estimate
the rest pause in the stimulation protocol important for real application. This
investigation brings together the results about the system state during stimulation
and results about the post-stimulus transient from stimulation-induced state to the
synchronized state. The study of the on-off CR stimulation protocol revealed the
influence of the lengths of the active and rest subintervals in the on-off stimulation
protocol on the desynchronizing effect of the stimulation. For the model based on
the network of the FitzHugh-Nagumo oscillators two methods of the estimation of
the desynchronizing effect of the CR stimulation are utilized. The results of the
stimulation were estimated and compared with the analysis of the CR stimulation
of the phase model. The common properties of the CR stimulation responses for
both models were shown. The obtained results contribute to the understanding and
optimization of the stimulation methods designed for deep brain stimulation.
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Zusammenfassung

Für die effektive Kontrolle pathologischer neuronaler Synchronisation, die für die
Parkinson’sche Krankheit und den essentiellen Tremor charakteristisch ist, ist ein
profundes Verständnis der Mechanismen der Synchronisation in neuronalen Netzw-
erken nötig. Dieses Verständnis kann benutzt werden, um das neuartige Stimula-
tionsverfahren der tiefen Hirnstimulation, das auf Coordinated Reset (CR) basiert,
zu optimieren. Die modellbasierenden Methoden nichtlinearer Dynamik werden be-
nutzt, um den Mechanismus der Multistabilität in neuronalen Populationen zu un-
tersuchen. In der vorgelegten Doktorarbeit wurden verschiedene mathematische
Modelle für synchronisierte neuronale Aktivität und Coordinated Reset Stimula-
tion betrachtet. Die dynamischen Regime der Modelle wurden mittels analytischer
Methoden, der Bifurkationstheorie und numerischer Simulationen untersucht.

Das erste verwendete Modell beschreibt ein neuronales oszillierendes Netzwerk, das
insbesondere synaptische Plastizität (STDP) berücksichtigt. Die betrachteten Sys-
teme bestehen aus einer kleinen Anzahl von Oszillatoren. Für die eingeführten
Modelle wurde die Koexistenz von synchronisierten, desynchronisierten und soge-
nannten Cluster-Zuständen gefunden. Die Stabilitätseigenschaften der vorgegebe-
nen Zustände wurden untersucht, wobei die Systemparameter variiert wurden. Die
Einzugsgebiete der unterschiedlichen Zustände für die Systeme von N = 5 und
N = 10 Oszillatoren wurden beschrieben und ihre relative Größe wurde bewertet.

Die weiterhin betrachteten Modelle berücksichtigen eine zeitverzögerte Interaktion
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zwischen den Oszillatoren und ein zeitverzögertes Feedback. Das Entstehen von ver-
schiedenen stabilen Zuständen wurde untersucht, wobei die Kopplungsstärke und die
Zeitverzögerung variiert wurde. Das Phänomen der Frequenzdiskretisierung für die
koexistierenden stabilen synchronisierten und desynchronisierten Zustände wurde
entdeckt und detalliert beschrieben. Außerdem wurde die Struktur der Einzugs-
gebiete der verschiedenen stabilen synchronisierten Zustände für das Modell mit
zeitverzögerter Interaktion untersucht. Zeitverzögertes Feedback führt zu einer sig-
nifikanten Komplikation der Systemdynamik, die zu einer Stabilisierung desynchro-
nisierter Zustände für starke Kopplung führt.

Die allgemeine Charakteristik, die bei beiden betrachteten Modellen mit STDP und
Zeitverzögerung beobachtet wurde, ist die Koexistenz von verschiedenen dynamis-
chen Zuständen, d.h. Multistabilität. Die Ergebnisse unterstützen die Entwickling
einer effektiven Störung von Systemen mittels einer externen Stimulation, die eine
zielgerichtete Umschaltung von dem nicht erwünschten (pathologischen) zu dem er-
wünschten (gesunden) Zustand zur Folge hat. Die Stabilität des gesunden Zustandes
kann dauerhafte therapeutische Effekte der Stimulation gewährleisten.

Der Hauptteil der vorgelegten Doktorarbeit ist mit der Untersuchung der CR Stim-
ulationstechnik und ihren optimalen Parameterwerten befasst. Zwei Modelle von
neuronalen Netzwerken unter CR Stimulation wurden betrachtet. Das erste Modell
basiert auf dem Kuramoto Phasenmodell; das zweite Modell beschreibt ein Net-
zwerk von FitzHugh-Nagumo Neuronen. Der bei der CR Stimulation entstehende
Systemzustand wurde mittels Ordnungsparametern beschrieben. Der Einfluss der
Stimulationsstärke, Stimulationsperiode und der Charakteristiken des neuronalen
Gewebes auf das Resultat der Stimulation wurde beschrieben. Die Studie der Post-
Stimulus-Transientzeit des Systems ermöglicht, die Stimulation-Pause in dem Stim-
ulationsprotokoll, die für die reale Applikation wichtig ist, zu bewerten. Diese Un-
tersuchung analysiert die Ergebnisse bezüglich des Systemzustands während der
Stimulation und die Ergebnisse bezüglich der Post-Stimulus-Transientzeit des Sys-
temzustands. Die Untersuchung der On-Off-Phasen im CR Stimulationsprotokoll
bellegt den Einfluss der Länge des aktiven Intervalls und des Ruheintervalls. Für
das auf einem Netzwerk von FitzHugh-Nagumo Oszillatoren basierende Modell wur-
den zwei Methoden zur Bewertung des Desynchronisierungseffekts angewendet. Die
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Resultate der Stimulation wurden bewertet und mit der Analyse der CR Stimulation
des Phasenmodells vergleichen. Die allgemeinen Eigenschaften der Antworten der
beiden Modelle auf die CR Stimulation wurden dargestellt. Die Ergebnisse tragen
zu einem tieferen Verständnis und zu einer Optimierung der Stimulationsmethoden
bei, die für die tiefe Hirnstimulation entwickelt wurden.
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