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Glossary 
 

ATM: Ataxia telangiectasia-mutated. 

AT: Ataxia telangiectasia. 

BRCA1: Breast cancer 1. 

BRCA2: Breast cancer 2. 

druggable: Referring to a molecular species, such as a protein, that has the 

structural and functional properties suggesting that low-molecular-weight 

therapeutic compounds can be developed that specifically interact with and 

perturb its function (85, 108). 

DDR: DNA damage response. 

DNA: Deoxyribonucleic acid. 

DNA-PKcs: DNA-dependent protein kinase, catalytic subunit; encoded by 

PRKDC. 

DSB: Double-strand break. 

dsDNA: Double-stranded DNA. 

E3 ubiquitin ligase: Together with ubiquitin-activating (E1s) enzymes and 

ubiquitin-conjugating enzymes (E2s), they perform ubiquitylation, targeting 

proteins for degradation by the 26S proteasome (71). 

EGFR: Epidermal growth factor receptor. The epidermal growth factor receptor 

is member of the ErbB (HER) family receptor tyrosine kinases (31).  EGFR 

regulates cell growth and differentiation and is mutated in many human 

malignancies (31).  

genotoxic: Referring to an agent that is capable of damaging the genome, i.e., 

is mutagenic (73, 108). 

HR: Homologous recombination. Type of DNA repair for double stranded 

breaks which is largely restricted to the S- and G2-phases of the cell cycle 

using sequences in a sister chromatid as repair template and thus is error-free 

(15). 

KRAS: Kirsten Rat Sarcoma virus. KRAS is one of the most frequently 

activated oncogenes, with 17 - 25% of all human tumors harboring an 

activating mutation in the gene (60). The encoded protein KRAS is a 
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GDP/GTP-binding protein that in its wildtype form acts as a self-inactivating 

signal transducer (60).  

NHEJ: Nonhomologous endjoining. Type of DNA repair for double stranded 

breaks consisting of fusion of two dsDNA ends involving the protein DNA-PK 

(consisting of Ku70, Ku80 and DNA-PKcs). The joining of the two ends is not 

informed or directed by sequences in a sister chromatid or homologous 

chromosome. Therefore, it is error prone (108). 

NSCLC: Non-small cell lung cancer. 

oncogene: A gene that, upon alteration by DNA-damaging agents or viral 

genomes, can acquire the ability to induce cancer (108). 

p53: tumor suppressor encoded by the tumor suppressor gene TP53. Because 

of its outstanding role in the DNA damage response it is described as “the 

guardian of the genome” (62). 

PARP1: Poly(ADP-ribose) polymerase 1. 

shRNA: Short hairpin RNA. 

SSB: Single-strand break. 

ssDNA: Single-stranded DNA. 

TSG: Tumor suppressor gene. A gene, which is responsible for constraining 

cell proliferation. The partial or complete inactivation of such a gene, occurring 

in either germ line or the genome of a somatic cell, leads to an increased 

likelihood of cancer development (108).  
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Introduction 
 

 

Cancer 
 

Cancer is a heterogeneous group of diseases, which can arise from nearly 

every type of tissue (108). It is characterized by an uncontrolled 

hyperproliferation of cells (108). The cancerous cells can invade other tissues 

per continuitatem or spread into more distant organs via the lymphatic system 

or the blood stream, the latter referred to as metastasis (108). In contrast, 

benign tumors lack these two invasive properties (85, 108).  

In 2008, an estimated 12.7 million people suffered from cancer and an 

estimated 7.6 million people died due to a malignancy, worldwide (52). In 

economically developed countries, cancer is the leading cause of death (52). 

In economically developing countries, the incidence of cancer is only half of 

the incidence in the developed world, but as a consequence of later diagnosis 

and limited access to medical services, survival is worse and here cancer is 

the second leading cause of death (52). Not only because of the aging society, 

but also because of widespread cancer-promoting behaviors, notably smoking, 

physical inactivity and Western diet, the incidence of cancer increased 

continuously during the last decades (9). With a predicted incidence of 22.2 

million cases worldwide the incidence of cancer will be nearly the double by 

2030 (9). 

Traditionally, four distinct treatment strategies for cancer have been pursued, 

namely surgery (mostly for limited disease), immunotherapy, radiation and 

chemotherapy (5, 14, 108). The latter two are thought to induce genotoxic 

stress, ultimately leading to the demise of cancer cells (5, 81, 108). 

Due to a lack of knowledge and understanding of the molecular nuts and bolts 

of this disease, cancer has been treated mostly with relatively unspecific drugs 

for a long time (14). Most of these drugs, often referred to as "classical 

chemotherapy", have been found by their capability of harming rapidly dividing 

tissues by causing genotoxic stress (14, 56, 81). But as rapid proliferation is a 

trait that is not specific for cancerous cells, also healthy tissues with high cell 

turnover, such as bone-marrow haematopoietic precursors and 
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gastrointestinal mucosal epithelial cells, get damaged (56, 81, 108). This leads 

to serious and dose-limiting side effects, like myelosupression or 

uncontrollable diarrhea, respectively (81). Furthermore, chemotherapeutics 

often have characteristic tissue-specific side effects due to their molecular 

mechanism of action or chemical properties. The mitotic inhibitor vincristine is 

inhibiting the assembly of microtubules (81). Microtubules are not only 

indispensable for mitosis but also for the transport of proteins from the nucleus 

of an axon to its periphery (81). By disturbing this transport, vincristine typically 

can cause peripheral neuropathy (81). Other prominent examples with tissue-

specific side effects include anthracyclines, which can lead to cardiomyopathy, 

cyclophosphamide, which can cause hemorrhagic cystitis, bleomycin, causing 

pulmonary fibrosis and cytarabine, which is toxic for the cerebellum (56, 81). 

Another striking disadvantage of classical chemotherapy is its great potential 

to induce secondary malignancies, due to its mutagenic mechanism of action 

(20, 29, 59). Thus, newly developed anti-cancer drugs not only need to be 

effective against cancerous cells, but also have to come with an acceptable 

side-effect profile. By understanding the individual steps, which lead to the 

malignant transformation of incipient cancer cells, we might develop 

molecularly-tailored strategies to either reverse these steps or to exploit the 

altered phenotype of cancerous cells by uncovering tumor-specific liabilities 

(44).  

 

 

Tumorigenesis 
 
Tumorigenesis is a multistep mutational process, which includes genetic and 

epigenetic changes ultimately leading to an increased activity of oncogenes 

(via gain of function and/or overexpression) and/or a decreased activity of 

tumor suppressor genes (via loss of function and/or silencing) (44, 69, 82). 

These changes provide the mutated cells with a set of traits that are essential 

for the uncontrolled growth of cancer cells, the so-called "hallmarks of cancer" 

(44, 45). These hallmarks include different alterations: 1) mitogen 

independence, 2) immune evasion, 3) apoptosis resistance and escape from 

growth-inhibitory signals, 4) continuous angiogenesis, as well as 5) tissue 

invasion and metastasis (44). Altogether, these hallmarks result in the 
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phenotype of cancer (44). New technologies, which allowed an unprecedented 

DNA sequence analysis of individual tumor genomes, made it possible, to 

shed light onto the complex genetic alterations, which ultimately result in 

cancerous growth (24, 40, 41, 54, 78, 97). Today, we can distinguish a certain 

number of high frequency "driver" mutations, which mediate the hallmark 

features of cancer cells, from a larger number of less important passenger 

mutations, which do not contribute to cancerous growth (24, 40, 66). By 

sequencing a large number of tumor genomes, we gained insight into the 

nature and frequency of driver mutations and the involved signaling pathways 

(24, 40, 41, 54, 69, 78, 97, 113). It appears that there is a limited number of 

high frequency mutations, which fall into the category of driver mutations, even 

though the precise number is still under debate (69). With an average of 50 to 

80 mutations in an analysis of colon- and breast tumors, only less than 15 

could be classified as driver mutations (69). This certain number of driver 

lesions seems to affect a comparable number of core signaling pathways, 

leading to tremendous changes in signal transduction resulting in the 

cancerous phenotype (69).  

Driver mutations can be classified into two different groups: they either can 

result in the gain of function and/or overexpression of oncogenes, or in the 

loss of function or silencing of tumor suppressor genes (44, 69). 

As we have learned from studies of mouse models of human cancers, the 

continuous expression of certain oncogenes e.g. HRAS, KRAS, EGFR or Myc 

is often essential for tumor maintenance (17, 32, 49, 94). Here, KRAS-driven 

lung adenocarcinomas may serve as an example. In transgenic mice, which 

express mutant KRAS4bG12D in the presence of doxycycline in alveolar type II 

pneumocystes, we can observe formation of adenomas and adenocarcinomas 

of the lungs following doxycycline administration which hence results in 

expression of KRAS4bG12D within two months (32). However, after withdrawal 

of doxycycline, causing a rapid fall in the concentration of KRAS4bG12D, the 

tumor burden is dramatically decreased by three days and tumors are 

undetectable by one month (32). Analogous, transgenic mice expressing 

mutant EGFR (EGFRL858R or EGFR∆L747–S752) in type II pneumocytes under the 

control of a doxycycline-inducible promoter develop lung adenomocarcinomas 

after two weeks of induction of mutant EGFR (79). Withdrawal of doxycycline, 

which reduces the transgene expression, or treatment with erlotinib, a 
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reversible tyrosine kinase inhibitor of EGFR, causes rapid tumor regression, 

demonstrating that mutant EGFR is required for tumor maintenance (79). This 

dependency of tumors on continuous expression of oncogenes led to the term 

oncogene addiction (111). 

Similar findings have been made for tumor suppressor genes (111). Ventura et 

al. designed mice carrying a reactivatable TP53 knock out allele by inserting a 

transcription–translation stop cassette flanked by LoxP sites (LSL) in the first 

intron of the endogenous wild-type TP53 locus (105). Mice homozygous for 

TP53LSL/LSL are functionally equivalent to p53 null animals and therefore are 

cancer-prone (105). p53LSL/LSL mice were crossed with mice carrying a Cre-

recombinase-Oestrogen-Receptor-T2 allele targeted to the ubiquitously 

expressed ROSA26 locus (R26.Cre-ERT2) (105). Via the administration of 

tamoxifen, Cre recombinase can enter the nucleus and restore the function of 

p53 by permitting the recombination of genomic LoxP sites and thus 

eliminating the previously mentioned stop cassette (105). Depending on the 

tissue of origin, the restoration of TP53-function in mice following the formation 

of neoplastic lesions lead to tumor regression through apoptosis (lymphomas) 

or senescence followed by clearance through the immune system (sarcomas) 

(105). Similar findings were reported by others (70, 115). This dependency of 

tumors on continuous suppression of tumor suppressor gene activity led to the 

term tumor suppressor gene hypersensitivity (111). 

As a consequence, oncogene addiction and tumor suppressor gene 

hypersensitivity got into the focus of intensive investigation as attractive drug 

targets for the treatment of cancer (111). 

Targeting kinase oncogenes already has been proven to be relatively easy as 

many kinases are directly druggable by ATP-competetive kinase inhibitors (27, 

89, 94). Pharmacological inhibition of driver lesions, such as the BCR-ABL 

fusion protein by imatinib, the amplified or mutant EGF receptor by erlotinib or 

gefitinib or HER2 by trastuzumab already have become therapeutic options 

(27) (89, 94). 

Patients primary sensible to these compounds often develop secondary drug 

resistance after a certain time of treatment. However, there are some 

mutations responsible for secondary drug resistances, which are seen with 

high frequency. In about 50% of non-small cell lung cancer (NSCLC) patients 

who show initial response to the EGFR-inhibitors gefitinib or erlotinib and 
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subsequently progress, secondary drug resistance occurs due to a single 

missense mutation, T790M, within the EGFR-kinase domain (37). This 

mutation prevents the binding of gefitinib or erlotinib to the EGFR-kinase 

domain (37). With the irreversible EGFR/HER-2 kinase inhibitor neratinib it is 

possible to overcome the drug resistance following the T790M mutation in vitro 

(37) and another irreversible  EGFR/HER-2 kinase inhibitor, afatinib, has been 

proven to prolong progression free survival in NSCLC patients following 

occurence of the T790M mutation (73). With the development of lapatinib in 

trastuzumab resistance and dasatinib in imatinib resistance it also has been 

possible to design second generation substances for Her2 and BCR/ABL 

mutated malignancies, which are already in clinical use (12, 103). 

In contrast, decreased levels of tumor suppressor activity, e.g. of TP53 or 

ATM, have been thought to be "non-druggable" for a long time. Depending on 

the underlying molecular or genetic mechanism, decreased levels of functional 

tumor suppressors can already be restored in certain special cases. MDM2 is 

a ubiquitin ligase, which binds and negatively regulates p53 (104). The MDM2 

gene is overexpressed in many human malignancies, leading to decreased 

levels of p53 (104). Vassilev et al. identified a group of small-molecule 

inhibitors of the MDM2-p53 interaction, called nutlins, which prevent the 

interaction of p53 with its negative regulator MDM2, thus leading to an 

accumulation of p53 resulting in antitumor activity in vitro and in vivo (104).   

In case of loss of function mutation of a tumor suppressor, gene delivery could 

restore the lost tumor suppressor function. But, as the integration of a shuttle 

vector might be associated wit insertional mutagenesis, which can lead to the 

formation of malignancies, such as lymphomas, this strategy still remains in its 

infancy (90). However, using the principle of synthetic lethality is a very 

elegant and feasible way to target cells with loss of function mutations in tumor 

suppressor genes specifically by taking advantage of the disturbed pathways 

instead of trying to restore them. 

 
 

Synthetic lethality 
 

The concept of synthetic lethality has first been described by Theodosius 

Dobzhanzki, who experimented with Drosophila melanogaster in 1946 (25). 
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Two genes A and B are said to engage in a synthetic lethal interaction, if the 

mutation of either one of them is tolerated by the affected cell, while 

simultaneous mutations in genes A and B are lethal (56). 

gene Bgene A gene Bgene A gene Bgene A gene Bgene Agenotype:

phenotype: viable viable viable lethal
 

 

This situation offers an interesting perspective for the development of novel 

cancer therapies. Driver mutations leading to cancerous growth frequently 

result in an extensive rewiring of signal transduction pathways, which 

ultimately produces tumor cell-specific dependencies on otherwise non-

essential genes (56). Druggable protein-products of genes that are in a 

synthetic lethal interaction with primarily non-druggable driver mutations (e.g. 

loss of function mutations in TSG such as ATM, TP53, BRCA1/2 or gain of 

function mutations in oncogenes such as KRAS or MYC) should represent 

ideal drug-targets for the development of new anti-cancer therapies (56, 82). 

By exploiting the concept of synthetic lethality for non-druggable driver lesions, 

it might be possible to target these driver mutations indirectly (56, 82). 

Furthermore, pharmacological inhibition of the protein-product of a gene, 

which is in a synthetic lethal interaction with a driver lesion should kill 

cancerous cells with high selectivity as healthy cells lack the cancer cell-

specific driver-lesion (56, 82). 

The probably most advanced example of synthetic lethality in anticancer 

therapies is the use of Poly(ADP-ribose) polymerase 1 (PARP1)-inhibitors, 

such as olaparib, in BRCA1- or 2-deficient malignancies. The TSGs BRCA1 

and BRCA2 are involved in the DSB-repair via homologous recombination 

(HR) and mutations of either one of them are found in hereditary breast and 

ovarian cancers as well as in sporadic tumors, such as pancreatic cancer (8, 

35). Today, there is no viable therapeutic option to directly target the loss of 

function of BRCA1/2 (8, 35, 82). 

Figure 1. Concept of synthetic lethality: Mutation of either gene A or B is tolerated, while 
simultaneous mutations of both genes are lethal. 
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PARP1 is one of the key enzymes involved in base excision repair, which 

repairs base modifications prior to S-phase entry (11, 30). PARP1-inhibition 

leads to the formation of single strand breaks (SSBs) (11, 30). During S-phase 

these SSBs get encountered by DNA replication forks, leading to replication 

fork collapse and double strand break (DSB) formation (11, 30). In healthy 

cells, the newly synthesized sister chromatid can serve as a template for HR 

to repair the DSB (11, 30). However, due to their inherent HR defect, BRCA1- 

or -2-mutated cancer cells fail to repair those replication associated DSBs 

correctly and inhibition of PARP1 in these cells results in chromosomal 

instability, cell cycle arrest and subsequent apoptosis (11, 30). 

 

As the surrounding healthy tissue possesses functional BRCA1/2, it can 

perform HR and repair the DSB and thus cope with PARP-inhibition (30). 

Taken together, the exploitation of the synthetic lethality between BRCA1/2 

Figure 2. Targeted treatment of BRACA1/2-mutated cancer via inhibition of PARP1. (A) In 
healthy cells, base modifications get repaired using PARP1 dependent base excision repair 
prior to S-phase. (B) Pharmacological PARP1 inhibition results in unrepaired SSBs, leading 
to replication fork arrest associated with a DSB. In BRCA proficient cells the newly 
synthesized sister chromatid serves as a template for error-free HR of the DSB. (C) In 
BRCA-deficient cells HR of PARP1 inhibitor induced DSBs is interrupted and cells must 
rely on error-prone DNA repair pathways, such as NHEJ, resulting in genomic instability 
and subsequent cell death. 
Republished with kind permission of Hans Christian Reinhardt. 
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and PARP1 via PARP1-inhibition offers an opportunity to indirectly target the 

loss of function of BRCA1/2 with high specificity. 

 

 

Here, we focused on the development of novel therapeutic strategies for 

neoplasms carrying loss of function mutations in the prominent tumor 

suppressor gene ATM. 

 

ATM 
 

The multiple functions of ATM 
 

Ataxia telangiectasia-mutated (ATM) is known to be mutated in the autosomal 

recessive disease Ataxia telangiectasia (A-T). A-T patients carry homozygous 

mutations in ATM, resulting in cerebellar ataxia, cellular and humoral immune 

defects, progeric changes of the skin, including telangiectasia, endocrine 

disorders, gonadal abnormalities and an increased sensitivity to ionizing 

radiation (IR) (72). Most important, A-T patients suffer from genetic instability 

with an extraordinarily high incidence of cancer, especially for the 

development of lymphomas (252- and 750-fold increased risk for caucasians 

and african americans, respectively) (72, 74, 102).  

Today, we know that the ATM protein is one of the main actors involved in 

DNA damage response (DDR) signaling, mediating cell cycle arrest, DNA 

repair and/or induction of apoptosis (23). ATM is a serine/threonine kinase, 

which preferentially selects a (L)-S-Q-(E) or (L)-T-Q-(E) motif and belongs to 

the PI3K protein family (57, 95). This protein family, with PI3K as its founding 

member, can be further divided into four classes. ATM belongs to class IV, the 

phosphatidylinositol 3-kinase (PI3K)-related protein kinases (PIKK) (57, 95). 

Today, besides ATM there are five other known human PIKKs: mammalian 

target of rapamycin (mTOR), suppressor of morphogenesis in genitalia (SMG-

1), transformation/transcription domain-associated protein (TRRAP), ataxia- 

and Rad3-related (ATR) and DNA-dependent protein kinase, catalytic subunit 

(DNA-PKcs) (57, 65). Besides ATM, also ATR and DNA-PKcs are involved in 

the DDR (57, 65). 
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The genome of human nucleated cells is attacked by constant endogenous 

and exogenous genotoxic stress, which leads to the formation of many 

thousand DNA lesions per day (23). There are many different types of DNA 

lesions, but the DSB is arguably the most harmful. DSBs are caused by both, 

exogenous and endogenous agents, including IR, radiomimetic chemicals, as 

well as reactive oxygen species, naturally formed in the cell's metabolism (46). 

Another source of DSBs are specialized cellular processes, such as 

recombination during meiosis and processes of the immune system, including 

the V(D)J-recombination and immunoglobulin class switching (46). Lastly, 

SSBs can be converted into DSBs when the replication fork reaches a 

damaged template during DNA synthesis (see above) (46). The DSB is the 

most rare type of DNA lesion, but still, there is an estimated rate of 10 to 50 

DSBs per cell division (43, 106). 

Prior to mitosis, cells progress through a series of highly conserved cell cycle 

checkpoints to ensure a correct transmission of the genome to both daughter 

cells (48). In response to DNA damage, these checkpoints get activated to 

prevent further cell cycle progression (48). This allows time to either repair 

existing lesions or, if the lesion is beyond the capacity of DNA repair, to initiate 

apoptosis (48). Following encounter of a DSB, ATM is the core kinase 

orchestrating these distinct cell fate decision processes (23). 

 

 

Cell cycle checkpoints 
 

A dividing cell is running sequentially through four different phases of the cell 

cycle, G1, S, G2 and M. To guarantee accurate transmission of fully replicated 

and undamaged DNA, a cell has to pass three checkpoints before entering 

mitosis, the G1/S, intra-S and G2/M checkpoints (109). As shown in Figure 3, 

ATM serves as a master regulator initiating these cell cycle checkpoints in 

response to DSBs (23, 95). 

Even if we know many of the involved factors today, with every new discovery 

the picture is getting more complex and there are more questions arising (23, 

95). 
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Apoptosis 
 

If DNA damage is excessive, apoptosis can be initiated (110). Various studies 

have shown the ATM-Chk2-p53 axis to be the critical pathway linking the 

presence of genotoxic lesions with the induction of apoptosis (13, 53, 77). 

Following its activation, ATM phosphorylates p53 directly on serine-15, which 

enhances its activity as a transcription factor and prevents interaction with 

MDM2 (63, 95). In addition, ATM directly phosphorylates its downstream 

effector kinase Chk2 on threonine-68 within a serine/threonine cluster, 

Figure 3. Simplified model of ATM mediated induction of cell cycle arrest and apoptosis in 
response to DSBs. Arrows indicate stimulation; line through an arrow indicates inhibitory 
phosphorylation; T-shaped lines mark inhibition; P marks phosphorylation; DeP marks 
dephosphorylation; the number refers to the position of the phosphorylated residue; 
phosphorylated residues are serines, unless marked with Thr for Threonin. 
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ultimately leading to the activation of Chk2 (63, 84, 95). Active Chk2 in turn 

posphorylates p53 on serine-20, further preventing the interaction between 

p53 and MDM2 (23, 63, 95). MDM2 is a negative regulator of p53, which 

normally binds and thereby inactivates p53 as a transcription factor and also 

serves as an E3 ubiquitin ligase of p53, which leads to the nuclear export and 

degradation of p53 (93). MDM2 also gets directly phosphorylated by ATM on 

serine-395, which abrogates the nuclear export of the MDM2-p53 complexes 

(63, 95). Together, these events lead to the accumulation and a higher level of 

activity of p53 (23, 95). Accumulated and activated p53 eventually promotes 

cell death via the transactivation of pro-apoptotic genes, such as PUMA, 

NOXA and BAX (63). Alternatively, p53 can also lead to sustained cell cycle 

arrest as shown in figure 3. How p53 finally makes its choice between cell 

cycle arrest and apoptosis is a sophisticated process, including activities from 

other signal-transduction pathways and still needs to be further investigated 

(83, 87). 

 

DSB-repair 
 

Mammalian cells employ two different pathways to repair DSBs. Non-

homologous end joining (NHEJ) is an error-prone DSB repair pathway that is 

preferentially used during early phases of the cell cycle, when no sister 

chromatid is available for homologous recombination-mediated repair (46, 47). 

During NHEJ the non-cataytic subunits Ku70 and Ku80 form a heterodimer 

that binds to the free DNA ends and subsequently recruits the catalytic subunit 

DNA-PKcs (encoded by PRKDC) (64, 100). DNA-PKcs kinase activity is 

essential for XRCC4 and Lig4-mediated re-joining of the broken ends during 

the NHEJ process (22, 64, 99, 100). The second major DSB repair pathway, 

homologous recombination (HR), is largely restricted to the S- and G2-phases 

of the cell cycle, when a sister chromatid is available as a template for DSB 

repair (15). One of the early events necessary for completion of the HR 

process is DSB end-resection to create a single-stranded 3′-overhang, which 

becomes rapidly coated by the single strand-binding protein RPA and provides 

a substrate for activation of the proximal DDR kinase ATR (18). During 

ensuing steps of the HR process, RPA is replaced by Rad51, which mediates 

the core reactions of HR - homology searching, strand exchange, and Holliday 
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junction formation (15). There is strong evidence for a role of ATM in HR-

mediated DSB repair, with less pronounced effects on NHEJ (10, 16, 21, 61, 

68, 75, 86, 96, 114, 116). Cells derived from A-T patients show a subtle, but 

distinct defect in DSB repair, which is due to impaired assembly and 

functioning of the RAD51-associated protein complexes in the HR arm of DSB 

repair (75, 95, 116). Recruitment of Rad51 to DSBs requires resection of DNA 

ends to generate RPA coated 3′-single-stranded overhangs (50). This 

resection process and hence the Rad51 focus formation has been shown to 

be ATM-dependent (1, 50, 76). Recent reports further refined the current view 

of the role of ATM in HR-mediated DSB repair. ATM has been shown to be 

required for the HR-dependent DSB repair component in G2. This notion is 

further supported by the observation that IR-induced sister chromatid 

exchanges in G2 require ATM (7, 19, 51). Lastly, ATM appears to specifically 

mediate HR-dependent DSB repair in heterochromatin (HC). Indeed, ATM 

directly phosphorylates the heterochromatin-building factor KAP-1. This KAP-1 

phosphorylation is critical to allow HR-mediated repair in HC areas and KAP-1-

depletion is able to rescue the ATM repair defect in G1- and G2 (38, 39, 51). 

Thus, the apoptosis-evading effect of ATM-deficiency in human neoplasias 

likely comes at the cost of a reduced ability to repair chemotherapy-induced 

DSB lesions via error-free HR. 

 

 

Why is ATM mutation a problem? 
 

Intriguingly, ATM is not only mutated in A-T patients, but also in various 

human cancer entities, including lung, breast, pancreatic and ovarian cancer, 

as well as different Non-Hodgkin lymphomas (3, 8, 24, 26, 82, 88). 

By screening blood samples of B-cell chronic lymphatic leukemia (B-CLL) 

patients for frequent genomic aberrations, Döhner et al. found, that a deletion 

of 11q22-23, which is known to harbor the gene locus of ATM, has been the 

second most frequent cytogenetic aberration seen in approximately 33% of 

these patients (26). By correlating the aberrations with patient survival, they 

could show, that overall survival in patients carrying a CLL clone with deletion 

11q22-23 has been significantly worse than in those with a normal karyotype 

or a deletion on the long arm of chromosome 13 (26). Only the prognosis of 
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patients with a deletion of chromosome 17p13, known to harbor the gene 

locus of TP53, has been worse (26). The finding that ATM deletion in patients 

with B-CLL is a frequent mutation and associated with short survival and 

increased probability of disease progression could be confirmed by others (3, 

88). Austen et al. have gone further by dividing the patient groups with a 

deletion in 11q22-23 into two subgroups, regarding the ATM-status of the 

remaining allele (3). Here, there was a trend that patients with a remaining 

mutated ATM allele (ATMdel/mut) had a shorter survival compared with those 

with one remaining wildtype copy of ATM (ATMdel/wt) (3). They also found a 

significant higher frequency of resistance to chemotherapeutic drugs in the 

ATMdel/mut subset compared to the ATMdel/wt CLLs (3). 

Jiang et al. could recently demonstrate, that a loss of ATM or a decrease in its 

concentration, results in a dramatically increased resistance against genotoxic 

chemotherapy in TP53 wildtype settings (53). They also could verify these 

results by analyzing the 10-year-survival of chemotherapy-treated breast 

cancer patients (53). Here, patients with mutant ATM and wildtype TP53 had a 

significantly reduced survival compared to patients with wildtype ATM and 

wildtype TP53 (53). Jiang et al. further measured the transcriptional levels of 

both, pro-apoptotic and cell cycle arrest-mediating p53 target genes, in ATM 

wiltype and ATM knockdown cells in the presence of functional p53 (53). Here, 

the transcriptional levels of the pro-apoptotic genes PUMA and Noxa have 

been significantly reduced in ATM knockdown cells following doxorubicin 

treatment (53). In stark contrast, the up-regulation of the cell cycle mediating 

genes p21 and Gadd45α in response to doxorubicin treatment has been 

nearly unimpaired in ATM-depleted cells compared to their ATM-wildtype 

counterparts (53). These findings strongly indicate a specific role of ATM in the 

induction of p53-dependent apoptosis, whereas the induction of a p53-

dependent cell cycle arrest seems to be independent of ATM (53). 

By performing an expression analysis on a large panel of human epithelial 

tumor specimens Jiang et al. found an aberrant expression of ATM and TP53 

in about 9% and 29%, respectively (53). These data are well supported by 

another study by Ding et al. who performed large-scale sequencing of 188 

lung adenocarcinomas (24). Here, mutations in ATM and TP53 have been 

seen in about 8% and 36% of the 188 tumors, respectively (24). 
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Altogether, mutations in ATM in tumors with a wildtype TP53 are seen at high 

frequency. The selective decapitation of the pro-apoptotic p53 response via 

the mutation of ATM results in a dramatic resistance to chemotherapy and is 

associated with poor prognosis implicating a great need for the development 

of therapies targeting ATM-mutated malignancies. 

 

 

Synthetic lethality between ATM and DNA-PKcs 
 

A first finding leading into the direction of a targeted therapy for ATM-mutated 

malignancies was made by Gurley et al.. In 2001 they reported a synthetic 

lethality between simultaneous ATM knock out (encoding for the kinase ATM) 

and PRKDC mutation (encoding for the kinase DNA-PKcs) in murine embryos 

during embryogenesis (42). 

Based on the critical roles for ATM and PRKDC for HR and NHEJ, 

respectively, Jiang et al. proposed a synthetic lethal interaction between the 

two in form of an addiction on NHEJ and thus DNA-PKcs not only during 

embryogenesis, but also in ATM deficient malignancies (53). They could 

demonstrate hyperphosphorylation of DNA-PKcs on threonine 2606 

(corresponding to human threonine 2609) in ATM-deficient MEFs, following 

doxorubicin treatment and doxorubicin treated PRKDC/ATM double-

knockdown tumors showed dramatically increased cell-death when compared 

with ATM single-knockdowns (53). This effect could also been shown 

pharmacologically, using a DNA-PKcs-inhibitor and Jiang et al. emphasized on 

the further investigation of these findings as a potential targeted therapy for 

patients bearing an ATM-deficient tumor (53). 
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Figure 4. Proposed synthetic lethality between ATM and DNA-PKcs. Following 
pharmacological inhibition of DNA-PKcs resulting in abrogation of NHEJ, cells can still rely 
on ATM-dependent HR to repair naturally occurring DSBs. Thus, the phenotype is viable. 
ATM-deficient cancer cells are unable to perform HR. Pharmacological abrogation of NHEJ 
should result in genomic instability ultimately leading to death of the cells. 
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CANCER

Therapeutic Targeting of a Robust Non-Oncogene
Addiction to PRKDC in ATM-Defective Tumors
Arina Riabinska,1* Mathias Daheim,1* Grit S. Herter-Sprie,1† Johannes Winkler,2,3

Christian Fritz,1,3 Michael Hallek,1 Roman K. Thomas,3,4,5 Karl-Anton Kreuzer,1 Lukas P. Frenzel,1,3

Parisa Monfared,1 Jorge Martins-Boucas,1 Shuhua Chen,1*‡ Hans Christian Reinhardt1,3,5*‡

When the integrity of the genome is threatened, cells activate a complex, kinase-based signaling network to arrest
the cell cycle, initiate DNA repair, or, if the extent of damage is beyond repair capacity, induce apoptotic cell death.
The ATM protein lies at the heart of this signaling network, which is collectively referred to as the DNA damage
response (DDR). ATM is involved in numerous DDR-regulated cellular responses—cell cycle arrest, DNA repair, and
apoptosis. Disabling mutations in the gene encoding ATM occur frequently in various human tumors, including
lung cancer and hematological malignancies. We report that ATM deficiency prevents apoptosis in human and
murine cancer cells exposed to genotoxic chemotherapy. Using genetic and pharmacological approaches, we dem-
onstrate in vitro and in vivo that ATM-defective cells display strong non-oncogene addiction to DNA-PKcs (DNA-
dependent protein kinase catalytic subunit). Further, this dependence of ATM-defective cells on DNA-PKcs offers a
window of opportunity for therapeutic intervention: We show that pharmacological or genetic abrogation of DNA-
PKcs in ATM-defective cells leads to the accumulation of DNA double-strand breaks and the subsequent CtBP-interacting
protein (CtIP)–dependent generation of large single-stranded DNA (ssDNA) repair intermediates. These ssDNA structures
trigger proapoptotic signaling through the RPA/ATRIP/ATR/Chk1/p53/Puma axis, ultimately leading to the apoptotic
demise of ATM-defective cells exposed to DNA-PKcs inhibitors. Finally, we demonstrate that DNA-PKcs inhibitors are
effective as single agents against ATM-defective lymphomas in vivo. Together, our data implicate DNA-PKcs as a
drug target for the treatment of ATM-defective malignancies.

INTRODUCTION

In response to DNA damage, cells activate a signaling cascade to pre-
vent further cell cycle progression. Activation of this DNA damage
response (DDR) network allows time for DNA repair or, if the lesions
are beyond repair capacity, leads to the induction of apoptosis (1). The
proximal DDR kinase ATM, which is mutated in the human cancer–
prone disorder ataxia-telangiectasia (A-T), is a master regulator of three
essential DDR processes—cell cycle regulation, DNA repair, and apo-
ptosis. ATM affects the different cellular outcomes through the phos-
phorylation of numerous substrates, including H2AX, MDC1, Nbs1,
Chk2, p53, and MDM2 (2, 3). ATM is frequently mutated in various
sporadic human cancers, and biallelic loss of ATM is associated with
chemotherapy resistance and poor survival (4–10). It has been recently
shown that ATM is required for the induction of p53-driven apoptosis
after genotoxic chemotherapy (10). Thus, ATM deficiency is likely a
selected genomic aberration in cancer because it protects from p53-
driven apoptosis. Beyond mediating apoptosis, ATM also plays a crit-
ical role in DNA double-strand break (DSB) repair. Mammalian cells
use two distinct DSB repair pathways. Nonhomologous end joining
(NHEJ) is an error-prone DSB repair pathway that is preferentially

used during early phases of the cell cycle, when no sister chromatid
is available (11). During NHEJ, the noncatalytic subunits Ku70 and
Ku80 form a heterodimer that binds to the free DNA ends and sub-
sequently recruits DNA-PKcs (DNA-dependent protein kinase cata-
lytic subunit). DNA-PKcs kinase activity is essential for XRCC4- and
Lig4-mediated rejoining of the broken ends during NHEJ (12). The sec-
ond major DSB repair pathway, homologous recombination (HR), is
largely restricted to the S and G2 phases of the cell cycle, when a sister
chromatid is available as a template for DSB repair (13). One of the
early events necessary for completion of the HR process is DSB end
resection to create a 3′ single-stranded overhang, which becomes rap-
idly coated with RPA and provides a substrate for activation of the
proximal DDR kinase ATR (14). During the ensuing steps of the
HR process, RPA is replaced by Rad51, which mediates the core reac-
tions of HR, namely, homology searching, strand exchange, and Holliday
junction formation (13). There is strong evidence for a role of ATM
in HR-mediated DSB repair, with less pronounced effects on NHEJ
(15–18). Cells derived from A-T patients show a DSB repair defect, which
is due to impaired assembly and functioning of the RAD51-associated
protein complexes in the HR arm of DSB repair (16, 18, 19). Recruitment
of Rad51 to DSBs requires resection of DNA ends to generate RPA-coated
3′ single-stranded overhangs. This resection process and the resulting
Rad51 focus formation are ATM-dependent (20–22). ATM is required
for the HR-dependent DSB repair component in G2, as supported by
the observation that ionizing radiation–induced sister chromatid exchanges
in G2 require ATM (23–25). Thus, the apoptosis-evading effect of ATM
deficiency in human neoplasias likely comes at the cost of a reduced
ability to repair chemotherapy-induced DSB lesions via error-free HR.

Because ATM-deficient human tumors frequently display chemo-
therapy resistance (4, 6–10), one might speculate that chemotherapy-
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induced DSBs are repaired in ATM-deficient cancer cells to ensure long-
term survival. It is likely that alternative, error-prone DSB repair pathways,
such as NHEJ, compensate for the HR defect in ATM-deficient cells.
Consistent with the idea that NHEJ might serve as a backup mechanism
for failed HR-mediated DSB repair, mice deficient for both ATM and
PRKDC (encoding DNA-PKcs) display early embryonic lethality (26),
whereas animals lacking either ATM or PRKDC are viable (27, 28). Here,
we aimed to characterize DNA-PKcs as a drug target for the treatment of
inherently chemotherapy-resistant ATM-defective neoplastic disease.

RESULTS

ATM-defective cancer cells display DNA-PKcs addiction
We have recently shown that ATM depletion renders murine cells and
tumors resistant to genotoxic chemotherapy, mimicking the effects
of disabling ATM mutations in human
patients (10). We further showed that
DNA-PKcs repression in ATM-depleted
murine embryonic fibroblasts increases
their sensitivity to DSB-inducing chemo-
therapy (10). However, it remains unclear
whether ATM-defective human cancer
cells display a similar addiction to DNA-
PKcs and whether DNA-PKcs is indeed
a druggable target for the treatment of
ATM-defective cancers. Finally, the molec-
ular details of the apparent synthetic lethal
interaction between ATM and PRKDC re-
main elusive.

To test whether ATM-defective cancer
cells display DNA-PKcs addiction, we in-
vestigated HT144 and H1395 cells. The
human melanoma cell line HT144 car-
ries a homozygous GG to AA substitution
at codon 2845 in ATM, resulting in a pre-
mature stop codon (29). In addition, this
cell line carries a homozygous BRAFV600E

mutation. As an ATM-proficient control
for this cell line, we used BRAFV600E-driven
A375 melanoma cells. The human non–
small cell lung cancer (NSCLC) cell line
H1395 carries an A toG substitution at co-
don 2666 of ATM, resulting in a Thr to
Ala mutation in the ATM Ser/Thr kinase
domain (30). As an ATM-proficient con-
trol for this cell line, we used A549 NSCLC
cells. All four cell lines are p53-proficient.
We assessed the effects of DNA-PKcs in-
hibition using the DNA-PKcs inhibi-
tor KU-0060648. Cells were treated for
24 hours with KU-0060648 (0.5 mM), the
DSB-inducing topoisomerase II inhibitor
etoposide (10 mM), or a combination of
both compounds (Fig. 1A). Apoptosis was
assessed by flow cytometry after cells had
been stained with antibodies to cleaved
caspase-3. Etoposide induced widespread

apoptosis in the ATM-proficient cell lines A375 (90.6 ± 6.8%) and
A549 (54.6 ± 5.4%) (Fig. 1A), whereas ATM-defective HT144 and
H1395 cells were resistant against etoposide with only 14.2 ± 2.5%
and 15.0 ± 2.6% of apoptotic cells after 24 hours, respectively. When
these cell lines were exposed to KU-0060648, we observed a clear
segregation on the basis of their ATM status. ATM-proficient cells
showed only marginally increased apoptosis, compared to the non-
treated controls (Fig. 1A), whereas the ATM-defective cell lines dis-
played a marked apoptotic response after 24 hours of exposure to
KU-0060648. Specifically, HT144 cells showed 44.3 ± 10.3% and
H1395 cells displayed 49.6 ± 10.2% apoptotic cells compared to less
than 3% of apoptotic cells in the respective untreated controls (Fig.
1A). Combination treatment with etoposide plus KU-0060648 had
no additional significant effect on the apoptotic response of ATM-
defective cells compared to either drug alone (Fig. 1A). Similar effects
were observed when we repeated these experiments and replaced
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Fig. 1. Non-oncogene addiction to DNA-PKcs in ATM-defective human cancer cells. (A) ATM-
proficient (A375 and A549) and ATM-defective (HT144 and H1395) cells were grown to assess their response
to etoposide (10 mM), the DNA-PKcs inhibitor KU-0060648 (KU) (0.5 mM), or a combination treatment. After
24 hours, cells were harvested, and cleaved caspase-3 staining was analyzed by flow cytometry to assess
the percentage of apoptotic cells (bars indicate means ± SEM, n = 12). (B) To exclude off-target effects of
KU-0060648, we treated cells as in (A) with the exception that KU-0060648 was replaced by NU7441 (NU)
as an alternative DNA-PKcs inhibitor (bars indicate means ± SEM, n = 12). (C) Clonogenic survival assay.
ATM-proficient (A375 and A549) and ATM-defective (HT144 and H1395) cells were treated with 10 ml of
phosphate-buffered saline (PBS) (vehicle control) or exposed to etoposide (10 mM), KU-0060648 (0.5 mM),
or a combination treatment for 12 hours, washed, and replated at 5000 cells per 10-cm dish. Fourteen
days later, colonies were stained and counted. (D) Quantification of the experiments described in (C) [bars
indicate means ± SEM (n = 3), normalized to untreated control]. *P < 0.05, two-tailed Student’s t test.
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KU-0060648 with NU7441 (0.5 mM) as an alternative DNA-PKcs in-
hibitor (Fig. 1B).

To validate these experiments, we used colony survival assays. Cells
were left untreated and exposed to etoposide, KU-0060648, or a com-
bination treatment consisting of etoposide plus KU-0060648 for 12 hours
(Fig. 1C). Surviving colonies were assayed 14 days after reseeding sub-
sequent to completion of the different treatments. ATM-defective
cells displayed etoposide resistance compared to their ATM-proficient
counterparts, which is reflected in significantly more surviving colo-
nies in HT144 and H1395 cells (Fig. 1, C and D). In contrast, ATM-
defective cells appeared to critically depend on DNA-PKcs signaling
for their survival, even in the absence of exogenous genotoxic stress.
Treatment with KU-0060648 as a single agent resulted in a significant
decrease in the number of surviving colonies in HT144 and H1395
cells compared to untreated controls. This is in contrast to their ATM-
proficient counterparts, which show essentially no difference in the num-
ber of surviving colonies when comparing control cells to those exposed
to KU-0060648 (Fig. 1D). These data suggest that ATM deficiency is
associated with marked etoposide resistance in human cancer cells.
Furthermore, the observation that DNA-PKcs inhibition promotes
apoptosis in ATM-defective cells suggests that these cells are DNA-
PKcs–dependent.

Because studies with adenosine triphosphate–competitive inhibi-
tors are frequently hampered by off-target effects, we next performed
genetic studies to further assess the DNA-PKcs dependence of ATM-
defective cancer cells. To examine whether DNA-PKcs was required for
survival in ATM-proficient and ATM-defective human cancer cells, we
used RNA interference (RNAi) to deplete DNA-PKcs and examined
population doubling rates upon knockdown (Fig. 2, A to D). Cells were
infected with lentiviruses delivering short hairpin RNAs (shRNAs)

against luciferase (control) or DNA-PKcs. We used three DNA-PKcs–
targeting shRNAs with different degrees of knockdown efficiency,
essentially allowing us to analyze an allelic series of DNA-PKcs ex-
pression levels (fig. S1). DNA-PKcs depletion completely prevented
further proliferation of ATM-defective H1395 and HT144 cells when
we used the two most potent shRNAs (#1 and #2) (Fig. 2, A and B).
When we tested the effects of an shRNA with a less strong knockdown
efficiency (#3), proliferation of both H1395 and HT144 cells was
markedly reduced, but not completely abolished, compared to cells ex-
pressing control shRNA. In contrast, DNA-PKcs repression in ATM-
proficient cells did not significantly reduce the population doubling
rates in these cells, indicating that DNA-PKcs is not essential in
ATM-proficient settings (Fig. 2, C and D).
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Fig. 2. Genetic validation of the synthetic lethal interaction between
ATM and PRKDC. (A to D) Effect of a series of DNA-PKcs–targeting shRNAs
with varying degrees of knockdown efficiency. ATM-defective H1395 (A)
and HT144 (B) cells, as well as ATM-proficient A549 (C) and A375 (D) cells,
were transduced with control shRNAs or three distinct DNA-PKcs–targeting
shRNAs, and population doublings were recorded. Experiments shown in
(A) to (D) were performed at n = 8 (bars indicate means ± SEM). (E and F)
ATM-defective HT144 (E) and H1395 (F) cells were transiently transfected
with a plasmid encoding Flag.ATM and GFP. Twenty-four hours later, cells
were treated with etoposide (10 mM) for 24 hours and harvested, and ap-
optosis was assessed by flow cytometry. GFP coexpression was used to
separate ATM-complemented cells from the parental cells [top left panels
in (E) and (F)]. Gate M1 indicates GFP-negative cells, and gate M2 indicates
GFP-expressing cells. The bottom panels in (E) and (F) show histogram
plots of the parental (left) and ATM-complemented (right) HT144 and
H1395 cells. Gates M3 and M4 indicate the fraction of cleaved caspase-3–
positive parental and ATM-complemented cells, respectively. Quantification
of the individual experiments is shown at the top right of (E) and (F). Bars
indicate means ± SEM (n = 8). *P < 0.05, two-tailed Student’s t test. (G) A375
and A549 cells were infected with lentiviruses encoding ATM-targeting or
luciferase control shRNAs. Cells were left untreated or exposed to etoposide
(10 mM), KU-0060648 (KU) (0.5 mM), or a combination treatment for 24 hours
before apoptosis was quantified using flow cytometry. The experiments
shown in (G) were performed at n = 8 (bars indicate means ± SEM). (H)
Em:MYC;ARF−/−-driven cells were infected with retroviruses encoding ATM-
targeting or luciferase control shRNAs. Upon puromycin selection, cells were
left untreated or exposed to etoposide (10 mM), KU-0060648 (0.5 mM), or a
combination treatment for 24 hours before apoptosis was quantified using
flow cytometry (bars indicate means ± SEM, n = 9).
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We next performed a set of complementation experiments in
which we compared the effect of KU-0060648 in the ATM-defective
parental cell lines H1395 and HT144 and their ATM-complemented
counterparts. Cells were transfected with a plasmid driving the expres-
sion of ATM and green fluorescent protein (GFP) (fig. S2). We chose
conditions under which 40 to 50% transfection efficiency was reached.
Transfected cultures were exposed to etoposide for 12 hours, and ap-
optosis was analyzed by flow cytometry. Coexpression of GFP and
ATM allowed the separate gating of ATM-defective (GFP-negative)
and ATM-complemented (GFP-positive) cells (Fig. 2, E and F). In keep-
ing with our hypothesis, we found that complementation of ATM-
defective and inherently chemotherapy-resistant HT144 and H1395
cells significantly enhanced their apoptotic response to etoposide
(Fig. 2, E and F, bottom panels).

If ATM deficiency was indeed responsible for the etoposide re-
sistance and DNA-PKcs addiction that we observed in HT144 and
H1395 cells, one might expect ATM depletion to produce a similar
phenotype in initially ATM-proficient cells. To test this, we infected
A375 and A549 control cells with lentiviruses expressing ATM-targeting
shRNAs and analyzed the apoptotic response of these cells to KU-
0060648, etoposide, or a combination treatment (Fig. 2G and fig.
S3). Consistent with our hypothesis, we found that ATM depletion
rendered A375 and A549 cells resistant to etoposide and exquisitely
sensitive to DNA-PKcs inhibition (Fig. 2G). To further prove our
hypothesis that ATM deficiency is associated not only with resistance
against genotoxic chemotherapy but also with DNA-PKcs depen-
dence, we turned to murine Em:MYC;ARF−/−-driven B–non-Hodgkin’s
lymphoma (B-NHL) cells (Fig. 2H and fig. S4). To address the ef-
fect of ATM depletion in an otherwise isogenic system, we infected
Em:MYC;ARF−/−-driven lymphoma cells with retroviruses express-
ing ATM-targeting shRNA and compared the effects of KU-0060648,
etoposide, or a combination treatment. In agreement with our initial
experiments, we found that ATM-proficient control cells were highly
sensitive to etoposide, although this sensitivity was completely abol-
ished when ATM was depleted (Fig. 2H). Furthermore, ATM-depleted
Em:MYC;ARF−/− lymphoma cells became DNA-PKcs–addicted because
KU-0060648 exposure induced massive apoptosis in these cells (Fig.
2H). This DNA-PKcs addiction of ATM-depleted cells was likely
not due to DNA-PKcs overexpression in ATM-depleted cells. When
we performed immunoblotting to analyze DNA-PKcs expression levels
and activation (as monitored by an antibody detecting phospho-
Thr2647), we found that knockdown of ATM did not result in increased
DNA-PKcs expression, but in increased DNA-PKcs activity, even in the
absence of genotoxic stress (fig. S5). Together, these data indicate that
ATM deficiency is associated with resistance against genotoxic chemo-
therapy, likely through an abrogation of p53-driven apoptosis. On the
other hand, this apoptosis evasion appears to come at the cost of a non-
oncogene addiction to DNA-PKcs, which could be targeted with DNA-
PKcs inhibitors.

ATM-defective cells fail to repair DSBs when DNA-PKcs
is inhibited
We next aimed to mechanistically characterize the DNA-PKcs addic-
tion of ATM-defective cells. Beyond mediating apoptosis (19), ATM
has also been shown to be an important driver of HR-mediated DSB
repair (15–18). However, because ATM-defective cancers appear to be
largely resistant against genotoxic chemotherapy, these HR-defective
malignancies may use alternative DSB repair pathways, such as DNA-

PKcs–dependent NHEJ, to repair DSBs. If this was the case, one might
expect to observe the prolonged persistence of unrepaired DSBs in
ATM-defective cells that had been exposed to DNA-PKcs inhibitors.
To test this, we used immunofluorescence to monitor the persistence of
etoposide-induced gH2AX and 53BP1 nuclear foci in ATM-proficient
and ATM-deficient cells exposed to KU-0060648 or vehicle control.
We chose to monitor gH2AX and 53BP1 foci because both are es-
tablished markers of DSBs (31, 32).

We treated ATM-proficient (A375 and A549) and ATM-deficient
(HT144 and H1395) cells for 20 min with a low-dose etoposide pulse
(0.1 mM) to induce DSBs. In a parallel experiment, cells were pre-
treated with KU-0060648 for 1 hour before addition of etoposide.
KU-0060648 remained present in the medium after etoposide removal.
In both experiments, cells were protected from premature apoptosis by
addition of the irreversible pan-caspase inhibitor Z-VAD (10 mM),
which was applied together with etoposide. Consistent with the induc-
tion of DSBs by etoposide, we detected similar numbers of gH2AX and
53BP1 foci in all cell lines 1 hour after etoposide removal (Fig. 3, A to
D). Furthermore, there were no detectable differences in the repair ki-
netics of all cell lines, when the number of gH2AX/53BP1 foci–positive
cells was assessed at 72 and 96 hours. However, marked differences in the
DSB repair kinetics could be observed in ATM-proficient and ATM-
deficient cells that were treated with KU-0060648. ATM-proficient
cells showed no evidence of increased gH2AX or 53BP1 foci at 72 and
96 hours compared to vehicle-treated controls. This picture was differ-
ent in ATM-defective cells treated with KU-0060648. Both HT144 and
H1395 cells displayed persistent gH2AX and 53BP1 foci even 96 hours
after etoposide removal, when DNA-PKcs was inhibited (Fig. 3, A
to D). These observations are in line with a DSB repair defect being
present in cells lacking both ATM and DNA-PKcs activity.

ATM- and DNA-PKcs–defective cancer cells generate
RPA-coated single-stranded DNA intermediates
We next aimed to further characterize the DSB repair defect in ATM-
defective cells. Recruitment of Rad51, the core component of the HR
machinery, to DSBs requires resection of DNA ends to generate RPA-
coated 3′ single-stranded DNA (ssDNA) overhangs. To assess whether
ATM-defective cells that were exposed to KU-0060648 initiated early
steps of the HR process, we submitted ATM-proficient and ATM-
deficient cells to the same treatment regimen as in Fig. 3 to monitor
the occurrence and persistence of nuclear RPA foci, markers of ssDNA
repair intermediates (33). All four cell lines displayed prominent RPA
foci 1 hour after removal of etoposide, regardless of ATM status and
independent of the presence or absence of a DNA-PKcs inhibitor (Fig.
4, A and B). At 72 and 96 hours after etoposide exposure, the ATM-
proficient cells (A375 and A549) remained largely RPA foci–negative,
paralleling their lack of gH2AX and 53BP1 foci and indicative of com-
pleted DSB repair at these late time points. There was no difference
among the ATM-competent cells that were exposed to either KU-
0060648 or vehicle. Furthermore, RPA foci were largely undetectable
in ATM-defective HT144 and H1395 cells at 72 and 96 hours, when no
DNA-PKcs inhibitor was present. In contrast, when ATM-defective
cells were treated with an etoposide pulse and KU-0060648, large
RPA foci were detectable in these cells 72 and 96 hours after etoposide
removal. These data indicate that DSBs not only persist for extended
periods in ATM-defective cells that are exposed to DNA-PKcs inhibitors
but also are extensively modified in these cells to yield RPA-coated
ssDNA structures.
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RPA-coated ssDNA triggers activation of the
ATR/Chk1/p53/Puma axis
We next asked whether ssDNA repair intermediates
might induce proapoptotic signaling in ATM-defective
cells. Because both the HT144 and H1395 cell lines
are p53-proficient, we reasoned that the KU-0060648–
induced apoptosis of these cells might be p53-dependent.
Numerous kinases can activate p53, including ATM,
DNA-PKcs, and ATR (34). Intriguingly, RPA-coated
ssDNA recruits ATR through binding of its regulatory
subunit ATRIP to RPA (14). We reasoned that the RPA-
coated ssDNA that we had observed in ATM-defective cells
treated with KU-0060648 might trigger an ATR-
dependent p53 activation, ultimately promoting p53-
driven apoptosis. To test this, we used immunoblotting
to assess the activation status of the ATR/Chk1/p53
signaling axis in ATM-proficient and ATM-deficient
cells that were treated with etoposide, KU-0060648, or
vehicle control. ATR activation was monitored with an
antibody detecting a phospho-epitope on Thr1989. Chk1
activation was assessed with an antibody to phospho-
Ser317. p53 activation was assessed with an antibody de-
tecting total (stabilized) p53 and an antibody directed
against phospho-Ser20, the residue targeted by Chk1.
Using these assays, we found the ATR/Chk1/p53 axis
to be activated in the ATM-defective cell lines 24 hours
after addition of KU-0060648 (Fig. 5A). Consistent with
the primary resistance of these ATM-defective cells, we
failed to detect any activation of the ATR/Chk1/p53 axis
after etoposide treatment. A strikingly different activation
pattern of the ATR/Chk1/p53 axis emerged in ATM-
proficient cell lines. Twenty four hours after etoposide,
these cells displayed prominent activation of ATR, Chk1,
and p53, whereas KU-0060648 treatment did not result
in any substantial activation of the ATR/Chk1/p53 axis
(Fig. 5A). These data suggest that DNA-PK inhibition
leads to ATR/Chk1-dependent p53 activation in ATM-
defective cells.

To assess the outcome of this p53 accumulation, we
used quantitative polymerase chain reaction (qPCR) to
monitor the expression of the p53 target genes PUMA,
BAX, BAK, GADD45A, and RPRM. KU-0060648 treat-
ment markedly increased mRNA expression of the pro-
apoptotic p53 target gene PUMA in ATM-defective cells
(Fig. 5, B and C). In contrast, etoposide treatment did
not result in a significant change in the expression level
of any of the investigated p53 target genes. These obser-
vations agree with a primary resistance of ATM-defective
cells to DNA damage–induced apoptosis through the
p53 pathway. However, this resistance appears to be over-
come by exposure of ATM-defective cells to KU-0060648,
suggesting that repression of DNA-PK activity in ATM-
defective cells leads to an ATR/Chk1-dependent activation
of the proapoptotic p53/Puma axis, likely as a result of
aberrant ATR activation downstream of RPA-coated
ssDNA repair intermediates.

We next asked whether interception of signaling
through the ATR/Chk1/p53/Puma axis would abolish
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Fig. 3. DSB repair defect resulting from DNA-PKcs inhibition in ATM-defective cells.
(A and B) Treatment of ATM-defective cells with KU-0060648 (KU) results in persistent DSBs
as indicated by persistent nuclear gH2AX staining. ATM-proficient (A375) and ATM-defective
(HT144) human melanoma cells (A), as well as ATM-proficient (A549) and ATM-defective
(H1395) human NSCLC cells (B), were exposed to a low-dose etoposide pulse (0.1 mM,
20 min) and harvested 1, 72, and 96 hours later. Control cells were left untreated. In
a parallel experiment, cells were pretreated with KU-0060648 (0.5 mM) for 1 hour before
addition of etoposide. Top panels show a quantification of these experiments (n = 9; bars
indicate means ± SEM). Bottom panels depict representative original immunofluorescence
data. (C and D) Exposure of ATM-defective HT144 and H1395 cells to KU-0060648 results in
persistent DSBs as indicated by persistent 53BP1 nuclear foci. A375, A549, HT144, and
H1395 cells were treated as in (A) and (B) and stained with antibodies detecting 53BP1.
Top panels show a quantification of these experiments (n = 7, bars indicate means ± SEM).
Bottom panels depict representative original immunofluorescence data.
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KU-0060648–induced apoptosis in ATM-defective cells. To this end,
we exposed ATM-proficient and ATM-deficient cells to either etoposide,
etoposide plus KU-0060648, or etoposide plus KU-0060648 plus the
Chk1 inhibitor AZD-7762 (200 nM) for 12 hours. Addition of either
KU-0060648 or KU-0060648 plus AZD-7762 did not significantly al-
ter the degree of apoptosis in ATM-proficient cells when compared to
the effects of etoposide alone (fig. S6, A and B). In contrast, exposure of
ATM-defective cells to a combination treatment consisting of etoposide
plus KU-0060648 led to the robust induction of apoptosis. Addition of
AZD-7762 to this regimen led to a precipitous drop in the percentage
of apoptotic cells, suggesting that signaling through the ATR/Chk1
axis is involved in mediating apoptosis in DNA-PKcs inhibitor–treated
ATM-defective cells (fig. S6, C and D).

To further interrogate the contribution of the ATR/Chk1/p53/Puma
axis in mediating KU-0060648–induced apoptosis in ATM-defective
cells, we next assessed the effects of Puma repression in this setting.
ATM-proficient and ATM-deficient cells were infected with lenti-
viruses encoding either control or Puma-targeting shRNAs. Cells were
then treated with KU-0060648, etoposide, or a combination of both com-
pounds for 24 hours before apoptosis was assessed. As expected, deple-
tion of Puma resulted in marked resistance of ATM-proficient cells to
etoposide or combination treatment with etoposide plus KU-0060648
(fig. S7, A and B). Loss of Puma also repressed the apoptotic response
of ATM-deficient HT144 and H1395 cells treated with KU-0060648
or a combination of etoposide plus KU-0060648 (fig. S7, C and D). These
data lend further support to our hypothesis that signaling through the
ATR/Chk1/p53/Puma axis is involved in mediating KU-0060648–
dependent apoptosis in ATM-defective cells.
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Fig. 4. RPA-coated ssDNA intermediates in ATM-defective cells with-
out functional DNA-PKcs. (A and B) ATM-proficient (A375) and ATM-
defective (HT144) melanoma cells, as well as ATM-proficient (A549) and
ATM-defective (H1395) NSCLC cells, were exposed to a low-dose etoposide
pulse (0.1 mM, 20 min) and harvested 1, 72, and 96 hours later. Control cells
were left untreated. In a parallel experiment, cells were pretreated with
KU-0060648 (KU) (0.5 mM) for 1 hour before addition of etoposide. RPA foci
were visualized using indirect immunofluorescence. Top panels show a
quantification of these experiments (n = 12; bars indicate means ± SEM).
Bottom panels depict representative original immunofluorescence data.
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(10 mM), or treated with KU-0060648 (KU) (0.5 mM). Cells were harvested after
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vested, and analyzed by qPCR. Expression levels of the indicated p53 target
genes were normalized against glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) expression (bars indicate means ± SEM, n = 4).
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Repression of CtBP-interacting protein abolishes
3′-ssDNA repair intermediates and prevents apoptosis
CtBP-interacting protein (CtIP) is required for the resection of DNA
ends to generate RPA-coated 3′-ssDNA overhangs (35, 36). There
is accumulating evidence suggesting a two-step model for DSB re-
section where CtIP and the Mre11/Rad50/Nbs1 complex cooperate
to initiate resection before the exonuclease Exo1 continues the re-
section process to generate the 3′-ssDNA tails required for the HR
process (37). Our data suggested that the generation of RPA-coated
ssDNA repair intermediates triggered ATR/Chk1 activation, ulti-
mately promoting p53-dependent PUMA induction and subse-
quent apoptosis of ATM-defective cells treated with KU-0060648.
We hence speculated that repression of CtIP might prevent the
generation of ssDNA intermediates and thus might preclude activa-
tion of the proapoptotic ATR/Chk1/p53/Puma axis in ATM-defective
cells treated with KU-0060648. To test this, we compared the dynam-
ics of nuclear RPA foci formation in ATM-defective HT144 and
H1395 cells expressing either control or CtIP-targeting shRNAs
(fig. S8). As shown in fig. S9A, CtIP depletion significantly reduced
the number of RPA foci–positive HT144 and H1395 cells 1 hour after
etoposide removal and almost completely blocked the generation of
RPA foci at 72 and 96 hours. As described by others, we found that
shRNA-mediated depletion of CtIP caused hypersensitivity toward
etoposide (fig. S9B) (38). CtIP depletion also resulted in a significant
(P < 0.05) reduction of KU-0060648 toxicity when applied alone or
in combination with etoposide (fig. S9B). These results point toward
a critical role for CtIP not only in mediating the resection of DSBs in
DNA-PK inhibitor–treated ATM-defective cells but also in promot-
ing subsequent activation of apoptosis.

ATM-defective chronic lymphocytic leukemia cells display
DNA-PKcs addiction
Deletions on the long arm of chromosome 11 (harboring the ATM
gene located at 11q22.3–11q23.1) are found in about 20% of patients
with chronic lymphocytic leukemia (CLL) and identify a subgroup
with poor outcome (9). CLL with del(11q) can be further divided into
two subgroups based on the integrity of the residual ATM allele. Pa-
tients with biallelic ATM alterations display defective responses to cy-
totoxic chemotherapeutics in vitro and a poorer clinical outcome (4).
Hence, we next aimed at validating our findings in primary CLL cells
derived from patients with either del(11q) or a wild-type configuration
on 11q. Patients were stratified as being wild type or del(11q) by clinical-
grade fluorescence in situ hybridization (FISH) analysis (Fig. 6, A
and B). Primary CLL cells were seeded onto a feeder layer of CD40
ligand–expressing NIH 3T3 cells before treatment with KU-0060648,
etoposide, or a combination of both compounds. Wild-type CLL cells
were highly sensitive to etoposide but resistant against KU-0060648
(Fig. 6). Addition of KU-0060648 to the etoposide regimen did not sig-
nificantly enhance the response of the ATM-proficient CLL cells. In con-
trast, del(11q) CLL cells were exclusively sensitive to KU-0060648 but
largely resistant to etoposide (Fig. 6). These data suggest that DNA-PK
inhibition might be a useful strategy to treat chemotherapy-resistant,
ATM-defective CLLs.

DNA-PKcs is a valid target for the therapy of
ATM-defective lymphoma
To validate our observations in vivo, we used the Em:MYC;ARF−/−-driven
B-NHL model (10). Lymphoma cells derived from Em:MYC;ARF−/−

mice were infected with lentiviruses encoding either luciferase con-
trol or ATM-specific shRNAs. C57BL/6J recipient mice were trans-
planted with 1.5 × 106 transduced lymphoma cells. Upon lymphoma
manifestation, treatment with either KU-0060648, etoposide, or a
combination of KU-0060648 plus etoposide was initiated. Untreated
control animals carrying either luciferase shRNA– or ATM shRNA–
expressing lymphomas were used to monitor the natural course of
the disease. The entire cohort of animals bearing untreated control
tumors succumbed to their disease within 25 days after initial man-
ifestation (Fig. 7A). The overall survival of animals carrying control
shRNA–expressing lymphomas could be significantly enhanced when
these animals were treated with etoposide (Fig. 7A). KU-0060648
treatment did not produce a significant extension in overall survival
of these animals. Furthermore, addition of KU-0060648 to the etoposide
regimen did not result in significant additional survival gains beyond
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Fig. 6. Etoposide resistance and DNA-PKcs addiction in CLL cells carrying
del(11q). (A and B) CLL patients were stratified as wild type on 11q22 (n = 13)
or del(11q) (n = 13) through FISH analysis (left panels). Primary CLL cells freshly
isolated from 26 patients were seeded onto a feeder layer of CD40 ligand–
expressing NIH 3T3 cells before treatment with KU-0060648 (KU) (0.5 mM),
etoposide (10 mM), or a combination of both compounds. After 24 hours, cells
were harvested and incubated with 7-aminoactinomycin D (7AAD) and fluores-
cein isothiocyanate–labeled annexin V and then analyzed by flow cytometry.
Survival was quantified as the percentage of 7AADlow/annexin Vlow cells (bars
indicate means ± SEM, n = 9). *P < 0.05, two-tailed Student’s t test.
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those that were achievable with etoposide. In contrast, survival of un-
treated animals bearing ATM-depleted lymphomas was slightly reduced
compared to untreated control lymphomas, likely reflecting a more
aggressive phenotype. Furthermore, ATM-depleted lymphomas were
resistant to etoposide, with no significant survival gains compared to
the untreated cohort. ATM-depleted lymphomas were highly sensitive
to KU-0060648, leading to significant (P < 0.05) survival gains when
compared with untreated and etoposide-treated animals. Combination
treatment with KU-0060648 and etoposide prolonged the survival of
ATM-depleted lymphoma-bearing animals even further, and a plateau
was reached at about 20% (Fig. 7B). This plateau persisted for up to
140 days after initiation of treatment, suggesting that a cure rate of 20%
might be achievable with a single course of KU-0060648 plus etoposide
in this model. These data strongly suggest that DNA-PKcs inhibitors
either alone or in combination with DSB-inducing genotoxic agents
might be a valuable strategy to target ATM-defective human cancers.

DISCUSSION

Loss of ATM is associated with addiction to DNA-PKcs
Loss of ATM in neoplastic disease is associated with resistance against
genotoxic therapies (4, 7–10, 39, 40). This resistance has been attributed
to a functional interception of the ATM/Chk2/p53 DDR signaling axis,
which relays the presence of genotoxic lesions to an apoptotic cellular
outcome (10, 40) (Fig. 7C). However, ATM not only mediates apoptosis
but also plays a critical role in HR-mediated DSB repair (16, 18, 19).
Thus, apoptosis resistance is associated with reduced HR-driven DSB
repair capacity in ATM-defective neoplastic disease. The observation
that ATM-defective cells not only proliferate but also are resistant
against genotoxic chemotherapy suggests that these cells can repair
DSBs. Mammalian cells exploit two major DSB repair pathways—the
ATM-dependent HR pathway and DNA-PKcs–mediated NHEJ. We
show that ATM-defective cells rely on functional DNA-PKcs signaling
for their survival, even in the absence of exogenously induced DNA
damage. Our data suggest that the NHEJ pathway is a backup pathway
for DSB repair in ATM-defective HR-impaired cells. Thus, although
isolated loss of ATM appears to protect cancer cells from genotoxic stress
by blunting the proapoptotic p53 response, it renders these cells exquis-
itely susceptible to DNA-PKcs inhibition. Our data are reminiscent of
those seen in a synthetic lethal interaction between BRCA1/2 and PARP1
(41, 42). Cells exposed to a PARP1 inhibitor accumulate DSBs, likely as a
result of impaired base excision repair. Although these lesions are typ-
ically resolved through HR-dependent DSB repair, BRCA1/2-defective
cells, as a result of their inherent HR defect, fail to repair PARP1 inhibitor–
induced DSBs, ultimately resulting in cell death (41, 42).

Targeting the synthetic lethal interaction between
ATM and PRKDC
We focused on the exploitability of DNA-PKcs inhibitors for the
treatment of ATM-defective cancers. We showed that both cancer-
associated ATM mutations and ATM depletion resulted in DNA-PKcs
dependence. To validate DNA-PKcs as a drug target for the treatment
of ATM-defective human cancers, we used two distinct DNA-PKcs
inhibitors, namely, KU-0060648 [a dual DNA-PKcs and phospha-
tidylinositol 3-kinase (PI3K) inhibitor (43)] and NU7441 [a DNA-PKcs
inhibitor with only weak activity against PI3K (44)]. Both compounds
displayed cytotoxic activity specifically in ATM-defective cells. Given
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Fig. 7. Validation of DNA-PKcs as a drug target for the treatment of ATM-
defective B-NHL in vivo. (A and B) RNAi-mediated suppression of ATM in
Em:MYC;ARF−/−-driven lymphomas confers etoposide resistance and DNA-PKcs
dependence in vivo. Lymphoma cells were transduced with luciferase shRNA–
or ATM shRNA–expressing retroviruses and injected into isogenic C57BL/6 re-
cipient mice. Upon lymphoma manifestation, animals were treated with one
course of KU-0060648 (KU) [blue lines in (A) and (B)], etoposide [red lines in (A)
and (B)], or a combination of both compounds [purple lines in (A) and (B)] or
left untreated [black lines in (A) and (B)]. Overall survival is shown in Kaplan-
Meier format. Recording of survival was initiated on day 1 of each treatment
regimen. In total, 23 mice in each treatment cohort carrying luciferase shRNA–
expressing lymphomas and 34 animals in each treatment cohort carrying ATM
shRNA–expressing lymphomas were included. Statistically significant survival
differences are indicated (two-tailed Student’s t test). (C) Proposed mechanism
of DNA-PKcs addiction of ATM-defective cancer cells and the therapeutic tar-
geting of the synthetic lethal interaction between ATM and PRKDC.
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that both compounds display at least some degree of activity against
PI3K as an off-target effect, it is conceivable that the effects we observed
were at least partially due to PI3K inhibition. However, we believe that
the contribution of PI3K inhibition to the cytotoxic effects of KU-0060648
and NU7441 is only marginal because RNAi-mediated DNA-PKcs de-
pletion in ATM-defective human cancer cells mimicked the cytotoxic
effects of KU-0060648 and NU7441. Furthermore, DNA-PKcs depletion
produced dose-dependent effects, with potent shRNAs resulting in com-
plete prevention of cell proliferation, whereas a less efficient shRNA al-
lowed minimal residual growth of ATM-defective cells. Together, these
data indicate that activity against DNA-PKcs mediates the cytotoxic
effects of KU-0060648 and NU7441 in ATM-defective cells.

Clinical perspective
Disabling ATMmutations occur in about 10% of human tumors (5, 10).
Recently, two large CLL genome resequencing projects analyzing dis-
tinct patient cohorts have been published (45, 46). One cohort only in-
cluded treatment-naïve patients (45), whereas the second cohort also
included pretreated patients (46). Consistent with our hypothesis that
ATM deficiency is associated with resistance against frontline genotoxic
chemotherapy, the number of ATM mutations was lower in the un-
treated cohort [4 of 105 patients (45)] than in the cohort that included
pretreated patients [8 of 91 patients, 5 of whom were in the pretreated
group (46)]. These independent observations suggest that ATM muta-
tions accumulate in therapy-refractory CLL patients. Therapeutic options
are currently very limited for these patients because they typically do
not qualify for allogeneic transplantation. Thus, it will be interesting to
test DNA-PKcs inhibitors in CLL patients who have been stratified on
the basis of their ATM status. One such molecule might be CC-115, a
dual mammalian target of rapamycin (mTOR)/DNA-PKcs inhibitor,
currently in phase 1 clinical trials (47). Additional tumors in which ATM
is frequently inactivated include head and neck squamous cell carcinoma
and mantle cell lymphoma (48–50). Given the availability of DNA-PKcs
inhibitors that are in clinical testing, as well as the various human ma-
lignancies with high rates of ATM inactivation, there will be ample op-
portunity to validate our findings in human patients with ATM-defective
neoplastic disease.

MATERIALS AND METHODS

Lymphoma model
C57BL/6J recipient mice were anesthetized with isoflurane, and 1.5 × 106

Em:MYC;ARF−/− lymphoma cells were injected intravenously. Lymphoma
cells had been isolated from the spleen of Em:MYC;ARF−/− lymphoma-
bearing animals. Lymphoma burden was monitored by palpation of
the axillary and brachial lymph nodes. Upon the appearance of sub-
stantial tumor burden (palpable lesions with a diameter of >0.5 cm,
usually 11 to 13 days after injection), mice were exposed to the indicated
treatments. KU-0060648 was administered at 10 mg/kg, twice daily, on
days 1 to 4, and etoposide was given at 20 mg/kg, once daily, on days
1 to 4. Overall survival was measured as an end point of the current
study. Experiments were approved by the local animal care committee
of the University of Cologne.

Statistics
Values reported represent means ± SEM. P values were calculated with
GraphPad Prism, with P < 0.05 considered significant. Experiments

were done 3 to 12 times, and the particular statistical analyses used
in the experiments are noted in the figure captions. Statistics were per-
formed to illustrate significance between groups where n ≥ 3.

Cell culture methods, virus production, immunoblotting, immuno-
fluorescence, clonogenic survival assay, fluorescence-activated cell sorting
and FISH analyses, and all reagents are described in detail in the Supple-
mentary Materials and Methods.

SUPPLEMENTARY MATERIALS

www.sciencetranslationalmedicine.org/cgi/content/full/5/189/189ra78/DC1
Materials and Methods
Fig. S1. shRNA-mediated knockdown of DNA-PKcs.
Fig. S2. ATM complementation of HT144 and H1395 cells.
Fig. S3. shRNA-mediated knockdown of ATM in A375 and A549 cells.
Fig. S4. shRNA-mediated knockdown of ATM in Em:MYC;ARF−/− lymphoma cells.
Fig. S5. ATM depletion in Em:MYC;ARF−/− lymphoma cells leading to DNA-PKcs hyperactivation.
Fig. S6. Induction of apoptosis in DNA-PKcs inhibitor–treated ATM-defective cells rescued
through Chk1 inhibition.
Fig. S7. Induction of apoptosis in DNA-PKcs inhibitor–treated ATM-defective cells rescued by
suppressing Puma.
Fig. S8. shRNA-mediated knockdown of CtIP in ATM-defective HT144 and H1395 cells.
Fig. S9. Prevention of apoptosis by CtIP repression in DNA-PKcs inhibitor–treated ATM-defective
cells.
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Discussion 
 

Loss of ATM promotes resistance against chemotherapy and is 
associated with molecular addiction DNA-PKcs 
 

Due to the functional interception of the ATM/Chk2/p53/Puma DDR signaling 

axis, which mediates apoptosis in the presence of genotoxic lesions, loss of 

ATM is associated with resistance against genotoxic chemotherapies (3, 26, 

53, 58, 88, 98, 101). However, ATM is also known to play a major role in HR-

mediated DSB repair, which is essential for an error-free repair of DSBs during 

late S- and G2-phase, when an intact sister chromatid is present as a template 

(15). Thus, the resistance to apoptosis is accompanied by a reduced capacity 

of HR for DSB repair (75, 95, 116). To compensate this defect in HR in order 

to survive after genotoxic therapies, cells must rely on another DSB repair 

pathway. We could demonstrate, that this pathway is NHEJ, which is 

dependent on DNA-PKcs function (85). To further validate whether there is a 

synthetic lethal interaction between ATM and DNA-PKcs, we have shown that 

ATM mutation, as well as ATM depletion result in a robust non-oncogene 

addiction to DNA-PKcs (85). This opens a therapeutic window for the 

treatment of ATM defective malignancies via inhibition of DNA-PKcs. We could 

demonstrate a dose-dependent cytotoxic effect of DNA-PKcs inhibition by the 

use of different shRNAs with different degrees of DNA-PKcs knockdown 

efficiency (85). Furthermore, the significance of DNA-PKcs as a drug target 

could be shown via the use of two distinct, ATP-competitive DNA-PKcs 

inhibitors (KU-0060648 and NU7441), with both compounds displaying a high 

cytotoxic specificity for ATM-defective cells (85). We could demonstrate the 

efficiency of these DNA-PKcs inhibitors in the treatment of ATM-deficient 

malignancies in vitro and in vivo (85). 

 

 

Resistance 
 

A common problem in the treatment of cancer with ATP-competitive kinase 

inhibitors is the development of mutations inducing secondary resistance. 

These mutations can generally be divided into two groups. (1) There are "on-
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target" mutations, which change the configuration of the kinase and intercept 

the interaction between the kinase and its inhibitor. This process is frequently 

seen in chronic myeloid leukemia (CML) patients receiving the first-line BCR-

ABL kinase inhibitor imatinib (4). With the development of second-generation 

BCR-ABL kinase inhibitors i.e. dasatinib and nilotinib this resistance could be 

overcome (4).  

Another example for on-target drug resistance is the missense mutation 

T790M within the EGFR-kinase domain which frequently occurs in erlotinib 

treated EGFR-mutaded NSCLC (37). Here, the irreversible EGFR/HER2 

inhibitor afatinib has recently been shown to prolong the progression free 

survival in erlotinib resistant patients in a clinical phase II trial (73). 

A similar tumor evolution can be expected in the treatment of ATM-deficient 

malignancies with DNA-PKcs inhibitors and the development and evaluation of 

second generation DNA-PKcs inhibitors could become necessary. 

(2) Mutations leading to drug-resistance can also be seen "off-target". In 

patients with tumors bearing loss-of-function mutations in BRCA1- or 2 the 

treatment with PARP1 inhibitiors recently has become a therapeutic option (2, 

11, 28, 30, 33, 34). However, in pancreatic and ovarian tumors treated with 

PARP1 inhibitors, re-gain of function in BRCA2 via intragenic deletion of small 

regions carrying the initial disabling frameshift mutation is described, leading 

to secondary resistance via generation of an HR competent isoform of BRCA2 

(28, 91). Analogous to this model, re-gain of function in the ATM gene could 

lead to secondary resistance against DNA-PKcs inhibition. 

 

 

Off-target effects 
 

We have been able to demonstrate the efficacy of DNA-PKcs-inhibition in 

inherently chemotherapy resistant ATM-deficient malignancies in vitro and in 

vivo (85). As kinase inhibitors that we used in our study not only inhibit DNA-

PKcs, but also have a known low level inhibitory off-target effect against PI3K, 

it would have been possible, that this effect is due to PI3K-inhibition, at least to 

a certain extent. By performing RNAi-mediated DNA-PKcs-knock downs with 

different shRNAs with different knock down efficacy, we could show a 

significant inhibitory dose-dependent effect on population doubling times of 
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ATM-deficient tumor cell lines compared to ATM-proficient counterparts (85). 

This finding may be substantiated by the described lethal phenotype for 

double knock out mice for DNA-PKcs and ATM, leading to a developmental 

arrest at ED7.5 (42). Thus, we propose that the effect of PI3K-inhibition is 

negligible and the observed cytotoxic effect of the DNA-PKcs inhibitors used in 

our study is indeed due to DNA-PKcs-inhibition. 

 

 

Enhanced effectiveness of DNA-PKcs inhibition in ATM-deficient 
malignancies via combinatorial treatment with PARP inhibitors 
 

As mentioned above PARP1 inhibitors have already become a therapeutic 

option in BRCA1- or 2-deficient malignancies  (with BRCA1- or 2-deficiency 

causing a defect in HR). As a logical consequence PARP1 inhibitors also got 

tested in ATM-deficient malignancies and there is first evidence that PARP1 

inhibition might also be a successful strategy in the treatment of those (112). 

The inhibition of PARP1 leads to the conversion of SSBs to DSBs during cell 

division. As SSBs occur with a frequency of tens of thousands per day 

(instead of only 10 DSB per day), the combinatorial treatment of ATM-deficient 

malignancies with PARP1-inhibitors might potentiate the effect of DNA-PKcs 

inhibition and needs further investigation. A further consequence of our recent 

study must be the testing of a combinatorial treatment with DNA-PKcs and 

PARP1 inhibitors in BRCA1- or 2-deficient malignancies, as DNA-PKcs 

inhibition should also potentiate the effect of PARP1 inhibition. 

As both treatments are based on synthetic lethal interactions in HR-defective 

cells, this combinatorial treatment should selectively kill the cancerous cells by 

sparing their HR-competent neighbors. Furthermore, this dual kinase inhibition 

would spare any genotoxic compounds and thus should have a decreased 

frequency of secondary malignancies compared to established treatment 

regimens. 

 

 

Long-term effects of DNA-PKcs inhibition 
 

There are no data about the long-term effects of DNA-PKcs inhibition in 

humans. Mice treated with the two different DNA-PKcs inhibitors used in our 
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study did not show any long-term toxicities. However, Gao et al. have shown, 

that mice bearing a targeted homozygous DNA-PKcs null mutation are viable 

but are not capable to perform normal B and T cell differentiation via V(D)J-

recombination and therefore suffer from immunodeficiency (36). V(D)J-

recombination is a mechanism of genetic recombination, which assembles 

immunoglobulin and T cell receptor genes during lymphocyte development 

(55, 92). This process is responsible for the plethora of different 

immunoglobulins and T cell receptors, which enable specific responses to an 

enormous number of different antigens (55, 92). V(D)J-recombination includes 

a series of controlled DNA breakage and rejoining events, with the latter 

dependent on functional NHEJ and thus on DNA-PKcs (55, 92). 

As most of the V(D)J-recombination takes place during embryogenesis and 

childhood and as the intermittent administration of a DNA-PKcs inhibitors will 

not block the V(D)J-recombination at all times, a treatment started in adult 

patients might not result in a major immunodeficiency as described for DNA-

PKcs null mutant mice. Nevertheless there might be a certain degree of 

immunodeficiency predisposing for infectious diseases and secondary 

malignancies, especially if a lifelong treatment course with DNA-PKcs 

inhibitors will turn out to be necessary to successfully keep ATM-deficient 

malignancies under control. 

 

 

Clinical Perspective 
 

Shown for different tumor entities, disabling ATM mutations seem to occur in 

about 10 percent of human malignancies (6, 8, 24, 53, 80, 82). Furthermore, 

there is strong evidence for a poor prognosis for patients harboring ATM 

mutated tumors (3, 26, 88). The resistance to chemotherapy for tumors with 

loss of ATM previously described by Jiang and Reinhardt et al. could be 

further sustained by two large CLL re-sequencing projects (53, 80, 107). In 

one study only patients without any pretreatment were included (80), while the 

other one also included pretreated patients (107). With a relative mutational 

rate of under 4 percent in the untreated cohort (4/105 patients) and a relative 

mutational rate of more than 8 percent in the pretreated cohort (8/91 patients), 

the frequency of ATM mutation has been dramatically higher in the pretreated 
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group, indicating the accumulation of ATM mutations in therapy-refractory CLL 

patients (80, 107). 

As there are only very limited therapeutic treatment options especially for 

these therapy-refractory CLL patients today, CLL patients stratified by their 

ATM-status might be an ideal collective to test the efficacy of DNA-PKcs 

inhibitors in ATM-mutated malignancies in men. CC-115 is a dual mTOR/DNA-

PKcs inhibitor, which already has entered phase I clinical trials, could be an 

ideal candidate for the evaluation of DNA-PKcs inhibition these patients (67). 
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Zusammenfassung 
 

Als Antwort auf genotoxischen Stress aktivieren Zellen eine komplexe, Kinase-

basierte Signalkaskade um einen Zellzyklusarrest einzuleiten. In Abhängigkeit 

vom Umfang des Schadens wird ferner entweder eine Reparatur der DNA 

oder, bei zu ausgedehnten Schäden, die Apoptose initiiert. Diese 

Signalkaskade wird im Englischen unter dem Begriff DNA damage response 

(DDR) zusammengefasst. Die Kinase ATM bildet das Zentrum der DDR. Als 

solches ist sie sowohl am Zellzyklusarrest, der DNA-Reparatur sowie der 

Einleitung der Apoptose beteiligt. Mutationen, welche die Funktion von ATM 

beeinträchtigen, werden in unterschiedlichen Tumorentitäten sehr häufig 

nachgewiesen. Unter ihnen sind sowohl solide Tumoren, wie das 

Bronchialkarzinom als auch maligne hämatologische Erkrankungen, wie die 

chronisch lymphatische Leukämie. 

Wir konnten zeigen, dass ATM-defiziente humane und murine Tumoren 

apoptoseresistent gegenüber genotoxischen Therapien sind. Mit Hilfe von 

genetischen und pharmakologischen Ansätzen konnten wir in vitro und in vivo 

eine starke Non-Oncogene Addiction von der Kinase DNA-PKcs in ATM-

defekten humanen und murinen Zellen nachweisen. Des Weiteren gelang es 

zu zeigen, dass diese Abhängigkeit von DNA-PKcs in ATM-defekten Zellen 

eine Möglichkeit der therapeutischen Intervention bietet. Sowohl eine 

pharmakologische als auch eine genetische Hemmung von DNA-PKcs führen 

in ATM-defizienten Tumoren zur Akkumulation von DNA-Doppelstrangbrüchen 

mit anschließender CtIP-abhängiger Generierung großer einzelsträngiger 

DNA-Reperaturintermediate. Diese wiederum lösen eine Aktivierung 

proapoptotischer Signale aus, welche über die 

RPA/ATRIP/ATR/Chk1/p53/Puma-Achse vermittelt werden. Diese 

proapoptotischen Signale resultieren in apoptotischem Untergang DNA-PKcs-

Inhibitor-exponierter ATM-defizienter Zellen. Zusätzlich konnten wir präklinisch 

in vivo eine deutliche monotherapeutische Wirksamkeit von DNA-PKcs-

Inhibitoren gegen ATM-defekte Lymphome zeigen. In Zusammenschau 

unserer Daten scheint die Kinase DNA-PKcs eine vielversprechende 

Zielstruktur in der Behandlung ATM-defizienter maligner Erkrankungen zu 

sein. 
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Summary 
 

In response to genotoxic stress, cells activate a complex, kinase-based 

signaling network to arrest the cell cycle, initiate DNA repair, or, if the extend 

of damage is beyond repair capacity, induce apoptotic cell death. ATM lies at 

the heart of this signaling network, which is collectively referred to as the DNA 

damage response (DDR). ATM is involved in all three of these DDR-regulated 

cellular responses – cell cycle arrest, DNA repair and apoptosis. Disabling 

ATM mutations occur frequently in various human tumor entities, including 

lung cancer and hematological malignancies. Here we show that ATM-

deficiency protects human and murine cancer cells from apoptosis induced by 

genotoxic chemoptherapy. Using genetic and pharmacological approaches we 

then demonstrate in vitro and in vivo that ATM-defective murine and human 

cells display a strong non-oncogene addiction to DNA-PKcs signaling. We 

further show that this dependence of ATM-defective cells on DNA-PKcs offers 

a window for therapeutic intervention. We show that pharmacological or 

genetic abrogation of DNA-PKcs in ATM-defective settings leads to the 

accumulation of DNA double-strand breaks (DSBs) and the subsequent CtIP-

dependent generation of large single-stranded DNA (ssDNA) repair 

intermediates. These ssDNA structures trigger the activation of pro-apoptotic 

signaling through the RPA/ATRIP/ATR/Chk1/p53/Puma axis, ultimately 

leading to the apoptotic demise of ATM-defective cells exposed to DNA-PKcs 

inhibitors. Lastly, we demonstrate that DNA-PKcs inhibitors show remarkable 

preclinical activity as single agents against ATM-defective lymphomas in vivo. 

Together, our data implicate DNA-PKcs as a novel drug target for the 

treatment of ATM-defective malignancies.  
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