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Abstract
Background: Substantial gene substitution effects on milk production traits have formerly been
reported for alleles at the K232A and the promoter VNTR loci in the bovine acylCoA-
diacylglycerol-acyltransferase 1 (DGAT1) gene by using data sets including sires with accumulated
phenotypic observations of daughters (breeding values, daughter yield deviations). However, these
data sets prevented analyses with respect to dominance or parent-of-origin effects, although an
increasing number of reports in the literature outlined the relevance of non-additive gene effects
on quantitative traits.

Results: Based on a data set comprising German Holstein cows with direct trait measurements,
we first confirmed the previously reported association of DGAT1 promoter VNTR alleles with milk
production traits. We detected a dominant mode of effects for the DGAT1 K232A and promoter
VNTR alleles. Namely, the contrasts between the effects of heterozygous individuals at the DGAT1
loci differed significantly from the midpoint between the effects for the two homozygous genotypes
for several milk production traits, thus indicating the presence of dominance. Furthermore, we
identified differences in the magnitude of effects between paternally and maternally inherited
DGAT1 promoter VNTR – K232A haplotypes indicating parent-of-origin effects on milk production
traits.

Conclusion: Non-additive effects like those identified at the bovine DGAT1 locus have to be
accounted for in more specific QTL detection models as well as in marker assisted selection
schemes. The DGAT1 alleles in cattle will be a useful model for further investigations on the
biological background of non-additive effects in mammals due to the magnitude and consistency of
their effects on milk production traits.

Background
Several mapping studies revealed a QTL for milk produc-
tion traits in the centromeric part of cattle chromosome

14 (BTA14) [1]. A positional and functional candidate
gene approach detected that a non-conservative mutation
(K232A) in the bovine acylCoA-diacylglycerol-acyltrans-
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ferase 1 (DGAT1) gene is presumably the putative causal
mutation for this QTL [2,3]. The postulated associations
of the DGAT1 K232A alleles have been confirmed in sev-
eral breeds and populations [4-6]. Further evidence for
the hypothesis of the DGAT1 K232A locus representing
the causal mutation for the QTL was achieved by func-
tional in-vitro studies showing a higher efficiency in trig-
lyceride synthesis of the allele DGAT1 232K compared to
the allele DGAT1 232A [7]. However, consecutive studies
suggested the presence of more than two alleles at the
DGAT1 locus affecting milk production traits in cattle [8-
10]. A VNTR polymorphism in the DGAT1 promoter con-
taining a SP1 transcription factor binding site motif
(CCCGCC) was targeted as functional background for
these additional alleles due to the functional relevance of
juxtaposed SP1 binding sites for the regulation of gene
expression in eukaryotes [11,12]. The DGAT1 promoter
VNTR alleles consisting of a variable number of putative
SP1 transcription factor binding sites showed an associa-
tion with daughter yield deviations for milk production
traits in a data set comprising bulls with homozygous gen-
otype DGAT1 232A/232A [9]. This result was particularly
pronounced for milk fat percentage. The potential func-
tional relevance of the DGAT1 promoter VNTR alleles is
underlined by in-vitro studies providing evidence for SP1
binding to the CCCGCC motif in the DGAT1 promoter
and for induction of gene expression by the DGAT1 pro-
moter VNTR alleles [13].

There are several confirmed examples for non-additive
QTL effects or QTL acting dependent of parental origin
[14,15] in a variety of species, but the most prominent
designs and approaches for QTL mapping do not allow
detecting these phenomena. For example, if breeding val-
ues that are calculated on phenotypic observations in the
individuals' offspring are used in the per se powerful
granddaughter designs [16], it is impossible to model

dominance or parent-of-origin effects [4]. Our studies on
the effects of DGAT1 polymorphisms in a data set com-
prising direct trait measurement in cows, however, dem-
onstrate that the DGAT1 K232A and the promoter VNTR
alleles display a dominant-recessive pattern of effects on
milk production traits. This pattern of effects was previ-
ously unnoticed in data sets using breeding values or
daughter yield deviations. Additionally, we demonstrate
differences in the effects of maternally and paternally
inherited DGAT1 promoter VNTR – K232A haplotypes on
milk production traits, which indicate a parent-of-origin
effect at the DGAT1 locus in cattle.

Results
Allele and haplotype frequencies
Frequencies of the DGAT1 K232A and promoter VNTR
alleles as well as of the DGAT1 promoter VNTR – K232A
haplotypes based on the maternally inherited alleles/hap-
lotypes are listed in Table 1. These represent the German
Holstein field population, because no selection with
respect to phenotypic traits had taken place while collect-
ing the samples. The most frequent maternally inherited
alleles are DGAT1 232A and the promoter VNTR allele 3,
respectively. All possible allele combinations were
detected in the maternally inherited DGAT1 haplotypes
with the maternally inherited promoter VNTR – K232A
haplotype 3 – 232K showing the highest frequency. Strong
linkage disequilibrium was observed between both
DGAT1 loci, because DGAT1 232K was almost exclusively
detected in linkage phase with the promoter VNTR allele
3. Due to their extremely low frequency, the DGAT1 hap-
lotypes 1 – 232K, 2 – 232K, 4 – 232K, and 5 – 232K could
not be included in the analysis of haplotype effects.

DGAT1 promoter VNTR allele substitution effect
To enable a direct comparison of this study with results of
a previous study in German Holstein sires [9], the gene

Table 1: Allele and haplotype frequencies for the DGAT1 promoter VNTR and K232A polymorphism

allele DGAT1 promoter VNTR allele DGAT1 K232A haplotype DGAT1 haplotypeb

paa maa paa maa paa maa

1 0.06 0.02 232K 0.24 0.41 1 – 232K 0.001
2 0.13 0.15 232A 0.76 0.59 2 – 232K 0.030
3 0.34 0.55 3 – 232K 0.237 0.377
4 0.26 0.17 4 – 232K 0.007
5 0.21 0.11 5 – 232K 0.002

1 – 232A 0.053 0.023
2 – 232A 0.132 0.116
3 – 232A 0.105 0.176
4 – 232A 0.263 0.159
5 – 232A 0.210 0.109

a allele frequencies were determined from the sires (pa) or from maternally inherited alleles/haplotypes of informative daughters (ma), b DGAT1 
promoter VNTR – K232A haplotype.
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substitution effects on milk production traits for the
DGAT1 promoter VNTR allele 5 compared to all other
promoter VNTR alleles are listed in Table 2. Similar effects
were found for the whole data set and for the subset of
cows that were 232A/232A homozygous. The DGAT1 pro-
moter VNTR allele 5 showed a significantly superior effect
on milk fat content and milk protein content, while milk
yield was decreased compared to all other promoter VNTR
alleles. The differences for effects on milk fat yield and on
milk protein yield were not significant.

Effects of DGAT1 K232A and promoter VNTR genotypes
The DGAT1 K232A genotypes solitary showed highly sig-
nificant effects on all milk production traits in a reduced
model (See additional file 1: DGAT1 genotype effects on
milk production traits). Similar results were observed with
the full model including the DGAT1 K232A genotypes as
well as the promoter VNTR genotypes. The only exception
was for milk protein yield, where no significant effect for
the DGAT1 K232A locus was obtained in the full model.
In contrast to the lack of association between DGAT1
K232A genotypes and milk protein yield, the DGAT1 pro-
moter VNTR genotype had significant effects on all milk
production traits including milk protein yield in the full
model.

The analysis of the contrasts between DGAT1 K232A gen-
otype effects revealed that for all milk production traits
the difference between 232A/232K heterozygotes and the
232A/232A homozygotes was larger than the difference
between the 232A/232K heterozygotes and the 232K/232K
homozygotes. This was most prominent for milk fat per-
centage in both models. Similarly, for milk yield and milk
protein yield the difference between the DGAT1 promoter
VNTR 4/4 homozygotes and the */4 heterozygotes (* indi-
cating any other promoter VNTR allele but allele 4) was
larger than the difference between the */4 heterozygotes
and the */* homozygotes. The calculated dominance val-
ues showed significant dominance effects on milk yield,
milk fat yield and milk protein yield (VNTR allele 4), milk
fat content (DGAT1 232K) and milk protein content
(VNTR allele 5) (Table 3). Heterozygotes for the VNTR

allele 4 had a lower milk yield and as a consequence a
lower milk fat yield and a lower protein yield compared to
the mean of the homozygotes with zero (*/*) or two cop-
ies (4/4) of the allele. Heterozygotes for the VNTR allele 5
had a higher milk protein content and heterozygotes for
the DGAT1 232K showed a significantly higher milk fat
content and a tendency towards a higher milk protein
content and to a reduced milk yield.

Effects of paternally and maternally inherited DGAT1 
promoter VNTR – K232A haplotypes
The simultaneous test for a parent-of-origin effect over all
haplotypes revealed a significant influence for the traits
milk yield, milk fat content and a detectable, but not sig-
nificant influence on milk protein yield (Table 4). More
specifically, the 3 – 232K haplotype resulted in signifi-
cantly higher milk yield and milk protein yield and lower
milk fat content when inherited paternally. In contrast to
that, the 1 – 232A haplotype resulted in significantly
lower milk yield and higher milk fat content when passed
by the sire to the offspring. For all other VNTR – K232A
haplotypes, there is no influence of the parent-of-origin
detectable at a significant level, but in the case of the 3 –
232A haplotype, there were tendencies to a lower milk fat
content and lower milk protein content for the paternally
inherited haplotype. In a further analysis, we tested if
those differences between paternally and maternally
inherited DGAT1 haplotypes could also be detected when
investigating the DGAT1 K232A alleles only. As indicated
in Table 5, analysis of paternally and maternally inherited
DGAT1 K232A alleles obtained results similar to those for
the DGAT1 promoter VNTR – K232A haplotypes.

Discussion
Confirmation of DGAT1 K232A and promoter VNTR 
genotype effects
In our study, the DGAT1 promoter VNTR genotypes
showed significant effects on all milk production traits in
a model also including the DGAT1 K232A genotypes. Our
results provide an independent confirmation of previous
findings [8,9] demonstrating that the DGAT1 K232A
mutation does not account for the entire QTL variation on

Table 2: Effects of the DGAT1 promoter VNTR allele 5 on milk production traits in German Holstein cows

DGAT1 232A/232A only
αab (S.E.)

all individuals 
αab (S.E.)

Milk yield [kg] -88.0 0.068 (48.0) -93.1 0.0074 (34.7)
Milk fat content [%] 0.0630 0.0002 (0.0165) 0.0752 <0.0001 (0.0124)
Milk fat yield [kg] 1.79 0.319 (1.79) 2.44 0.075 (1.37)
Milk protein content [%] 0.0171 0.032 (0.0079) 0.0184 0.0016 (0.0058)
Milk protein yield [kg] -1.56 0.271 (1.41) -1.67 0.106 (1.03)

a average gene substitution effect of the DGAT1 promoter VNTR allele 5 compared to all other alleles, where α is defined according to Falconer and 
Mackay [27]; b p-values are given as indices.
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milk production traits in the centromeric part of BTA14.
These results are in contrast to Grisart et al. [7], who
described that the DGAT1 K232A genotype did erase the
effect of any other polymorphism at the DGAT1 locus.
However, Grisart et al. did not consider the DGAT1 pro-
moter VNTR. In our study, the K232A polymorphism did
not significantly affect milk protein yield in a model that
also included the promoter VNTR genotype. Compared to
previous results obtained in an independent data set [9],
the effects associated with alleles at the DGAT1 promoter
VNTR showed an identical pattern and were very consist-
ent in magnitude with allele 5 being superior for milk fat
and milk protein content. In an independent cattle breed,
Sanders et al. [10] detected a regulation mechanism
between the DGAT1 K232A mutation and the DGAT1 pro-
moter VNTR for milk fat yield and content also supporting
effects of those loci on milk production traits. Recently,
Fürbass et al. [13] proved SP1 transcription factor binding
and stimulation of gene transcription by the DGAT1 pro-
moter VNTR motif. This observation and the confirmed
trait association of DGAT1 promoter VNTR alleles pre-
sented in this study provide further evidence that the alle-
les at the DGAT1 promoter VNTR indeed may exert a
direct effect on milk production traits. However, in spite

of those data, it cannot be formally excluded that another,
yet undetected gene outside the DGAT1 locus may be the
molecular background for the additional QTL alleles in
this genomic region.

Dominance effects of DGAT1 genotypes
Previous publications on the effect of the DGAT1 locus
focused on additive gene substitution effects for the QTL
affecting milk production traits on BTA14 (e.g. [17]) as
well as for the DGAT1 K232A mutation itself [3,4]. In con-
trast, our study, which based on a data set consisting of
cows with direct phenotypic measurements, also allowed
investigating non-additive effects and revealed significant
dominance effects of the DGAT1 K232A alleles on milk fat
content. This significant deviation from purely additively
acting alleles has been detected in models for the DGAT1
K232A mutation only (data not shown) as well as in mod-
els combining the DGAT1 K232A and promoter VNTR
genotype effects. Analogous to the non-additive effects of
the alleles at the DGAT1 K232A locus, we obtained indi-
cation on dominance effects for the alleles 4 and 5 at the
DGAT1 promoter VNTR locus. Interestingly, for the 232K
allele and the promoter VNTR allele 5, which exhibit a
similar pattern of effects on milk production traits, the

Table 4: Differences and their standard errors (S.E.) between paternally and maternally inherited DGAT1 promoter VNTR – K232A 
haplotypes regarding milk production traits in German Holstein cows

DGAT1 haplotypea Milk yield [kg] Milk fat content [%] Milk fat yield [kg] Milk protein content [%] Milk protein yield [kg]

pa – mab pa – mab pa – mab pa – mab pa – mab

3 – 232K 324.44 0.001 (98.2) -0.107 0.003 (0.036) 4.24 0.276 (3.89) -0.023 0.149 (0.017) 8.93 0.002 (2.93)
1 – 232A -467.13 0.019 (198.47) 0.20 0.006 (0.07) -1.85 0.813 (7.85) 0.086 0.010 (0.033) -8.16 0.169 (5.92)
2 – 232A 35.25 0.801 (139.84) -0.050 0.330 (0.050) -3.09 0.577 (5.53) -0.029 0.223 (0.024) -1.47 0.726 (4.17)
3 – 232A 139.48 0.318 (139.56) -0.091 0.076 (0.051) -1.94 0.726 (5.52) -0.042 0.076 (0.025) 1.06 0.800 (4.17)
4 – 232A -32.43 0.718 (89.66) 0.028 0.388 (0.033) 0.70 0.843 (3.55) 0.011 0.451 (0.015) -0.20 0.939 (2.68)
5 – 232A 0.39 0.997 (104.9) 0.019 0.620 (0.038) 1.94 0.640 (4.15) -0.003 0.854 (0.018) -0.16 0.958 (3.13)
p 0.020 0.009 0.864 0.110 0.083

a 1, 2, 3, 4, 5: alleles at the DGAT1 promoter VNTR; K: DGAT1 232K, A: DGAT1 232A; p: p-values for the F statistic of the simultaneous test of the 
parent-of-origin effect over all haplotypes. b p-values for the contrast between single paternally (pa) and maternally (ma) inherited haplotypes are 
given as indices

Table 3: Dominance values (S.E.) of DGAT1 K232A and promoter VNTR alleles for milk production traits in German Holstein cows

DGAT1 allele
d232K

a dVNTR4
a dVNTR5

a

Milk yield [kg] -64.0 0.099 (38.8) -153.8 0.001 (47.7) -64.8 0.279 (59.8)
Milk fat content [%] 0.057 <0.0001 (0.014) 0.020 0.263 (0.017) 0.032 0.140 (0.021)
Milk fat yield [kg] 2.18 0.157 (1.54) -4.175 0.027 (1.89) 0.026 0.991 (2.354)
Milk protein content [%] 0.012 0.063 (0.007) 0.013 0.117 (0.005) 0.024 0.018 (0.010)
Milk protein yield [kg] -1.17 0.313 (1.16) -3.98 0.005 (1.42) -0.21 0.906 (1.78)

Dominance values d is defined as difference between heterozygotes and the mean of the two homozygous genotypes. Regarding the promoter 
VNTR alleles, heterozygotes characterized by having one copy of the respective allele are compared to the mean of the groups of individuals with 
zero or two copies representing the alternative homozygous genotypes. a p-values are given as indices.
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pattern of dominance was also similar predominantly
affecting milk fat and milk protein content. In contrast,
recessive effects for the DGAT1 promoter VNTR allele 4
were identified primarily on yield traits. Our data repre-
sent the first report on dominance effects on milk produc-
tion traits for alleles at the DGAT1 locus.

Some studies [3,6,10,18] already investigated cow data
sets facilitating tests for non-additive DGAT1 effects.
Because Fisher and Spelman [18] focused on the detection
of QTL by analysis of allele distortion within DNA pools
of phenotypically extreme individuals, no estimation on
the size and mode of allele effects is given. Studies in a
New Zealand and an Israeli Holstein data set, respectively,
did not find any indication on dominant effects [3,6].
However, Weller et al. [6] stated that the low number of
homozygous cows with genotype DGAT1 232K/232K
included in their study prevented a powerful analysis of
DGAT1 K232A effects with respect to dominance. The
dominant physiological effects of the DGAT1 232K vari-
ant on milk fat synthesis may be caused by the high effi-
ciency of the 232K DGAT1 protein for triacylglycerol
synthesis [7]. The high vmax of the 232K DGAT1 molecules
might result in the supply of substrates becoming the lim-
iting factor for milk fat synthesis, thus preventing a further
substantial difference in milk fat synthesis between indi-
viduals carrying one or two copies of the DGAT1 232K
allele.

Dominant DGAT1 allele effects have an impact on allele
substitutions effects evaluated by regression analysis on
the number of DGAT1 K232A or promoter VNTR alleles.
They can alter during selection processes in dependency of
the magnitude of dominance and allele frequencies. How-
ever, allele effects obtained by regression in two inde-
pendent populations (this study and [9]) showed a
remarkable consistency in magnitude.

The discovery of dominant/recessive effects of DGAT1
alleles demonstrates that although indirect phenotypes
like breeding values or daughter yield deviations may
have an increased statistical power to detect QTL, the anal-
yses of additional designs with direct phenotypes may be
necessary for a precise estimation of the allele effects at
causal mutations.

Differences of effects between paternally and maternally 
inherited DGAT1 alleles/haplotypes
Our study revealed a difference between the paternally
and maternally inherited DGAT1 promoter VNTR –
K232A haplotypes regarding effects on milk yield, milk fat
content and milk protein yield. The results for the differ-
ences between paternally and maternally inherited haplo-
types are in line with results looking at alleles at the
DGAT1 K232A locus only. These differences of effects
between paternally and maternally inherited DGAT1 alle-
les/haplotypes have to be evaluated carefully to exclude
artificial effects, e.g. due to the applied model including
fixed effects of the sires, but not of the dams. This might
result in a reduced variance of the paternally inherited
alleles/haplotypes, because within the model the paternal
DGAT1 haplotype effect might already be included in the
sire effect. However, for the DGAT1 3 – 232K haplotype
the associated effect on milk yield was larger when pater-
nally inherited than when maternally inherited, while for
1 – 232A the contrast was opposite. This result indicates
that it is quite unlikely that a systematic bias due to
reduced variance of paternally inherited alleles is the only
source for the observed differences. We interpret these dif-
ferences of haplotype contrasts for paternally and mater-
nally inherited DGAT1 K232A – promoter VNTR
haplotypes as parent-of-origin effects. If the DGAT1 locus
indeed were a target for parent-of-origin effects, differ-
ences between paternally and maternally inherited alleles/
haplotypes are expected for the DGAT1 promoter VNTR –
K232 haplotype as well as for the DGAT1 K232A mutation
alone as we found in our study.

It has to be noted that the DGAT1 gene is not located in a
chromosomal region homologous to known imprinted
genome areas in mice or human [19]. On the other hand,
there seem to be differences in the imprinting pattern
between human, mouse, and bovine genes [20,21]. How-
ever, as reviewed by [21], parent-of-origin effects are not
necessarily the result of genomic imprinting. Further
investigations to confirm the parent-of-origin effects
detected in our study and to establish its molecular back-
ground within suitable resource populations are neces-
sary. Interestingly, we observed parent-of-origin effects on
lactation traits in a Charolais × German Holstein cattle F2

Table 5: Differences and their standard errors (/S.E./) between paternally and maternally inherited /DGAT1/ K232A alleles regarding 
milk production traits in German Holstein cows

DGAT1 allele Milk yield [kg] Milk fat content [%] Milk fat yield [kg] Milk protein content [%] Milk protein yield [kg]

pa – maa pa – maa pa – maa pa – maa pa – maa

232K 164.96 0.021 (71.35) -0.045 0.087 (0.026) 3.13 0.269 (2.83) -0.005 0.700 (0.012) 5.27 0.013 (2.12)

pa: paternally inherited allele; ma: maternally inherited allele;a p-values are given as indices
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resource population [22], which will also be investigated
in further DGAT1 studies.

Conclusion
Our study indicates dominance and parent-of-origin
effects at the DGAT1 locus in cattle and also provides fur-
ther support for a functional role of the DGAT1 promoter
VNTR additional to the DGAT1 K232A alleles on milk
synthesis. The precise mechanisms behind the dominance
and parent-of-origin effects require further targeted func-
tional studies to be fully understood. Additionally, the
DGAT1 allele effects deviating from the commonly
applied hypothesis of additive QTL effects highlight the
need towards efficient ways to include non-additive
effects into QTL mapping models [23] and marker
assisted selection programs [24]. The DGAT1 locus, which
seems to be responsible for a substantial proportion of the
genetic variance of milk production traits [3], demon-
strates a prominent example for these needs. Particularly
for traits, for which frequently indirect phenotypic meas-
urements are used to achieve a high statistical power for
detecting QTL effects, specific designs enabling the analy-
sis of non-additive effects have to be set up to ascertain the
genetic background of those traits. Due to the magnitude
and consistency of associated effects, the investigation of
the DGAT1 loci in cattle will be a useful model to study
the biological background of dominance and parent-of-
origin effects in mammals.

Methods
Animals
The data set of the study included a total of 1035 German
Holstein cows sampled on ordinary dairy farms located in
nine different regions of Germany. The cows descended
from 19 different sires (41 – 101 daughters/sire, average
family size 54.5 daughters/sire). The sires were pre-
selected to represent a large variety of genotypes at the
DGAT1 K232A and promoter VNTR polymorphisms.
Nine of the sires were proven sires with high genetic merit
for milk production traits with their daughters born after
the sires finished their progeny test, whereas ten sires were
young sires with their daughters originating from the
progeny test itself. The cows themselves were unselected,
except for their paternal ancestor.

Markers
Within the DGAT1 gene the non-conservative polymor-
phism K232A in exon 8 giving rise to a lysine => alanine
amino acid substitution as well as the non-coding VNTR
in the promoter were included. The DGAT1 K232A muta-
tion was genotyped according to [2]. PCR primers
(DGAT1UP 5'-GCACCATCCTCTTCCTCAAG-3'; DGAT1DN
5'-GGAAGCGCTTTCGGATG-3') amplified a 411 bp frag-
ment that was digested by the restriction enzyme CfrI
(MBI Fermentas, St. Leon-Rot, Germany). The resulting

fragments (allele 232K: one uncut fragment of 411 bp,
allele 232A: two fragments of 203 and 208 bp) were sepa-
rated on a 2% agarose gel. A PCR fragment containing the
VNTR polymorphism at position 1465 in the promoter of
the bovine DGAT1 gene (Genbank no. AJ318490) was
amplified by the following primers: DGAT1proUP 5'-TCAG-
GATCCAGAGGTACCAG-3', DGAT1proDN 5'-GGGGTC-
CAAGGTTGATACAG-3'. The PCR reaction was carried out
in a 10 µl volume under the following conditions: 50 ng
genomic DNA, 5 pmol of DGAT1proUP, 10 pmol of
DGAT1proDN, 1.5 mM MgCl2, 0.2 mM of each dNTP, and
0.2 U Taq Polymerase (Qiagen, Hilden, Germany). A
touchdown protocol was performed starting at 70°C with
2°C steps to the final annealing temperature of 60°C.
One microliter of the reaction volume was run on an auto-
mated fragment analysis system (A.L.F., Amersham,
Freiburg, Germany) under denaturing conditions. Allele
nomenclature for the DGAT1 promoter VNTR was identi-
cal to allele classification in [9]. All genotypes were
checked for plausibility and agreement with Mendelian
inheritance.

DGAT1 promoter VNTR – K232A haplotypes of sires were
derived from the genotypes of the respective group of
daughters. Consecutively, the paternally inherited haplo-
type of each daughter was determined by assuming no
recombination between DGAT1 promoter VNTR and
K232A polymorphism due to the close genomic co-local-
ization of both loci (8,968 bp distance, according to
AJ318490; assuming a ratio of 1cM/1Mb, < 0.1 recombi-
nation is expected in the whole data set). The maternally
inherited haplotype of a cow was deduced from subtract-
ing the paternally inherited haplotype from the daughters'
genotype. For daughters sharing their sires' genotype at
the DGAT1 K232A as well as the promoter VNTR locus, it
was not possible to assign paternally or maternally inher-
ited haplotypes, respectively.

Phenotypic data
For the 1035 cows included in the analysis, first lactation
yield deviations (YD) [25] for milk yield, milk fat yield,
and milk protein yield were available (Table 6). Yield
deviations were the weighted average of a cows' yields
adjusted for all non-genetic effects. YDs taken from the
National genetic evaluation run for Holsteins in April
2005 [26] were not adjusted for the genetic merit of the
dams to avoid elimination of the potential effects of
maternally inherited DGAT1 alleles. Records were only
included, if the cow had a minimum of eight milk record-
ings within the first lactation. Yield deviations for milk fat
percentage and milk protein percentage were calculated
according to [5].
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Statistical analysis
The allele and haplotype frequencies for the German Hol-
stein population cannot be estimated from the genotypes
of the cows, because the sires of the cows included in the
study had been selected with respect to DGAT1 K232A
and promoter VNTR genotypes to ensure a high variety of
alleles and haplotypes in the analysis. Instead, the mater-
nally inherited alleles and haplotypes of the cows were
used to receive an overview of the DGAT1 allele distribu-
tions in the population.

In a previous study, daughter yield deviations (DYDs) of
German Holstein bulls were analyzed, and the DGAT1
promoter VNTR allele 5 displayed the most pronounced
effect on milk production traits compared to the other
VNTR alleles, particularly on milk fat percentage [9]. To
enable the comparison of DGAT1 promoter VNTR effects
estimated in that study with the effects within the German
Holstein cow data set of the present study, the allele sub-
stitution effect of DGAT1 promoter VNTR allele 5 com-
pared to all other alleles was calculated using a regression
analysis with general linear model procedures (SAS proce-
dures GLM, SAS Institute, Cary, NC) applying the follow-
ing model:

yijk = µ + si + K232Ak + b*zij + eijk (1)

where yijk is the YD of daughter j within sire i carrying the
DGAT1 K232A genotype k, µ is the overall mean, si is the
fixed effect of sire i, K232Ak is the fixed effect of the
DGAT1 K232A genotype k; zij is the number of alleles 5 at
DGAT1 promoter VNTR (0, 1 or 2) of daughter j within
sire i, b is the regression coefficient representing the allele
substitution effect of VNTR allele 5 compared to all other
alleles, and eijk is the random residual effect. The respec-
tive analysis was performed including all individuals as
well as considering a subset restricted only to the
homozygous DGAT1 232A/232A cows.

While the previous study design consisted of DGAT1
232A/232A individuals only to evaluate DGAT1 promoter
VNTR effects [9], the present analysis aims to estimate
DGAT1 K232A and promoter VNTR effects jointly by
including all DGAT1 K232A genotypes. General linear

model procedures (SAS procedure GLM, SAS Institute,
Cary, NC) were used to estimate the effects of both
DGAT1 locus genotypes on milk yield, milk fat yield, milk
protein yield, milk fat percentage, and milk protein per-
centage with the following model and a type III sum of
squares test:

yijkl = µ + si + K232Ak + VNTRl + eijkl (2)

where yijkl is the YD of daughter j within sire i carrying the
DGAT1 genotypes k at K232A and l at the promoter VNTR,
respectively, µ is the overall mean, si is the fixed effect of
sire i, K232Ak is the fixed effect of the DGAT1 K232A gen-
otype k, VNTRl is the fixed effect of the DGAT1 promoter
VNTR genotype l, and eijkl is the random residual effect.
Only DGAT1 promoter VNTR genotypes represented by
more than ten daughters in the data set were included in
the analysis. For comparison to the outcomes of previous
studies, a submodel of eq. 2 without the fixed effect of the
DGAT1 promoter VNTR genotype was also used.

For both, the model and the submodel, the magnitude of
the dominance was calculated by contrasting the esti-
mated coefficients for heterozygotes to the average of the
coefficient of homozygous genotypes. This was done for
the 232K allele and for the DGAT1 VNTR alleles 4 and 5
defining three genotype classes with zero, one or two cop-
ies of the respective allele in each case.

Finally, the effects of the maternally and paternally inher-
ited DGAT1 promoter VNTR – K232A haplotypes on milk
production traits were estimated separately applying the
following model:

yijkl = µ + si + DGAT1_patk * DGAT1_matl + eijkl

(3)

where yijkl is the YD of daughter j of sire i with paternally
inherited DGAT1 promoter VNTR – K232A haplotype k
and maternally inherited DGAT1 promoter VNTR –
K232A haplotype l, µ is the overall mean, si is the fixed
effect of sire i, DGAT1_patk * DGAT1_matl is the com-
bined fixed effect of the paternally inherited DGAT1 pro-
moter VNTR – K232A haplotype k and the maternally

Table 6: Phenotypic description of the data set

Yield deviation n minimum maximum mean SD

Milk yield [kg] 1035 -881.6 3132.6 827.2 544.8
Fat content [%] 1035 -0.870 0.675 -0.099 0.230
Fat yield [kg] 1035 -36.29 113.76 26.03 21.49
Protein content [%] 1035 -0.305 0.294 -0.014 0.094
Protein yield [kg] 1035 -17.27 91.92 26.50 15.78

Minimum, maximum, mean, and standard deviation (SD) for first lactation yield deviations of German Holstein cows included in the study
Page 7 of 9
(page number not for citation purposes)
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inherited DGAT1 promoter VNTR – K232A haplotype l,
and eijkl is the random residual effect. To test for a parent-
of-origin effect, a set of linear hypotheses of the estimated
effect coefficients were formulated that compare the esti-
mates of the group that received a specific haplotype from
the father to the estimates for the group that received it
from the mother (equally weighing over the marginal
occurrence of haplotype combinations similar to the so
called least square means). Each linear hypothesis was
tested separately (for each haplotype) and finally the
whole set of hypotheses was tested simultaneously. This
last test is interpreted as an overall test for the parent-of-
origin effect. In this analysis, only observations with hap-
lotypes occurring in both parent sexes were included.
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