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Abstract

Background: Carbohydrate supplements are widely used by athletes as an ergogenic aid before and during sports
events. The present systematic review and meta-analysis aimed at synthesizing all available data from randomized
controlled trials performed under real-life conditions.

Methods: MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials were searched systematically
up to February 2015. Study groups were categorized according to test mode and type of performance
measurement. Subgroup analyses were done with reference to exercise duration and range of carbohydrate
concentration. Random effects and fixed effect meta-analyses were performed using the Software package by the
Cochrane Collaboration Review Manager 5.3.

Results: Twenty-four randomized controlled trials met the objectives and were included in the present systematic
review, 16 of which provided data for meta-analyses. Carbohydrate supplementations were associated with a
significantly shorter exercise time in groups performing submaximal exercise followed by a time trial [mean
difference −0.9 min (95 % confidence interval −1.7, −0.2), p = 0.02] as compared to controls. Subgroup analysis
showed that improvements were specific for studies administering a concentration of carbohydrates between 6
and 8 % [mean difference −1.0 min (95 % confidence interval −1.9, −0.0), p = 0.04]. Concerning groups with
submaximal exercise followed by a time trial measuring power accomplished within a fixed time or distance,
mean power output was significantly higher following carbohydrate load (mean difference 20.2 W
(95 % confidence interval 9.0, 31.5), p = 0.0004]. Likewise, mean power output was significantly increased
following carbohydrate intervention in groups with time trial measuring power within a fixed time or distance
(mean difference 8.1 W (95 % confidence interval 0.5, 15.7) p = 0.04].

Conclusion: Due to the limitations of this systematic review, results can only be applied to a subset of athletes
(trained male cyclists). For those, we could observe a potential ergogenic benefit of carbohydrate supplementation
especially in a concentration range between 6 and 8 % when exercising longer than 90 min.
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Background
Carbohydrates are one of the two main fuels for sport
activities and their importance for optimal sport perform-
ance both in training and in competition is generally
undisputed among experts [1, 2].
Carbohydrates are also used by athletes as an ergogenic

aid before and during sport events even when they have
repleted carbohydrate reserves. The scientific background
of carbohydrates as an ergogenic nutritional supplement
has been the subject of numerous investigations with the
majority of results indicating a performance-enhancing
effect of carbohydrate supplementation shortly before and
during a performance bout [3–10].
In some of these studies, subjects were competing in a

fasted state. Overnight fasting may probably result in
more easily reproducible outcomes due to a more
balanced state of metabolism in comparison to a post-
prandial state [11]. However, athletes intuitively avoid a
fasted state before any competition and it is not recom-
mended in the pertinent literature. It has been indicated
that during an overnight fast liver glycogen stores are
reduced substantially by amounts as high as 80 % [1, 2].
Therefore, suboptimal carbohydrate stores are likely to be
present when beginning an exercise in a fasted state.
Furthermore, many performance studies used time-to-
exhaustion tests, which asses how long subjects can
exercise at a given intensity. Again, this protocol does
not always reflect the conditions of a real competition
because athletes, at least in elite sports, should either
perform as fast as possible for a given distance (e.g.,
races) or as well as possible within a given time (e.g.,
team sports). Currell and Jeukendrup [12] assessed
various performance protocols and concluded that
those in which subjects were asked to complete a
fixed distance/amount of work as fast as possible or
to accomplish as much work/distance as possible in a
given time (i.e. time trails), yielded better results with
respect to validity, reliability and sensitivity as com-
pared to time-to-exhaustion protocols [12].
In 2013, a systematic review by Colombani and co-

workers [11] addressed all these aspects. Their re-
sults suggests that only 11 out of 22 investigations
included in the review resulted in a significant im-
provement of performance following carbohydrate
supplementation indicating a high amount of uncer-
tainty concerning the benefits of carbohydrate sup-
plementation in field experiments trying to copy a
realistic performance setting.
It was the purpose of the present study to expand the

approach by Colombani et al. [11] via an updated litera-
ture search in order to yield an extended number of suit-
able studies so that the systematic review can be
combined with a statistical synthesis of the available data
using a meta-analytical approach.

Methods
Search strategy
Data of the original search by Colombani et al. [11] were
used as starting point. The authors performed a search in
“PubMed” up to September 3, 2011 using the following
combination of key words: (Exercise OR Sport OR Athlete
OR Athletes) AND (Hydration OR Water OR Fluid OR
Drink OR Drinks OR Beverage OR Beverages OR Glycogen
OR Loading OR Carbo OR Carbohydrate OR Carbohy-
drates OR Glucose OR Fructose OR Maltodextrin) NOT
(Mice OR Mouse OR Pig OR Pigs OR Rat OR Rats OR
Horse OR Horses OR Fish OR Dog OR Dogs OR Patient
OR Patients OR Disease OR Diseases OR Diabetes OR
Obesity OR Obese OR “Cord injury” OR “Wheelchair).
In addition to the systematic search of Colombani and

coworkers [11] we searched the electronic databases
“Embase” as well as the “Cochrane Central Register Of
Controlled Trials” up to February, 2016 and expanded
the search in “PubMed” starting September 4th, 2011 to
February, 2016 using the same combinations of search
terms with the following exceptions: we used “Human”
and “Adult <18 to64 years” as further limitations in the
database “Embase”. Hand search was done using the ref-
erence lists of two meta-analyses [7, 8], yielding one
additional article suitable for this systematic review [13].

Inclusion criteria
In accordance to Colombani et al. [11], the following
inclusion criteria were defined:

– Randomized, crossover, placebo-controlled and if
possible blinded study design. Blinding was not
feasible as an absolute criterion, as sometimes the
intervention could not be fully masked;

– Mean age of the subjects between 18 and 40 years,
but no restriction with respect to gender;

– A reported VO2max ≥ 50 mL/kg/min (for an
appropriate estimation of subject’s fitness level);

– Assessment of body mass;
– Subjects were tested in the postprandial state

(between 2 h and 4 h after ingesting last meal);
– Performance test had to be either of a time trial

(TT) character or a submaximal exercise followed
by a time trial (S + TT);

– For studies with carbohydrate intake immediately
prior to and/or during exercise, we included only
studies with provision of any type of carbohydrates,
electrolytes and water but no further components.

Exclusion criteria

– Studies with time-to-exhaustion tests or studies with
insufficient methodological information to enable a
check of the inclusion criteria were excluded.
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Categorization of interventions
To yield more homogeneous study designs it was neces-
sary to categorize the studies by defining comparable
interventions prior to statistical analysis. Classification of
groups was performed according to test mode (cycling,
running, soccer), carbohydrate intervention (carboload-
ing vs. no carboloading; carbohydrate mouth rinse vs.
placebo mouth rinse; ingestion of carbohydrate contain-
ing drinks vs. drinks containing no carbohydrates), type
of intervention (TT or S + TT), and outcome [perform-
ance as time needed to cover a fixed distance (or a set
amount of work); distance covered within a fixed time,
or power accomplished within a fixed time (or fixed dis-
tance)]. Taken together, this resulted in the following
classification of groups:

Group 1: Submaximal exercise followed by a time trial
measuring time needed to cover a fixed distance or a
fixed set amount of work;
Group 2: Time trial measuring time needed to cover
a fixed distance or a fixed set amount of work;
Group 3: Submaximal exercise followed by a time trial
measuring power (W) accomplished within a fixed time
or distance;
Group 4: Time trial measuring power (W)
accomplished within a fixed time or distance.

Furthermore, subgroups were formed in order to
address two other research questions:

1) Whether the ergogenic effect is dependent on
exercise duration (short duration < 90 min vs.
long duration > 90 min);

2) If there is an advantage within a specified range of
carbohydrate concentrations (6–8 % vs. 1–12 % vs.
12–18 %).

In the scientific literature, the different mechanisms
for ergogenic effects of carbohydrates with respect to
short and long lasting physical exercise was explained to
be due to different carbohydrate availability. For exercise
durations lasting ≤ 90 min there should be sufficient sub-
strate without power loss given the condition of regularly
filled glycogen stores [14–16]. Therefore we compared ex-
ercise durations ≤ and > than 90 min.

Statistical analyses
Data were analyzed using the Review Manager 5.3 software
provided by the Cochrane Collaboration (http://tech.co-
chrane.org/revman). Differences in means were compared
for outlining possible differences between carbohydrates
and placebo with a fixed-effect meta-analysis using the
inverse-variance method. However, when heterogeneity
exceeded the level of 50 %, the random-effects model was

used. The Cochrane Collaboration suggests to use meta-
analyses in order to synthesize evidence from multiple ex-
periments addressing the same research questions. Check-
ing consistency of the results is of major importance in
meta-analyses. Statistical heterogeneity in studies is charac-
terized by 95 % CI that show poor overlap. We used the I2

statistic to detect heterogeneity [17]. If considerable hetero-
geneity is observed (I2 ≥ 50 %), fixed-effect models should
be avoided, since they underperform in that context.
Random effects models provide a more conservative
approach yielding better estimates [18].
Descriptive data of included trials are given as mean ±

SD. Pooled estimates of the effects size obtained by either
comprehensive or subgroup meta-analyses are reported as
mean difference together with the 95 % confidence inter-
vals, respectively. P-values < 0.05 were considered to be
statistically significant. Moreover, effects sizes are given as
standardized mean differences (SMD) for each analysis
group as Additional files 1, 2, 3 and 4 (see corresponding
Result section).

Results
Literature search
In the original literature search by Colombani et al. [11]
performed in the electronic database Pubmed until Sep-
tember 3rd, 2011, 16,658 articles were identified. Our own
updated search for literature yielded 15,105 articles (4,136
articles from PubMed published between September 4th,
2011 and February, 2016, 2,916 articles from Cochrane
Central Register Of Controlled Trials, and 8,053 from
Embase, respectively). Articles which contained sufficient
information in the title or abstract to identify them as not
eligible were discarded, if this was not the case, the full text
was consulted. Furthermore, 12 reviews [3–6, 9, 10, 19–24]
concerning this topic were hand-searched for eligible stud-
ies, however no additional study fulfilling the search
criteria was identified. In total, the full text of 205 articles
was examined yielding 24 studies that met the inclusion
criteria and are displayed in the systematic review (Tables 1
and 2). 16 of these articles provided enough information to
allow for a quantitative evaluation. Steps of article search
and selection are summarized as a flow chart in Fig. 1.

Types of studies
Carbohydrate intervention
Two studies were carboloading interventions, one [25]
using a TT as the performance test, the other one [26] a
submaximal exercise followed by a TT.
We found one eligible study [27] with a mouth-rinse

intervention, the remaining 21 studies compared the
effect of a carbohydrate-containing drink versus a non-
carbohydrate placebo. In eight of these interventions,
the carbohydrate type was not specified with only the
total amount of carbohydrate being reported. In the
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Table 1 General characteristics of randomized controlled trials included in the systematic review

Reference Type Test Mode Test time CHO content of pre-exercise meal
(g/kg body weight)

Drink type during test Drink during test per h

Fluid CHO

Acker-Hewitt et al., 2012 [38] CHO vs. W S + TT Cycle 20 min + 44 min 1.3 8 % CHO not specified 0.7 L 56 g

Angus et al., 2000 [44] CHO vs. W TT Cycle 166 min 2.8 6 % CHO not specified 1.0 L 60 g

Beelen et al., 2009 [27]a Mouth rinse TT Cycle 68 min 2.4 6.4 % MAL 0.0 L 0 g

Burke et al., 2000 [25]a Carboloading TT Cycle 148 min 2 Both trials same 7 % GLUP 1.1 L 72 g

Burke et al., 2002 [26]a Carboloading S + TT Cycle 120 + 25 min 2 Both trails same 6 % CHO,
CHO not specified

0.7 L 44 g

Baur et al., 2014 [39] CHO vs. W S + TT Cycle 120 + 52 min no data a) 12 % GLU + FRU (2:1)
b) 8 % GLU
c) 12 % GLU

0.8 L a) 93 g
b) 62 g
c) 93 g

Campbell et al., 2008 [34] CHO vs. W S + TT Cycle a) 80 + 17 min
b) 80 + 17 min
c) 80 + 17 min

male: 1.4
female: 1.6

All 5.9 %
a) SUC + GLU + FRU drink
b) MAL + FRU gel
c) SUC + GLU sport beans

0.7 L 43 g

Clarke et al., 2011 [30]a CHO vs. W S + TT Soccer 90 + 3 min no data 6.6 % CHO not specified 0.9 L 59 g

Cox et al., 2008 [35] CHO vs. W S + TT Cycle 100 min + 30 min 2.1 10 % GLU 1.125 L 112.5 g

Cox et al., 2010 [36] CHO vs. W S + TT Cycle 100 min + 30 min 2.1 10 % GLU 1.125 L 112.5 g

Desbrow et al., 2004 [45] CHO vs. W TT Cycle 63 min 2 6 % CHO not specified 1.0 L 61 g

El-Sayed et al., 1995 [33]a CHO vs. W S + TT Cycle 60 + 10 min no data 7.5 % GLU 0.7 L 54 g

El-Sayed et al., 1997 [47] CHO vs. W TT Cycle 60 min no data 8 % GLU 0.3 L 25 g

Flynn et al., 1989 [32]a CHO vs. W S + TT Cycle 105 + 15 min 3.5 7.7 % GLUP & SUC 0.7 L 58 g

Ganio et al., 2010 [31] CHO vs. W S + TT Cycle 120 + 15 min no data 6 % CHO not specified 0.9 L 53 g

Hulston et al., 2009 [37] CHO vs. W S + TT Cycle 120 + 59 min no data 6 % GLU & FRU (2:1) 0.8 L 45 g

Hunter et al., 2002 [46] CHO vs. W TT Cycle 150 min no data 7 % CHO not specified 0.6 L 42 g

Jeukendrup et al., 2008 [22] CHO vs. W TT Cycle 26 min no data 6 % SUC & GLU (3:2) 1.2 L 70 g

Langenfeld et al., 1994 [40] CHO vs. W TT Cycle 241 min no data 7 % MAL & FRU (5:2) 0.5 L 37 g

McGawley et al., 2012 [29]a CHO vs. W S + TT Run 88 min + 40 min no data 14.4 % MAL + FRU (2:1) 0.8 L 115 g

Mitchell et al., 1989 [13] CHO vs. W S + TT Cycle 105 + 15 min 0.7 a) 6 % GLUP & SUC (2:1)
b) 12 % GLUP & FRU (2.4:1)
c) 18 % GLUP & FRU (4.1:1)

0.6 L a) 37 g
b) 75 g
c) 111 g

Nassif et al., 2014 [41] CHO vs. W TT Cycle 135 min no data 6 % CHO not specified 0.63 L 38 g

Rollo et al., 2010 [28]a CHO vs. W TT Run 60 min 2.5 6.4 % CHO not specified 0.4 L 28 g

van Essen et al., 2006 [42] CHO vs. W TT Cycle 135 min no data 6 % SUC 1.0 L 60 g

CHO carbohydrates, GLU glucose, GLUP glucose polymer, FRU fructose, MAL maltodextrin, SUC sucrose, S + TT submaximal exercise + time trial, TT time trial, W water
anot suitable for meta-analyses
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remaining 13 studies, either glucose, a glucose-polymer,
maltodextrin, fructose, and/or sucrose was used as
carbohydrate sources with a concentration ranging
between 5.9 and 18 %.

Test mode
Most studies used cycling as their exercise mode with
three exceptions: Rollo and Williams [28] measured per-
formance while running a distance within a fixed time
using a submaximal exercise followd by a TT, McGawley
et al. [29] measured performance via running-time needed
to cover a fixed distance using only TT, and Clarke et al.
[30] investigated the ergogenic effect of carbohydrates
with a soccer-specific mode.
Eleven studies used a TT as their performance test

with test durations between 26 min to 241 min.
The remaining 13 investigations used a submaximal exer-

cise followed by a TT with test durations between 20 +
44 min-120 + 59 min. Intervention and test modes for all
studies are summarized in Tables 1 and 2, respectively.

All of the 16 studies provided enough information for
a quantitative evaluation used cycling as their exercise
mode. For reason of a better comparability, these studies
were assigned to one of four different groups as de-
scribed in the Methods section. Study designs with both
time and power outcomes where assigned to all applic-
able groups. Two articles presented their outcomes as
work [13, 31], which was converted into power prior to
analyses by dividing work by the required time.
Results for group 1 and 3 were subdivided based on the

administered carbohydrate concentrations, results for
group 2 and 4 were subdivided based on exercise duration.

Exclusion of studies
Two studies tested the advantage of carbohydrates during a
running exercise and were not included into one of the four
groups because of considerable physiological differences be-
tween this and the other types of exercise [28, 29]. In
addition, the study by Clarke et al. [30] was the only eligible
study using a soccer-specific protocol and could therefore
not be included in the meta-analysis. Other studies had to

Table 2 Characteristics of participants in studies eligible for systematic review

Reference Number of subjects Gender Age VO2max
(mL/kg body mass/min)

Acker-Hewitt et al., 2012 [38] 10 Males 28 66

Angus et al., 2000 [44] 8 Males 22 65

Beelen et al., 2009 [27]a 14 Males 24 68

Burke et al., 2000 [25]a 7 Males 28 64

Burke et al., 2002 [26]a 8 Males 28 69

Baur et al., 2014 [39] 8 Males 25 62

Campbell et al., 2008 [34] 16 8 males/8 females 35/32 59/50

Clarke et al., 2011 [30]a 12 Males 25 61

Cox et al., 2008 [35] 16 Males 31 65

Cox et al., 2010 [36] 16 Males 31 65

Desbrow et al., 2004 [45] 9 Males 30 65

El-Sayed et al., 1995 [33]a 9 Males 24 61

El-Sayed et al., 1997 [47] 8 Males 25 67

Flynn et al., 1989 [32]a 7 Males 29 62

Ganio et al., 2010 [31] 14 Males 27 60

Hulston et al., 2009 [37] 10 Males 28 62

Hunter et al., 2002 [46] 8 Males 24 65

Jeukendrup et al., 2008 [22] 12 Males 19 66

Langenfeld et al., 1994 [40] 14 Males 21 56

McGawley et al., 2012 [29]a 10 6 males/4 females 26/24 63/62

Mitchell et al., 1989 [13] 10 Males 24 63

Nassif et al., 2014 [41] 10 Males 26 71

Rollo et al., 2010 [28]a 10 Males 34 62

van Essen et al., 2006 [42] 10 Males 24 63
anot suitable for meta-analyses
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be excluded due to either different carbohydrate interven-
tion [mouth rinse [27], carboloading [25, 26]], or presenta-
tion of data in an inoperable unit (N/m) [32], or
presentation of results only via graphics, respectively [33].

Characteristics of subjects
Subjects were male with the exception of two studies
[29, 34] enrolling both genders. Sample size varied
between seven and 16 volunteers, mean age ranged
between 19 and 35 years, and mean VO2max ranged
between 50 and 71 ml/kg body weight/min.

Performance outcomes
For each of the four groups, results of both comprehen-
sive as well as subgroup meta-analyses are given in
Figs. 2, 3, 4 and 5, respectively. Please note that classifi-
cation into subgroups was performed for every group in-
dependent of resulting numbers of studies.
Group 1 included six studies [34–39] with 13 interven-

tions in total. Pooled estimates of the effects size for the
effects of carbohydrate interventions as compared to pla-
cebo on time required to finish a TTare presented in Fig. 2
(forest plot showing pooled SMD is given as Additional
file 1). Carbohydrate interventions were associated with a
significantly lower amount of time [mean differences
−0.9 min (95 % CI −1.7, −0.2), p = 0.02]. Following sub-
group analyses, significant performance improvements
remained only for those studies administering a concen-
tration of carbohydrates between 6 and 8 % [MD=
−1.0 min (95 % CI −1.9, −0.0), p = 0.04].

Group 2 included seven studies [40–46] with seven
interventions in total. Figure 3 summarizes the pooled es-
timates for effect size obtained by a random effects model
due to the considerable heterogeneity between studies (I2

= 73 %; P = 0.001) (forest plot showing pooled SMD is
given as Additional file 2). Average cycling time was faster
in subjects ingesting carbohydrates as compared to pla-
cebo, however, without being statistically significant [mean
difference 2.8 min (95 % CI −7.7, 2.1), p = 0.26]. Subgroup
analysis including only studies with an exercise duration
shorter than 90 min revealed a marginally higher average
cycling time in the carbohydrate groups [mean difference
0.1 min (95 % CI −1.1, 1.2), p = 0.89]. In contrast, sub-
group analysis taking into account studies with an exercise
duration longer than 90 min resulted in a decreased aver-
age cycling time following carbohydrate ingestion when
compared to placebo [mean difference −4.6 min (95 % CI
−12.4, 3.2), p = 0.25].
Group 3 included five studies [13, 31, 37–39] with

nine interventions in total, results of which are summa-
rized in Fig. 4 (forest plot showing pooled SMD is given
as Additional file 3). Mean power output was signifi-
cantly more pronounced in participants subjected to a
carbohydrate load as compared to placebo [mean
difference 20.2 W (95 % CI 9.0, 31.5, p = 0.0004]. Com-
parable results could be obtained following subgroup
analyses subclassifying carbohydrate interventions into
ranges of 6–8 % [mean difference 19.3 W (95 % CI 5.6,
33.0), p = 0.006] and 12–18 % [mean difference 22.1 W
(95 % CI 2.5, 41.8), p = 0.03], respectively.

Fig. 1 Flow diagram of article selection process. 1 Exclusion of duplicates. 2 not randomized controlled trials, different age group, no time trial or
submaximal exercise followed by time trial. 3 Considerable differences with respect to type of exercise: McGawley et al., [29]; Rollo et al., [28].
Soccer-specific protocol: Clarke et al., [30]. Considerable differences with respect to carbohydrate intervention: Burke et al., [25]; Burke et al., [26];
Beelen et al., [27]. Inoperable presentation of data: El-Sayed et al., [33]; Flynn et al., [32]
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Group 4 included four studies [42, 45–47] with four
interventions in total. Meta-analytical data are depicted in
Fig. 5 (forest plot showing pooled SMD is given as
Additional file 4). Mean power output turned out to be sig-
nificantly increased in volunteers following a carbohydrate

intervention [mean difference 8.1 W (95 % CI 0.5, 15.7), p
= 0.04]. Concerning subgroup analysis, performance tended
to be higher in both studies with an exercise duration
greater than 90 min [mean difference 18.8 W (95 % CI
−8.4, 46.0), p = 0.18] and shorter than 90 min [mean

Fig. 2 Effects of carbohydrate interventions as compared to placebo on time required to finish a time trial. Forest plot shows pooled mean differences
with 95 % confidence intervals (CI) for 6 randomized controlled trials. Subgroup analyses show the results for carbohydrate concentrations ranging
between 6–8 % and 10–12 %, respectively. The diamond at the bottom of the graph and the subgroups represents the pooled mean difference with
the 95 % CI for all trials following fixed effect meta-analyses. GLU = glucose; FRU = fructose; MAL =maltodextrin; SUC = sucrose

Fig. 3 Effects of carbohydrate interventions as compared to placebo on time required to finish a time trial. Forest plot shows pooled mean
differences with 95 % confidence intervals (CI) for 7 randomized controlled trials. Subgroup analyses show the results for exercise duration shorter
than 90 min or longer than 90 min, respectively. The diamond at the bottom of the graph and the subgroups represents the pooled mean
difference with the 95 % CI for all trials following random effects meta-analyses
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Fig. 4 Effects of carbohydrate interventions as compared to placebo on mean power output. Forest plot shows pooled mean differences with
95 % confidence intervals (CI) for 5 randomized controlled trials. Subgroup analyses show the results for carbohydrate concentrations ranging
between 6–8 % and 12–18 %, respectively. The diamond at the bottom of the graph and the subgroups represents the pooled mean difference
with the 95 % CI for all trials following fixed effect meta-analyses. GLU = glucose; FRU = fructose

Fig. 5 Effects of carbohydrate interventions as compared to placebo on mean power output. Forest plot shows pooled mean differences with
95 % confidence intervals (CI) for 4 randomized controlled trials. Subgroup analyses show the results for exercise duration shorter than 90 min or
longer than 90 min, respectively. The diamond at the bottom of the graph and the subgroups represents the pooled mean difference with the
95 % CI for all trials following fixed effect meta-analyses

Pöchmüller et al. Journal of the International Society of Sports Nutrition  (2016) 13:27 Page 8 of 12



difference 7.2 W (95 % CI −0.6, 15.1), p = 0.07] without
yielding statistically significant results.

Discussion
Based upon the recent systematic review by Colombani et
al. [11], it was the purpose of the present study to
synthesize all available data from randomized controlled tri-
als investigating the potential ergogenic effects of carbohy-
drate supplementation via meta-analysis. Due to the in-
between heterogeneity of trials with respect to study design,
we decided to evaluate only studies choosing cycling as the
mode of exercise. Moreover, four groups of carbohydrate
interventions with respect to test and performance meas-
urement were classified in order to achieve a better com-
parability of results. Taken together, all four groups
indicated an improved performance following carbohydrate
intervention as compared to placebo with differences being
statistically significant in group 1 (submaximal exercise
followed by a time trial measuring time needed to cover a
fixed distance or a fixed set amount of work), group 3
(submaximal exercise followed by a time trial measuring
power (W) accomplished within a fixed time or distance),
and group 4 (time trial measuring power (W) accomplished
within a fixed time or distance), respectively.

Subgroups duration
Duration of exercise ≤ 90 min did not result in statisti-
cally significant differences between carbohydrate inter-
ventions and placebo either in group 2 or in group 4.
These findings seem to be in contrast with studies
reporting an improved performance via carbohydrate
mouth rinsing [10, 48–54]. It has been suggested that
oral receptors within the mouth and the digestive tract
sense carbohydrates and activate brain regions associ-
ated with reward and pleasure which may lead to en-
hanced performance [5, 10, 48]. However, most mouth
rinse studies were conducted in a fasted state [48, 50, 52,
53] or had other limitations such as lack of or improper
randomization [51, 54] or uncertain time of last ingested
meal [49]. In our systematic review, three studies [27,
33, 38] with an exercise duration less than 90 min could
not be included in either groups 2 or group 4. Beelen et
al. [27] demonstrated a non-significant performance de-
cline when testing a carbohydrate mouth rinse. Likewise,
Acker-Hewitt et al. [38] did not find a significantly better
performance subsequent to a carbohydrate solution
when compared to placebo, while El-Sayed et al. [33]
could detect an increase in performance capacity. There-
fore, it seems premature to finally evaluate the potential
benefit of ingesting carbohydrates in short-term exer-
cises (less than 90 min), further trials reflecting realistic
conditions are necessary.
Subgroup analysis of five trials with a duration time

higher than 90 min in group 2 resulted in a trend towards

a decreased time needed to cover a fixed distance or a
fixed set amount of work. A similar trend could be ob-
served in group 4, albeit with only two trials included in
the subgroup. Taking all results under consideration, a
performance benefit through carbohydrates might be pos-
sible when exercise duration exceeds 90 min. However,
similar to subgroups with ≤ 90 min, additional studies are
required for evidence-based recommendations.

Subgroups carbohydrate concentration
Irrespective of specific carbohydrate concentrations, meta-
analytical results of both groups 1 and 3 yielded statistically
significant benefits for carbohydrate supplementation. In
general, this might be due to multiple factors including
maintenance of blood glucose [55–57] and high levels of
carbohydrate oxidation especially towards the end of exer-
cise [58, 59], thus sparing liver glycogen [60–63], as well as
a central effect of carbohydrates [48, 52].
Regarding range of carbohydrate concentrations, results

were statistically significant in favour of the lower range of
6–8 % of carbohydrate supplementation both in groups 1
and 3, while corresponding results for the higher range
was only significant in group 3 (12–18 %), but not in
group 1 (10–12 %). However, in both groups, the respect-
ive higher concentration range resulted in greater statis-
tical variance when compared to the 6–8 % range.
Therefore, one might speculate an impact of the adminis-
tered carbohydrate type becoming more effective at higher
concentrations. A high dose of ingested carbohydrates
while exercising may cause gastrointestinal discomfort
[64] which subsequently may decrease performance [65].
The maximal rate at which a single type of ingested carbo-
hydrate can be oxidized is 60–70 g/h and ingesting more
than this amount will not augment the oxidation rate but
rather increases the chance for gastrointestinal discomfort
[22]. It has been suggested that the ingestion of carbohy-
drates that use different, not competing, transporters in-
creases the maximal carbohydrate oxidation rate (up to
105 g/h) [66], which has been verified by numerous stud-
ies [24, 39, 67–69]. In the study by Baur and co-workers
[39], three different carbohydrate solutions were examined
(8 % glucose solution, 12 % glucose solution, 12 %
glucose–fructose (2:1) solution). The glucose-fructose
solution achieved the greatest performance improvement,
while the 12 % glucose solution did not affect performance
significantly. Likewise, three different carbohydrate solu-
tions (a 6 % glucose polymer-sucrose-solution (2:1, 37 g/
h), a 12 % glucose polymer-fructose solution (2.4:1, 75 g/
h), and an 18 % (4.1:1, 111 g/h) glucose polymer-fructose
solution) were comparatively investigated in the trial by
Mitchell et al. [13]. The best performance outcome was
found with the 12 % glucose polymer-fructose solution.
Despite no direct measurement of gastrointestinal symp-
toms, the authors concluded that the 18 % solution caused
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gastrointestinal distress and therefore the performance en-
hancement was not as high as with the 12 % solution [13].
Thus, the carbohydrate concentration resulting in opti-

mal performance seems to be dependent on many factors,
although our data suggests a more consistent benefit with
carbohydrate solutions ranging between 6 and 8 %.

Strengths and limitations
The protocol of the present systematic review was
designed to summarize the available evidence on the ergo-
genic effects of carbohydrate supplementation as an
expansion of the results by Colombani et al. [11] focusing
on randomized controlled trials investigating the out-
comes of their interventions under real-life conditions (no
overnight fasting, no time-to-exhaustion tests). Moreover,
we decided to categorize trials with respect to types of test
and performance measurements. This rigid protocol
allows for better comparison between the different trials,
it is associated with a number of limitations as well. First
of all, the number of studies suitable for meta-analyses
turned out to be rather low. All of the 16 trials providing
extractable data for meta-analyses used cycling as their
exercise mode. Although this might be another aspect
increasing the homogeneity of the results, it is not possible
to draw any conclusions for other types of exercise such
as running. Data on the content of the last meal prior to
trials suggest heterogeneous pre-exercise carbohydrate in-
take between studies. Another common limitation of per-
formance studies is the only low to average power with
respect to the number of participants ranging between 16
and 32 volunteers in the present meta-analyses. Since only
one trial [39] enrolled subjects with a mean VO2max that
would classify them as elite endurance athletes, the results
are most likely not affected by heterogeneity between
baseline capacities of study participants. In addition, with
the exception of References [29] and [34], all trials were
performed with male volunteers hampering transfer of
results to female athletes. Following conversion of abso-
lute values into percentage data, results were widely
spread yielding improvements in assessed outcomes
between 0.2 % [45] –13 % [13] as well as declines ranging
between −0.6 % [22] and −7.3 % [41], respectively. This
may serve as a potential indicator for the heterogeneous
study designs.

Conclusions
In conclusion there may be a benefit for trained male
cyclists when ingesting carbohydrates in a concentration
range of 6–8 % just before and/or while exercising lon-
ger than 90 min. Due to lack of sufficient data, it is diffi-
cult to extrapolate this result to elite or generally female
athletes. Moreover, further research is needed to gain
additional information on exercise durations lower than
90 min and in a wider variety of types of exercise.

Additional files

Additional file 1: Figure S1. Effects of carbohydrate interventions as
compared to placebo on time required to finish a time trial. Forest plot
shows pooled standardized mean differences with 95 % confidence
intervals (CI) for 6 randomized controlled trials. Subgroup analyses show
the results for carbohydrate concentrations ranging between 6–8 % and
10–12 %, respectively. The diamond at the bottom of the graph and the
subgroups represents the pooled mean difference with the 95 % CI for
all trials following fixed effect meta-analyses. GLU = glucose; FRU = fructose;
MAL =maltodextrin; SUC = sucrose. Title: File format: tiff (TIF 7950 kb)

Additional file 2: Figure S2. Effects of carbohydrate interventions as
compared to placebo on time required to finish a time trial. Forest plot
shows pooled standardized mean differences with 95 % confidence
intervals (CI) for 7 randomized controlled trials. Subgroup analyses show
the results for exercise duration shorter than 90 min or longer than
90 min, respectively. The diamond at the bottom of the graph and the
subgroups represents the pooled mean difference with the 95 % CI for
all trials following random effects meta-analyses. (TIF 6850 kb)

Additional file 3: Figure S3. Effects of carbohydrate interventions as
compared to placebo on mean power output. Forest plot shows pooled
standardized mean differences with 95 % confidence intervals (CI) for 5
randomized controlled trials. Subgroup analyses show the results for
carbohydrate concentrations ranging between 6–8 % and 12–18 %,
respectively. The diamond at the bottom of the graph and the subgroups
represents the pooled mean difference with the 95 % CI for all trials following
fixed effect meta-analyses. GLU = glucose; FRU= fructose. (TIF 7339 kb)

Additional file 4: Figure S4. Effects of carbohydrate interventions as
compared to placebo on mean power output. Forest plot shows pooled
standardized mean differences with 95 % confidence intervals (CI) for 4
randomized controlled trials. Subgroup analyses show the results for
exercise duration shorter than 90 min or longer than 90 min, respectively.
The diamond at the bottom of the graph and the subgroups represents
the pooled mean difference with the 95 % CI for all trials following fixed
effect meta-analyses. (TIF 5891 kb)
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