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Communication between neurons 
largely occurs at chemical synapses 

by conversion of electric to chemical 
signals. Chemical neurotransmission 
involves the action potential-driven 
release of neurotransmitters from syn-
aptic vesicles (SVs) at presynaptic nerve 
terminals. Fusion of SVs is driven by 
SNARE complex formation comprising 
synaptobrevin 2 on the SV membrane 
and syntaxin 1A and SNAP-25 on the 
plasma membrane. In order to main-
tain neurotransmission during repetitive 
stimulation and to prevent expansion of 
the presynaptic plasma membrane, exo-
cytic SV fusion needs to be balanced by 
compensatory retrieval of SV compo-
nents to regenerate functional vesicles. 
Our recent work has unraveled a mecha-
nism by which the R-SNARE synapto-
brevin 2, the most abundant SV protein 
and an essential player for exocytic 
fusion, is recycled from the presynaptic 
membrane. The SNARE motif of synap-
tobrevin 2 is directly recognized by the 
ANTH domains of AP180 and CALM, 
monomeric endocytic adaptors for clath-
rin-mediated endocytosis. Given that 
key residues involved in synaptobrevin 
2-ANTH domain complex formation 
are also essential for SNARE assembly, 
we propose that disassembly of SNARE 
complexes is a prerequisite for synap-
tobrevin 2 retrieval, thereby prevent-
ing endocytic mis-sorting of the plasma 
membrane Q-SNAREs syntaxin 1A and 
SNAP-25. It is tempting to speculate 
that perturbed synaptobrevin 2 recycling 
caused by reduction of CALM or AP180 
levels may lead to disease as suggested 
by the genetic association of ANTH 
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domain proteins with neurodegenerative 
disorders.

Precise and Rapid Retrieval  
of Synaptic Vesicle Proteins  

is Mandatory to Sustain  
Synaptic Transmission

Upon the arrival of an action potential 
(AP) at presynaptic terminals, SVs fuse 
with the plasma membrane at special-
ized sites termed active zones. Fusion is 
driven by complex formation between 
soluble NSF attachment protein recep-
tors (SNAREs) located on the SV and on 
the plasma membrane, respectively.1,2 The 
neuronal SNARE complex consists of the 
R-SNARE, synaptobrevin 2 (also known 
as vesicle-associated membrane pro-
tein 2, VAMP2) on SVs and the plasma 
membrane Q-SNAREs, syntaxin 1A and 
synaptosomal-associated protein (SNAP)-
25 (reviewed in ref. 3). Synaptobrevin 2 
is the most abundant protein on SVs3 
and is required for activity-induced SV 
fusion,4 indicating a crucial role in evoked 
neurotransmission. Thus, efficient resort-
ing of synaptobrevin 2 after SV fusion 
is essential to sustain synaptic function. 
The mechanisms by which synaptobrevin 
2 is endocytically resorted has remained 
elusive. Synaptobrevin 2 lacks typical 
endocytic sorting signals5,6 and does not 
contain potential domains other than its 
central SNARE helix that could serve as 
recognition elements7,8 and, hence, is dis-
tinct from other SNARE proteins.

Genetic studies in invertebrate models 
have suggested a role for AP180 N-terminal 
homology ANTH domain-containing 
proteins in synaptobrevin 2 endocytosis. 
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recognized by similar modes of interaction 
consistent with the fact that SNARE pro-
teins are found in many different organ-
elles in the cell.

Given that the endocytic sorting signal 
within synaptobrevin 2 overlaps with the 
SNARE complex interface only disassem-
bled synaptobrevin 2 can be internalized 
by AP180 and CALM. Such a mechanism 
presumably has evolved to prevent mis-
sorting of the plasma membrane SNAREs 
syntaxin and SNAP-25, while ensuring 
synaptobrevin 2 retrieval. This hypothesis 
is further supported by previous works 
showing that syntaxin 1A is excluded 
from recycling SV membranes and instead 
is retained on the neuronal plasma mem-
brane.15 Moreover, a synaptobrevin 2 
mutant impaired in SNARE complex dis-
assembly fails to get internalized from the 
plasma membrane.16 When and where dis-
assembly of cis-SNARE complexes occurs 
is an open question. This could conceiv-
ably happen either at the active zone, 
thereby regenerating free syntaxin 1A, 
which could be reused subsequent rounds 
of SNARE-driven membrane fusion or at 
the surrounding peri-active zone where 
recycling of SV proteins occurs (Fig. 2).

Recognition of synaptobrevin 2 by its 
specific endocytic adaptors, AP180 and 
CALM provides further support to the 
hypothesis that SVs lose their identity 
during exocytic fusion and are recycled 
piecemeal by cargo-specific mechanisms 
that involve dedicated sorting adaptors 
such as stonin 2 17-19 and endophilin20 (Fig. 
2). Our results are also consistent with the 
view that clathrin-mediated endocytosis is 
the major retrieval pathway at mamma-
lian central synapses.21,22 How endocytic 
SV reformation and sorting of SV com-
ponents are coordinated is unknown. SV 
proteins could either be internalized indi-
vidually or coalesce into preformed clusters 
that are then retrieved during subsequent 
rounds of exo-endocytosis. Several lines 
of evidence suggest that SV proteins form 
clusters on the plasma membrane. Such 
clusters have been observed by stimulation 
emission depletion (STED) microscopy 
for synaptotagmin 1,23 synaptophysin and 
the vesicular GABA transporter (vGAT) 
24 and may correspond to the so-called 
readily retrievable pool of vesicles on the 
neuronal surface.25 Post-fusion clustering 

may represent endosomal or plasma mem-
brane-derived endocytic intermediates, 
indicating a partial shift to alternative 
modes of SV regeneration requiring endo-
somal processing. Whether this is indeed 
the case will have to await further studies.

We also showed that the retrieval of 
synaptobrevin 2 by AP180 and CALM 
involves the direct association with 
the ANTH domains of both proteins. 
Convergent evidence from biochemical 
mapping analysis, direct in vitro binding 
assays including surface plasmon reso-
nance and peptide SPOT arrays, as well 
as structural studies by nuclear magnetic 
resonance (NMR) spectroscopy revealed 
that AP180- and CALM-ANTH recog-
nize identical determinants within the 
N-terminal half of the synaptobrevin 2 
SNARE helix. NMR-based structural 
studies indicate that overlapping sites 
within synaptobrevin 2 are involved in its 
association with ANTH domain-contain-
ing endocytic proteins as well as in SNARE 
complex formation. When one of these 
residues, methionine 46, was mutated 
to alanine binding of synaptobrevin 2 to 
ANTH domains was drastically reduced. 
More importantly, M46A mutant synap-
tobrevin 2 fused to a pH-sensitive green 
fluorescence protein (GFP) derivative 
(“pHluorin”)14 failed to be endocytically 
retrieved following stimulation-induced 
exocytic membrane insertion. This mech-
anism likely ensures that only free synap-
tobrevin 2 devoid of its SNARE binding 
partners is sorted to recycling SVs.

Implications and Questions

Taken together, our study has unraveled 
how synaptobrevin 2 is endocytically 
resorted during exo-endocytic cycling 
of SV membranes at mammalian central 
synapses. This novel mechanism involves 
the direct recognition of the N-terminal 
half of the SNARE helix within synap-
tobrevin 2 by the ANTH domains of 
AP180 and CALM and thus is distinct 
from previously described mechanisms for 
the recognition of other SNARE proteins 
that involve non-SNARE determinants 
including the Habc domain of vti1b and 
the longin domain of VAMP7.7,8 We pre-
dict that other brevin-family SNAREs 
that lack non-SNARE domains may be 

Caenorhabditis elegans lacking Unc11/
AP180 no longer accumulates synapto-
brevin 2 at synapses9 and Drosophila mela-
nogaster deficient of Like-AP180 (LAP) 
displays severely impaired SV endocytosis 
paired with pronounced mis-localization 
of synaptobrevin 2.10,11 These studies are 
consistent with a crucial role for AP180 
family members in SV recycling and sort-
ing of synaptobrevin. However, so far it 
has been difficult to discriminate gen-
eral endocytic functions of AP180 fam-
ily members from specific roles in SV 
protein sorting. Moreover, whether and 
how AP180 family members physically 
interact with synaptobrevin has remained 
unresolved. Lastly, it is unknown whether 
the presumed role of Unc11 and LAP in 
invertebrates is evolutionary conserved in 
mammals.

Direct Association  
of Synaptobrevin 2 and  

AP180/CALM via SNARE Motif 
Mediates the Recycling  

of Synaptobrevin 2 at Synapses

We have shown recently that in mam-
malian central synapses, retrieval of 
synaptobrevin 2 is regulated by ANTH 
domain-containing proteins, e.g., the 
neuron-specific family member AP180 
and its ubiquitously expressed homolog 
clathrin assembly lymphoid myeloid leu-
kemia (CALM).12 Depletion of AP180 
and CALM in hippocampal neurons led 
to selective accumulation of synapto-
brevin 2 on the neuronal surface but did 
not affect the distribution of other SV 
proteins such as the vesicular glutamate 
transporter 1 (vGLUT1). The function 
of AP180 and CALM appears to be at 
least partially redundant as neurons lack-
ing both of these factors displayed more 
severe sorting defects. AP180-depleted 
neurons also showed enlarged and more 
heterogeneously sized SVs, an effect that 
is in good agreement with observations 
in invertebrate systems9-11 and similar 
to the phenotype seen in synaptobrevin 
2-null primary neurons.13 Occasionally, 
tubular structures could be observed in 
AP180 deficient nerve terminals (Fig. 1). 
The identity of these structures or the 
mechanisms by which these are gener-
ated are presently unclear. These tubules 
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Is the function of AP180 and CALM 
restricted to their role as specific endo-
cytic sorting adaptors for synaptobrevin 
2 and other brevin SNAREs? Although 
the answer to this question remains open 
it is interesting to note that recent sys-
tematic genome-wide association studies 

retrieval of SVs,28,29 in particularly syn-
aptobrevin 2 endocytosis.28 Whether or 
not synaptophysin-dependent retrieval 
of synaptobrevin 2 operates in parallel or 
cooperatively with AP180/CALM-based 
mechanisms remains an important ques-
tion for future studies.

of SV proteins is also supported by the 
formation of detergent-insoluble hetero-
multimeric SV protein complexes.26 In 
agreement with this view, lack of syn-
aptophysin, the second most abundant 
synaptic vesicle protein and close bind-
ing partner of synaptobrevin 2 27 impairs 

Figure 1. Representative electron micrographs of control and AP180-depleted synapses. Arrowheads in the enlarged insets illustrate tubular struc-
tures occasionally found in AP180-depleted nerve terminals. Such structures were not normally seen in synapses from control neurons. Morphology 
and SV density were unchanged but SVs appeared slightly larger and more heterogeneous in synapses depleted with AP180.12 Hippocampal neurons 
were cotransfected with AP180 siRNA and an eGFP-encoding plasmid. Six to eight days after transfection neurons were fixed with 4% paraformal-
dehyde before permeabilization by freeze-cracking in liquid nitrogen. Samples were labeled with anti-GFP antibody and NANOGOLD® particles, 
post-fixed with 2% glutaraldehyde, gold-enhanced and processed for electron microscopy. Images were taken using Zeiss 910 electron microscope. 
Neurites and terminals of control or KD neurons were identified by absence/presence of intense immunogold labeling scattered in the cytoplasm. 
Scale bar, 500 nm; 200 nm for the inset; KD, knockdown.
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interesting and important questions for 
future studies.
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