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A B S T R A C T

IGFs and IGF-binding proteins (IGFBPs) are abundantly present in milk and in dairy products. Compared to the
IGFs, the IGFBP have received less attention in milk, although truncated IGFBPs and IGFBP-glycosylation have
been described in milk. Thereby, complex control of local IGF-effects can be assumed on the levels of IGFBPs,
proteases, and protease inhibitors. The present review collects the current knowledge both on presence and
regulation of IGFs and IGFBPs in milk particularly from dairy animal species. As a rule higher levels of IGF-I, IGF-
II, and IGFBPs are measured around parturition if compared to later time-points of lactation. In all farm animal
species included in this review, it is found that the relative abundancies of IGFBPs in milk and serum are similar,
with IGFBP-3 and -2 characterized by higher concentrations if compared to IGFBP-4 or -5. The concentrations of
IGFs and IGFBPs in milk or dairy products can be altered by hormones, dairy processing, or fermentation.
Because milk can be used for non-invasive biomarker research, quality management, and health monitoring, we
discuss novel directions of IGF-analysis and potential on-site biomarker research in milk.

1. Introduction

IGFs and IGFBPs impact on cell physiology, growth, and metabolism
throughout the body and a number of recent reviews has addressed
specific functions of the IGF-system [1–8]. IGF-I as the dominant
growth factor postnatally, is known to control the cell cycle and to
increase cell proliferation or to inhibit apoptosis [9–11]. After birth,
IGF-II is not a physiological regulator of somatic growth. However
expression of IGF-II is increased in a number of malignant conditions
[12] or in the clinical setting of metabolic dysfunction including obesity
or diabetes [13]. IGFBP-1 to -6 on one hand are thought to mediate cell
type specific effects of the IGFs. On the other hand, IGFBPs have IGF-
independent effects inside or outside the cell [14,15]. In addition,
IGFBPs may be processed by posttranscriptional modifications [16] or
by distinct proteases giving rise to defined IGFBP-fragments [17]. Due
to the high complexity of IGF-compounds in milk, the IGF-system has
tremendous potential for biomarker research. In farm animals, milk is
available noninvasively and in large quantities. Compared to the IGFs
[18], IGFBPs have received much less attention in milk. The physiolo-
gical significance of IGFs and IGFBPs in milk has been discussed by

Gauthier et al. in 2006 [19] and a recent update will follow as a
separate review soon (manuscript in preparation). The present review
will focus both on occurrence and regulation of IGFs and IGFBPs in
dairy milk and discuss biomarker potential of milk-borne IGFs and
IGFBPs in farm animals.

2. Analysis of the IGF-system in milk

In milk IGF-I and IGF-II as well as all six IGFBPs have been identified
so far [20–23]. The concentrations of IGFs and IGFBPs tremendously
may vary in this matrix, sometimes with concentrations above blood
levels [21,24].

2.1. Ruminants

Worldwide, cow milk amounts to 83% of dairy production, with
about 13% from buffalo, 2.4% from goat, 1.4% from sheep and 0.3%
from camel [25]. Generally, comparing bovine IGF (Table 1) and IGFBP
(Table 2) concentrations in milk and colostrum, it is clear, that there are
much higher concentrations in prepartum secretions or colostrum and
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that mature bovine milk predominantly contains IGF-I and IGFBP-3
[21,26–30]. According to Blum and Baumrucker the ranking of the
IGFBP concentrations in bovine mammary secretions are IGFBP-
3 > IGFBP-2 ≅ IGFBP-4 > IGFBP-5 [21,24]. In colostrum IGF-I and
IGF-II concentrations higher than 1000 ng/ml have been measured
whereas in mature milk the concentrations range between 2 and
300 ng/ml. For the assessment of extremely low IGF-I concentrations
in bovine milk an electrochemiluminescent assay was developed with a
limit of detection< 0.001 ng/ml [31]. The assay was used for the
quantitation of IGF-I in two frozen milk samples and revealed values of
4–9 ng/ml in serial dilutions of both samples [31]. In addition to intact
IGF-I, N-terminally truncated IGF-I (des1-3-IGF-I) was identified in
bovine colostrum [32]. Truncated IGF-I, which amounted to about one
third of total IGF-I purified from bovine colostrum, is characterized by
increased biological activity [32] due to reduced IGFBP-binding affinity
[33]. Des1-3-IGF-I is also present in mature bovine milk, however
amounts to only 3% of total IGF-I [34]. Similar to human milk, IGFBP-3

and IGFBP-2 were identified as the most abundant binding proteins in
bovine mammary secretions [19]. In bovine colostrum, Lee and
colleagues have identified glycosylation of an unidentified 37 kDa
IGFBPs by the use of N-glycanase and Western ligand blotting [35].
The concentration of IGFBPs is high in bovine prepartum milk-like
secretions (BPMS), colostrum and late lactation milk, and low in milk of
mid lactation [36]. IGFBP-2 was analyzed in milk samples derived in 3-
week intervals from dairy cows and goats after birth until week 39 and
49, respectively [37]. In milk derived from cows, the concentrations of
IGFBP-2 declined after birth from about 600 ng/ml in colostrum
to< 20 ng/ml at week 18 [37]. Towards week 49 of lactation IGFBP-
2 concentrations in milk slowly increased up to about 40 ng/ml [37]. In
goat milk an almost identical pattern was observed [37]. The findings
nicely confirm results from the previous study in dairy cows showing
highest levels of IGFBP-2 concentrations in colostrum followed by a
sharp decrease until week 24 and a slight increase afterwards [36].
Compared to IGFBP-2 concentrations in milk, IGFBP-3, -4, and -5 follow
the same pattern during lactation [36]. Notably, before birth the
concentrations of IGF-I and IGFBP-3 in milk exceeded those in
colostrum, nevertheless, colostrum revealed the highest proliferative
activity if compared to other milk before or after birth [36]. About
1 week after birth, IGFBP-2 appears to be the dominant IGFBP present
in milk [36].

In colostrum of Egyptian buffalos IGF-I was high around parturition
(≈800 ng/ml) and decreased to about 300 or 200 ng/ml, within 12 or
24 h [38]. Until day 14 there was no further decline of IGF-I in buffalo
milk and the pattern of IGF-I concentrations in milk samples derived
from buffalo were almost identical if compared to Holstein cows in the
course of lactation [38]. Interestingly between week 12 and week 19 of
lactation, IGF-I concentrations in buffalo milk were increased (week
12–13: 1.7 ng/ml; week 17–19: 2.5 ng/ml) [39]. IGFBP-5 was quanti-
fied in milk from Murrah buffalos and compared to Sahival cattle [40].
In both groups IGFBP-5 were on high levels (≈300.000 ng/ml) around
parturition but almost undetectable after 50, 100, and 150 days of
lactation [40]. At later time points of lactation (200–300 days),
increases of IGFBP-5 concentrations in milk were identified particularly
in Sahival cow milk and on significantly lower levels also in buffalo
milk. Additional IGFBPs were not described in buffalo milk to our
knowledge.

In goat milk IGF-I, IGF-II and IGFBP-2 were identified [41]. About
5 months postpartum, IGF-I concentrations ranged around 5 ng/ml in
goats [42]. As demonstrated by the injection of radiolabeled peptide
hormones and IGFBPs in goats, IGF-I, IGF-II, IGFBP-2, and IGFBP-3 can
pass over from the circulation to mammary secretions, [43–46]. Milk
borne IGFs and IGFBPs, at least in goats, can thus origin also from other
than mammary cells. In dairy cows characterized by increased con-
centrations of IGF-I in the circulation, also higher IGF-I concentrations
were found in mammary secretions [47]. By comparison with IGF-I
levels in both matrices however a passive diffusion between both
matrices was not suggested for IGF-I [47]. In sheep milk IGFBP-2 seems

Table 1
Concentrations of IGF-I and IGF-II in mammary secretions of farm animal species.
Timepoint of lactation in days (d), weeks (w) or months (m) (TG: transgenic; LOD: limit of
detection).

Species IGF-I
(ng/ml)

IGF-II
(ng/ml)

Sampling Method Reference

Cattle 1000–3000 Colostrum [29]
10–50 Milk
190–233 207–216 Colostrum RIA [30]
4–10 2–6 w2 and w7
248–1850 Colostrum ELISA [27]
27–101 5th milking
312 187 Colostrum RIA [35]
≈300 Colostrum TR-IMFA [36]
7 d6
< 5 32 Milk RIA [35]
< 5 40 MR RIA [35]
4–9 (LOD:
1 pg/ml)

ECLIA [31]

Des1-3-IGF-I Colostrum, milk RIA [32,34]
Buffalo ≈800 Colostrum RIA [38]

≈200 d1–d14
2 w12–w19 ELISA [39]

Goat 626 Colostrum RIA [114]
13 Milk RIA [44]
5 m5 RIA [42]

Sheep 199 d140 [115]
Horse 259 Colostrum [55]

11 d5
Pig 72 165 Colostrum RIA [51]

10 11 d5
67–357 Colostrum RIA [53]
4–14 d4-d14
36 56 Colostrum RIA [54]
3–4 16 d14–d24
TG: 949 Colostrum

Table 2
Absolute or relative concentrations of IGFBPs in mammary secretions of farm animal species (*ng/ml; timepoint of lactation in days (d), weeks (w) or months (m); relative abundance is
indicated as follows: ++++ > +++ > ++ > +).

Species IGFBP-1 IGFBP-2 IGFBP-3 IGFBP-4 IGFBP-5 Sampling Method Ref.

Cattle ++ +++ ++ + [21]
+++ +++ ++ + d1-m5 WLB [26]
+++ +++ ++ + d1-w24 WLB [36]

+ d50–300 ELISA [40]
Total IGFBP activity: 7270* w2–3 RLA [30]

++ +++ ++ + Colostrum WLB [35]
Buffalo + d50–300 ELISA [40]
Sheep + WLB [48]
Pig +++ +++ + + d4 RIA [51]

2550* Colostrum RIA [116]
910* Milk
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to be the dominant binding protein [48].
In camel milk the IGF-system so far has not been assessed. However,

the analysis of IGF-I in camel serum by a radioimmunoassay developed
against human IGF-I [49], both in the neonate and in the mother
revealed higher IGF-I levels around parturition (> 600 ng/dl) and a
significant decline at later time points (day 30:< 205 ng/dl) of
lactation [50].

2.2. Other species

After delivery, IGF concentrations in milk also declined in pigs from
72 ng/ml at day 1 to 10 ng/ml for IGF-I at day 28 and from 165 ng/ml
at day1 to 11 ng/ml at day 28 for IGF-II [51]. Interestingly, primiparous
gilts have lower IGF-I concentrations in milk if compared to multi-
parous sows and fat supplementation of food increased both milk IGF-I
and growth rates in piglets [52]. Total IGF-binding activity in porcine
milk increased from day 1 to day 4 after delivery and decreased
thereafter [51,53]. IGFBP-2 and IGFBP-3 appear to represent the most
abundant IGFBPs in porcine milk followed by IGFBP-4 and an addi-
tional at that time unidentified IGFBP characterized by a molecular
weight of 28 kDa [51]. A band around 28 kDa was identified by Monaco
and colleagues as IGFBP-5 [54]. Interestingly, IGFBP-5 represents the
dominant IGFBP around delivery in pigs [54]. Transgenic overexpres-
sion of human IGF-I in the mammary gland of pigs increased the
concentrations of IGF-I from 36 ng/ml in non-transgenic pigs up to
almost 1000 ng/ml around parturition in transgenic pigs [54]. In
parallel, also the concentration of IGFBP-2 and IGFBP-5 were signifi-
cantly increased in that study [54]. Also in horse colostrum higher IGF-I
concentrations were measured if compared to milk 5 days after
parturition [55]. Finally, IGF-I was also measured in mammary secre-
tions derived from tammar wallabies [56]. The concentrations of IGF-I
in wallaby milk increased between day 99 and day 205 from 16.5 ng/
ml to> 1000 ng/ml, which is a> 60-fold increase [56]. Towards the
end of lactation IGF-I concentrations in milk fell to about 300 ng/ml
[56]. The high IGF-I concentrations in milk between days 200 and 220
of lactation coincided with an increased proliferative activity in
cultured rat L6 myoblasts [56]. Very recently, IGFBP-5 was identified
by mass spectrometry in milk from the tammar wallaby at day 20, 60,
and 120 day of lactation and discussed in a context of lung development
in the pouch young [57].

3. Control of IGF and IGFBP concentrations in milk

IGF and IGFBP concentrations in milk can be affected by local
expression in the mammary gland during growth and differentiation
but also during involution of the mammary gland. In addition we know
that IGF-compounds also derive from other parts of the body as IGFs
and IGFBPs can be transferred from the blood to milk.

3.1. Hormonal control of IGF compounds in milk

It is well accepted that GH represents a galactopoietic hormone
increasing IGF-I concentrations both in vertebrate plasma and in milk
[45,58,59]. Hormonal control of the mammary gland has been exqui-
sitely revised recently [60]. Considering hormonal control of IGF-
compounds in milk, it also just recently was shown that local expression
of growth hormone (GH) in mammary glands of transgenic goats
increased RNA expression of IGF-I, IGF-II, and IGFBP-3 [61]. In their
study Bao et al. discuss a model where IGF-I from stromal cells in a
paracrine fashion stimulates proliferation and branching of alveolar
epithelial cells [61]. Interestingly, GH-transgenic goats produce more
milk between day 1 and day 30 of lactation, however, biochemical milk
parameters (e.g. lactose content or protein content) were different only
on the first day of lactation [61]. Also in goats, a retrospectively formed
group of responders after GH-injection had 40% increased concentra-
tions of IGF-I in their milk [62]. Subcutaneous injection of GH in cows

also increased milk yield and the concentrations of IGF-I in milk from
3 ng/ml to 12.3 ng/ml after 7 days of treatment [63]. GH injection in
cows increased hepatic but not mammary IGF-I mRNA expression [64],
which is surprising, because mammary stromal cells respond to external
GH application with increased expression of IGF-I mRNA expression
[65]. Systemic injection of insulin combined with glucose alone had no
significant effect on IGF-I concentrations in milk from Holstein cows
[66]. However, insulin increased the positive effect of GH on the
concentrations of IGF-I in milk and other milk parameters (milk yield,
protein yield, casein yield) [66]. Notably, insulin infusion also restored
IGF-I serum concentrations in periparturient cows characterized by
negative energy balance by increasing the expression of GH receptor in
the liver [67]. Short term treatment with GH and estrogen increased
protein levels of IGF-I but decreased those of IGFBP-3 in mammary
tissues isolated from Friesian heifers at an age of 18 months [68]. The
increased ratio of IGF-I/IGFBP-3 was discussed in a context with
mammogenesis [68]. Estrogen had no effect on stromal IGF-I mRNA
expression [65] but suppressed expression of IGF-I mRNA in the
mammary gland from pregnant pigs [69]. In mouse primary mammary
epithelial cells (MEC), IGF-II mRNA and protein expression was induced
by prolactin and alveologenesis was impaired in IGF-II deficient MEC
[70]. Since expression of IGF-II in prolactin receptor deficient MEC
restored alveologenesis, IGF-II was discussed as a mediator of prolactin-
related morphogenesis in the mammary epithelium [70]. Sodium
butyrate, which increased mRNA expression and secretion of IGFBP-3
in vitro [71], also increased linear growth and serum concentrations of
GH and IGF-I in calves, if supplemented to the milk in a dose dependent
manner [72].

Compounds from the IGF-system may also derive from non-mam-
mary tissues since radiolabeled IGFs and IGFBPs systemically injected
in goats [41] or rats [73] can be transferred from blood to milk, which
in particular may explain the high hormone concentrations found in
colostrum. As a consequence, exogenous or endogenous factors affect-
ing concentrations of IGF-compounds in the circulation may also have
effects on the IGF-system in the milk. Nevertheless, there is also an
example of independent regulation of the IGF-system in the circulation
if compared to milk, because seasonal changes affected concentrations
of IGF-I in the serum but not the milk from lactating cows [74].

For the control of milk proteins also local distribution within the
mammary tissue has to be concerned. In the transition period from
pregnancy to lactation the closure of mammary epithelial tight junc-
tions is observed. Thereby, secretion of milk proteins via the apical
membrane is increased whereas secretion through the basolateral
membrane is decreased, which guides secretory proteins to the
mammary ducts and to a lower extent to the extracellular space [75].
Accordingly, Tonner and colleagues observed increased secretion of
IGFBP-5 versus local distribution in the mammary gland in response to
the lactogenic switch [76]. Increased expression of IGFBP-5 observed in
rats or pigs during involution, teat sealing, or suckling removal, was
suppressed after gland rescue in sows [77] or after 2 days of prolactin
injection in rats [78]. By contrast, local production of IGF-I and IGFBP-3
in mammary glands reduced apoptosis during involution in lactating
transgenic mice [79]. In pigs, high expression of prolactin receptor and
low expression of IGFBP-5 were discussed as permissive conditions for
the functional lactating mammary gland [80]. Application of 17-beta-
estradiol, after suckling removal, as well as GH, progesterone, corti-
costerone, and an antiserum to IGF-I had no effect on IGFBP-5
concentrations [78]. Notably, IGFBP-5 expression during mammary
gland involution is a (direct or indirect) target of signal transducer and
activator of transcription 3 (STAT3), which is regulated by multiple
growth factors, cytokines, and hormones including GH [81]. In fact in
the mammary gland of transgenic goats GH induced mRNA expression
of IGF-I, IGFBP-3, and IGFBP-5 [82]. In mice, the expression of IGFBPs
is strongly compartmentalized in the mammary gland and depends on
lactational age [83]. Expression of most of the IGFBPs is low during late
lactation, whereas expression of IGFPB-2 and IGFBP-5 is increased
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during forced gland involution after pup removal [83].
In addition to hormonal control also sampling [84], milking

frequency [85,86], and milk processing [26] have an effect on the
presence of IGFs and IGFBPs in milk or dairy products. Accordingly,
cisternal colostral milk has a higher concentration of IGF-I than alveolar
milk [84]. Thus, the time-point of sampling determines the absolute
concentration of the analyte [84]. Higher milking frequency in dairy
cows suppressed mammary expression of IGFBP-1, IGFBP-3, or -5 and
was discussed in a context both of higher proliferative and secretory
activity of mammary epithelial cells in response to 4 times per day
versus once per day milking [85,86].

3.2. IGFs and IGFBPs in dairy products

IGFBP-2 to -5 are present in bovine milk and skimmed milk but not
in cream from the same species and after ultracentrifugation (2 h,
50,000 g) most of the IGFBPs were present in the intermediate aqueous
fraction [26]. Heat inactivation of virulent cytomegalovirus in human
breast milk for 30 min at 63 °C (Holder-Pasteurisation) resulted in a
partial degradation of IGF-I (−39%), IGF-II (≈−10%), IGFBP-2
(≈−19%), and IGFBP-3 (−7%) [87]. By contrast short term inactiva-
tion of human breast milk (5 s at 62, 65, or 72 °C) almost completely
preserved the IGFs and IGFBPs assessed in that study [87]. Also dairy
processes have a fundamental effect on IGF-I concentrations [88].
Accordingly, heat treatment of cows bulk milk for 15 min at 75 °C or
85 °C decreased IGF-I concentrations by almost 50%, whereas auto-
claving completely eliminated immunoreactive IGF-I [88]. Similarly,
fermentation results in an almost complete loss of IGF-I only if the pH is
close to 4.06 [88]. In homogenized milk or in milk reconstituted from
dry milk no alteration of IGF-I could be observed [88].

3.3. Proteolysis of IGFBPs in milk

Proteolysis of IGFBPs is an important part of functional regulation,
both of IGFs and IGFBPs and as mentioned earlier, IGFBP-2 fragments
have been detected in human milk [89,90]. In the mouse mammary
gland, pregnancy-associated plasma protein (PAPP)-A was identified
[91]. Since PAPP-A is known to cleave IGFBP-2, -4, and -5 [17], also
other truncated IGFBPs may be present in milk. In addition to intact,
truncated IGFBP-5 characterized by a molecular weight of 21 kDa was
present in rat milk after removal of the litter [78]. In breast cancer cell
lines estrogen increased the IGFBP-protease cathepsin D [92] and both
estrogen and proteases are discussed in context of breast cancer [93].

3.4. Effect of diet

Removal of food for a period of 2 days decreased serum IGF-I but
increased serum IGFBP-2 concentration in lactating Holstein cows [94].
Also in humans low protein intake is associated with decreased serum
IGF-I concentrations [95] or prolonged fasting increased IGFBP-2 serum
concentrations [96]. By contrast, 50% feed restriction over a period of
4 days did not affect the concentration of IGFBP-2 in serum [97].
Notably, after 16–30 weeks of lactation a slight reduction of IGFBP-2
concentrations in milk was observed in cows fed a diet characterized by
reduced energy content and increased protein content if compared to
controls [37]. By mild nutrient restriction, on a diet providing only 70%
of the daily needs for protein and energy neither blood nor colostrum
from dairy cows contained altered concentrations of IGF-I [47]. Food
restriction over a period of 36 h in dairy cows reduced concentrations of
IGF-I in plasma but not in afferent lymph [98]. Concentrations of IGF-II
were unaffected by food restriction in both matrices [98]. The effects of
food supplementation with essential oils from oregano, considered to
improve meat quality, had no effect on IGF-I levels in colostrum or milk
from sows [99]. Notably the known effects also of distinct dietary
compounds on the IGF-system, such as conjugated linoleic acids [100],
secondary plant products [101], or trace elements [102] may impact on

the composition of the IGF-system in milk or dairy products as
discussed earlier.

4. Biomarker potential of IGF-compounds in milk

From dairy animals milk is available on a basis of routine and can be
screened for potential biomarkers including the IGF-system which is
thought to have predictive potential for the physiological status in
selected animals [26]. Accordingly, a positive correlation was described
between IGF-I concentrations in fore-milk from dairy cows and somatic
cell count, due to the elevated number of polymorphonuclear leuco-
cytes (PMNL) [103]. The authors speculated that in acute clinical or
during chronic subclinical mastitis IGF-I, originating from activated
alveolar macrophages is directly secreted as a chemotactic attractant
for PMNL into milk [103,104]. In addition, IGFBP-5 was massively
increased in milk from cows and buffalos at peak lactation diagnosed at
mastitis [40]. The increase was tremendous, comparing< 20 ng/ml in
normal milk versus> 700 ng/ml in milk from cows with mastitis [40].
Expression analysis on the level of mRNA confirmed high expression of
IGFBP-5 in somatic and epithelial cells from the mammary gland of
cows [40]. IGFBP-5 as an effector of cell-death during mammary
involution [76] may thus correlate with reduced secretory capacity of
the mammary gland. In fact, also short lactating cows or buffalos had
almost 10-fold higher levels of IGFBP-5 in their milk compared to
normal lactating animals [40]. Other IGFBPs, also may be useful for
routine monitoring since those might reflect the condition of the GH-
IGF-I axis as suggested by Mesotten and van den Berghe in humans
[105]. Accordingly, IGF-I and IGFBP-3 are high during normal GH-
secretion, whereas the group of IGFBPs characterized by smaller
molecular weights, particularly IGFBP-2, are suppressed by GH [105].
Thus a ratio of IGFBP-3/IGFBP-2 detects alterations of GH secretion
with outmost sensitivity. In humans, GH secretion is altered during
acute or chronic illness or disease [105], the assessment of complex
signatures consisting of IGFs, IGFBPs and IGFBP-ratios may be useful
for sensitive health monitoring also in farm animals. Piechotta et al.
[106] and Mysegades [107] already provided specific support for this
hypothesis in dairy cows since they observed altered expression of
IGFBP-2 in conditions of ketosis or elevated body temperature. A
current problem of IGFBP-related biomarker research is due to proteo-
lysis of IGFBPs as discussed earlier in this review. Because ELISA assays
could measure both intact and fragmented IGFBPs, it is necessary to
include structural and functional information on a particular potential
IGFBP-related biomarker, which can be achieved e.g. by Western ligand
blotting for intact IGFBPs [108] or time-resolved immunofluorometric
assays e.g. for the assessment of defined IGFBP-fragments [109].
Already today, it is possible to perform on-site biomarker research,
health management, and quality control by means of protein micro-
arrays combined with fluorescence optics coupled to an ordinary
smartphone [110]. By this methodology elevated IGF-I concentrations
in extracted milk samples from GH-treated dairy cows were confirmed
[110]. In a perspective, microarray based technologies developed in
hand-held formats definitely will expand the chemical class of proteins
since miRNA [111], metabolites [112], or toxic substances [113] also
are highly attractive to biomarker research in milk.

5. Summary and conclusion

Based on the achievements of research so far dedicated to the IGF-
system in milk and dairy products it is clear that IGF-I, IGF-II, and all
IGFBPs can be detected in milk. Compared to IGF-I, IGF-II and
particularly the IGFBPs have received much less research in milk and
in dairy products. In general, the composition of IGFBPs in milk is
similar to the IGFBP-profile in serum, with IGFBP-3 and -2 character-
ized by higher abundancy if compared to IGFBP-4 and -5. Perinatally,
higher concentrations of IGFs and IGFBPs are detected if compared to
later time-points of lactation. As a potential reason for the sharp decline
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of the IGF and IGFBP concentrations in mammary secretions during
transition from pregnancy to lactation, closure of the tight junction has
been suggested. In addition, the IGF-system can be regulated by locally
produced or systemically injected GH. Interestingly, the effect of GH on
IGF-I expression in mammary cells or IGF-I concentration in milk
appears to be co-regulated by insulin, estrogen or dietary sodium
butyrate. The concentrations of IGFs and IGFBPs further can be altered
by dairy processing, such as sterilization or fermentation, whereas
homogenization had no effect on IGF-I concentrations in milk. In
addition to intact also fragmented variants have been described in milk
for IGF-I, IGFBP-2, and IGFBP-5. While the physiology of proteolytic
degradation of IGFs and IGFBPs remains to be investigated in milk,
there are urgent needs for the application of appropriate analytical
approaches. Given the central importance of the IGF-system for health
and metabolism and because milk is accessible by noninvasive methods
or routinely available, it may represent an ideal matrix for IGF-related
health monitoring and herd management.
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