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Abstract

Feed conversion efficiency is a measure of how well an animal converts feed into live weight
and it is typically expressed as feed conversion ratio (FCR). FCR and related traits like
growth rate (e.g. days to 110 kg—D110) are of high interest for animal breeders, farmers
and society due to implications on animal performance, feeding costs and environmental
sustainability. The objective of this study was to identify genomic regions associated with
FCR and D110 in pigs. A total of 952 terminal line boars, showing an individual variation in
FCR, were genotyped using 60K SNP-Chips. Markers were tested for associations with esti-
mated breeding values (EBV) for FCR and D110. For FCR, the largest number of associated
SNPs was located on chromosomes 4 (30 SNPs), 1 (25 SNPs), X (15 SNPs) and 6 (12
SNPs). The most prominent genomic regions for D110 were identified on chromosomes 15
(10 SNPs), 1 and 4 (both 9 SNPs). The most significantly associated SNPs for FCR and
D110 mapped 129.8 Kb from METTL11B (chromosome 4) and 32Kb from MBD5 (chromo-
some 15), respectively. A list of positional genes, closest to significantly associated SNPs,
was used to identify enriched pathways and biological functions related to the QTL for both
traits. A number of candidate genes were significantly overrepresented in pathways of
immune cell trafficking, lymphoid tissue structure, organ morphology, endocrine system
function, lipid metabolism, and energy production. After resequencing the coding region of
selected positional and functional candidate genes, six SNPs were genotyped in a subset of
boars. SNPs in PRKDC, SELL, NR2E1 and AKRIC3 showed significant associations with
EBVs for FCR/D110. The study revealed a number of chromosomal regions and candidate
genes affecting FCR/D110 and pointed to corresponding biological pathways related to lipid
metabolism, olfactory reception, and also immunological status.
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Background

Improving feed conversion efficiency (FCE) in pigs is a major goal in pig breeding as feed
accounts for a high proportion of the total production cost [1]. Selection for improved FCE is
also a key factor in reducing the environmental footprint of the pig industry [2]. FCE can be
defined as a measure of an animal’s efficiency in converting feed into live weight [3] and it is
typically expressed as feed conversion ratio (FCR, ratio of feed intake to weight gain) [4]. As
such, growth rate traits which determine the weight gain in different developmental stages are
closely related to FCR thus having a direct impact on efficiency [5]. However, phenotypic and
genetic correlations between FCR and its components (i.e. feed intake and body weight gain)
have been reported to be higher for FCR and feed intake compared to FCR and body weight
gain in different pig populations [5]. Apart from FCR, other indexes such as residual feed
intake (RFI), which can be described as the difference between an individual’s actual feed
intake and its predicted feed requirements for maintenance and growth, have been studied [2].
A number of quantitative trait loci (QTLs) affecting feed efficiency in pigs have been
detected (PigQTLdb, http://www.animalgenome.org/cgi-bin/QTLdb/SS/index). However,
most of them were identified using a linkage mapping approach resulting in wide genomic
QTL regions. Such linkage data is limited to within-family selection only [6]. A genome-wide
association study (GWAS) approach would offer the potential for improved accuracy and
refinement in the identification of QTL locations at the population level [7]. To date, only a
few studies have used the GWAS approach to identify QTLs for FCE traits in pigs. Sahana
et al. [6] detected a number of significant QTLs for FCR on porcine chromosomes (SSC) 4, 7,
8 and 14 in Duroc pigs. Another study identified only one QTL for FCR on SSC 4 in Duroc
boars [8]. A GWAS performed on Yorkshire boars revealed several QTLs influencing RFI
on SSC 7 and 14 [9]. Do et al. [10] additionally reported QTLs on SSC 3, 8, 9, 10, 15 and 17
for RFI in Yorkshire pigs. The same author also conducted a study on Duroc boars and identi-
fied significant regions for RFI on SSC 1, 8, 9, 13 and 18 [11]. While employing the GWAS
approach, the objective of this study was to identify genomic regions associated with feed effi-
ciency in an important commercial pig sire line (Maxgro, Hermitage Genetics).

Materials and methods
Animals and phenotypes

Animal care, slaughter and tissue collection of the animals used in this study were performed
in compliance with national regulations related to animal research and commercial slaugh-
tering and were approved by the local committees for the care and use of animals of the Tea-
gasc Research Center Ashtown and the Leibniz Institute for Farm Animal Biology. A total of
952 Maxgro boars, which is predominately Pietrain based terminal line, were used in this
study. These animals, born between year 2006 and 2012, were selected as replacement boars
in the artificial insemination (AI) stud and were supplied by Hermitage Genetics (Ireland).
The pigs were penned in groups of fourteen with a space allowance of 0.75 m? per pig and
were fed a pelleted finisher diet (National Research Council, 2012) consisting of 177.8 g
crude protein, 5.0 g tP, 6.0 g Ca and 13.9 MJ DE, and 8.8 g ileal digestible lysine per kilogram.
They also had ad libitum access to water through nipple drinkers. Phenotypic data such as
FCR and D110 comprising 46 and 91 percent of the total number of animals used in the
study, respectively, were recorded by Hermitage Genetics following the method of Varley
etal [12]. Breeding values (EBV) for FCR (range: -0.44-0.32, mean: -0.09, SD: 0.09) and
D110 (range: -20.8-9.18, mean: -10.2, SD: 4.00) were estimated using Best Linear Unbiased
Prediction (BLUP) system [13] from a dataset that included multiple breeds, two sexes and a
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number of farms and Al studs. The models for the routine estimation of direct genetic effects
for both traits were multivariate and included fixed effects of contemporary group, pig breed
and sex. The affiliation of a pig to a litter was fit as an uncorrelated random effect in the pre-
diction. Moreover, the status of performance testing was also included as fixed effect. Specifi-
cally, for performance tested pigs individual feeding records were obtained using a single-
space computerised feeder (Mastleistungspriifung MLP-RAP; Schauer Agrotronic AG, Sur-
see, Switzerland) [12]. The pigs (age at start of the test—mean: 102.3 days, SD: 6.4 days; age
at end of the test—mean: 144.1 days, SD: 6.4 days) were weighted at the start (mean: 60.9 kg,
SD: 7.6 kg) and the end (mean: 109.3 kg, SD: 9.9 kg) of the test period for a minimum of 40
days (mean: 41.8 days, SD: 4.7 days). Based on these observations FCR was calculated. In
order to obtain the number of days needed to gain a final body weight of 110 kg, the pig’s
date of birth and slaughter weight, which is slightly above or below 110 kg, was entered into
the BLUP system and calculated. For the prediction of the EBVs FCR, both start weight and
end weight were fit as a covariate in order to consider weight related differences in feed effi-
ciency. Following the test period, boars were entered into the Al stud therefore no euthanasia
of boars occurred.

SNP array genotyping, quality control and statistical analysis

Approximately 50 ml of blood from Vena jugularis was collected from each boar by Hermitage
Genetics into a tube containing EDTA. Genomic DNA was extracted from the preserved
blood using QIAamp DNA Blood Mini Kit (QIAGEN Ltd., West Sussex, UK) according to
manufacturer’s instructions. Genotyping with PorcineSNP60 BeadChip (Illumina Inc., San
Diego, CA, USA) was performed in compliance with the SNP Infinium HD assay protocol
(http://www.illumina.com). Subsequently, data was analysed using GenomeStudio (Version
2011.1, Nlumina Inc.). Individuals with call rate < 97% and SNPs with call frequency < 95%
and minor allele frequency (MAF) < 0.03 were excluded. The departure from Hardy-Wein-
berg equilibrium (HWE) was not considered as indicator for consistent genotyping errors as it
has been reported to be underpowered for this purpose [14].

After quality control, remaining SNPs were tested for an association with EBVs FCR and
D110. SNP-trait association analysis was implemented with a mixed linear model using JMP
Genomics 6 software (version 6, SAS INST., Inc., Cary, NC, 2002-2010). In order to correct
for population structure, the relationship matrix tool implemented in JMP Genomics 6 was
used to compute identity-by-state (IBS) relations between individuals based on genotype data
[15]. After compression of K matrices, these relations were included as a random effect in the
model. Moreover, this factor accounting for relatedness was applied to counteract high false-
positive rates and the misestimating of QTL effects assigned to the usage of EBVs for GWAS
[16]. Threshold p-values for suggestive and Bonferroni-adjusted genome-wide significance
were set to -logl0[p-value] = 4.7 (1 divided by 48440 independent tests) and -log10[p-value] =
6 (0.05 divided by 48440 independent tests), respectively.

A list of genes closest to the significant SNPs (-log;o[p-value] > 6) was created allowing a
maximum distance of 1IMDb between the marker and genes, using the Ensembl database (http://
www.ensembl.org, release 78) and was uploaded into Ingenuity Pathways Analysis (IPA; Inge-
nuity™ Systems, http://www.ingenuity.com) in order to investigate relevant pathways and
functional categories. Benjamini-Hochberg corrected P values were used to map the genes to
the most significant molecular, cellular and physiological systems development functions
(P < 0.01). To get insights into the most relevant metabolic and signalling pathways based on
the designated list of genes, canonical pathways were displayed (Fisher’s exact test; P < 0.05),
although they did not differ significantly after Benjamini-Hochberg correction. Categories
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Table 1. Forward and reverse primers for PCR amplification of the twelve selected positional candidate genes located within 1Mb of the genome-
wide significant markers for EBVs FCR and D110.

Gene Ensembl reference

CD164 ENSSSCG00000004414
NR2E1 ENSSSCG00000004384
SMPD2 ENSSSCG00000004408
PRKDC ENSSSCG00000006274
SELL ENSSSCG00000006287
SELP ENSSSCG00000006288
OPRD1 ENSSSCG00000027401
WDTC1 ENSSSCG00000003570
AKR1C3 ENSSSCG00000030447
KLF6 ENSSSCG00000028828
MBD5 ENSSSCG00000015667
MMADHC ENSSSCG00000028646

https://doi.org/10.1371/journal.pone.0173482.t001

Size (bp) Forward Reverse
713 TGTGTCTGTCCAGTTTCTTCGC TGAAGTCAGGCTGGGGATTACG
706 TCTCCCTTCCCTCTCTTCACCT ACCTACGCTGCCCTCTGATTTC
697 CCTCCTCTCTGACCCTCTCTCT TGGGGCTGTCTGTTTCTTCC
735 AGGAAACACGCCTCAGTTGGTA ACGCAGGAGACAGAAGGAAAGC
706 TCTCAARACAAATGTCTGTGGCTGT GGTTATCTTCTGGGCAACTCACC
350 ACCTGAATCCAACCTCTCTCCA TGCATCTGAAGTAGCAAGTCGT
718 GCTCCCATCCACATCTTCGTCA CCCCTCAATTCCACCTTCCTCA
567 CCAGGGACCAAGACAACCGA CACCATACCTCACAGCAACGC
792 GCTGACACTTAGCAGTTGAGGAATA GGTGGAGGAAAGAGGAGTTAAATACA
702 GACCAACAGCCTGAACTCGGA CCCTGAGTCTCACTTCCCCARA
773 ACTTGGAAGCCCTGATGTTTTCAC ACCCTATCGTTGACCTTGGTGAC
696 GGATTCTCCGTTGATGATCTTGGC CCTTATTCTTCTTTCCCGCACAAAC

addressing human disease and disorder-associated pathways were excluded from the IPA
analysis.

Validation of candidate genes

Twelve genes with functions relevant to feed efficiency according to IPA were selected from
the candidate gene list for validation and further analysis. A set of primers for each gene
was designed based on published sequence data (Ensembl database) using Primer3 (http://
primer3.ut.ee/) (Table 1). Genomic DNA of low EBV FCR pigs (n = 10, mean: -0.182,
SD: 0.027) and high EBV FCR pigs (n = 10, mean: 0.040, SD: 0.032), with a p-value of
difference < 0.0001, was pooled (n = 2) and used as template for PCR. All PCR reactions were
carried out in a final volume of 50 pl and consisted of 10 pl PCR buffer (5x) (Promega, W1,
USA), 3 ul MgCl, (25mM) (Promega), 0.4 ul ANTP mix (10mM each), 0.4 pl of each primer
(100 pmol, Eurofins MWG Operon, Germany), 0.4 ul Go Taq DNA Polymerase (100U, Pro-
mega), 30 ng of the DNA pool and filled with dH,O. The cycling conditions were as follows:
initial denaturation at 95°C for 135 sec; 35 cycles of 95°C for 45 sec, annealing for 45 sec (60°C
for OPRD1, WDTC1, SMPD?2 and 56°C for the remaining primers), and 72°C for 75 sec, subse-
quently final extension of 72°C for 10 min. PCR products were subjected to electrophoresis on
1.5% agarose gels and visualised. PCR products were purified using the QIAquick PCR Purifi-
cation Kit (QIAGEN Ltd.) and sequenced commercially (Eurofins, MWG-Biotech). Chro-
matograms were analysed to identify segregating SNP.

Based on the PCR product sequencing of the twelve genes, six confirmed SNPs (located
in MBD5, OPRD1, AKR1C3, NR2E1, PRKDC and SELL) were selected for genotyping in 436
Maxgo boars as a representative subset of animals. The SNP genotyping was performed using
TagMan™ SNP Genotyping Assays (Applied Biosystems, Foster City, CA, USA). Each 15 ul
PCR reaction consisted of 7.5 pl of TagMan™ genotyping master mix (Applied Biosystems,
Foster City, CA, USA), 0.375 pl 40 x genotyping assay mix (Applied Biosystems), 6.125 ul
dH,0 and 1 pl of genomic DNA (10 ng/pl). Thermal cycling was performed using ABI
PRISM™ 7500 Real Time PCR System (Applied Biosystems) and the cycling conditions were
as follows: initial denaturation at 95°C for 10 min, followed by 40 cycles of 95°C for 15 sec
denaturation and 60°C for 1 min annealing/extension. Genotype calling was carried out using
proprietary 7500 System SDS software (Applied Biosystems).
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Allele frequencies were computed and deviations from HWE (p-value < 0.05) were tested
using Haploview software [17]. Mixed linear model using JMP Genomics 6 software (version
6, SAS INST., Inc., Cary, NC, 2002-2010) was used to evaluate associations between the four
SNPs with allele frequency as predicted and greater than 5% (rs340456509, rs80900450,
rs319738340 and rs81508945) and EBVs for FCR and D110 in the Maxgro boars (n = 436).
Compressed IBS relations were included as a random effect in the model. In order to deter-
mine additive and dominant effects for the particular SNP, indicator variables alpha (1 = homo-
zygote for the allele with higher least square means, -1 = homozygote for the allele with lower
least square means and 0 = heterozygote), and delta (1 = heterozygote and 0 = homozygote)
were created. Regression models were performed, using EBV FCR and EBV D110 as the
dependent variables and variable alpha and delta as the independent variables, to estimate the
additive and dominant effects for each significant SNP (REG procedure of the SAS v9.3 soft-
ware package). Based on the squared multiple correlation (R?) of the regression, the effect size
was expressed as the phenotypic variance attributable to the genetic variance at the designated
locus.

Results
Genome-wide association study

After quality control, 940 individuals and 48,440 SNPs, mapped to the Sscrofa 10.2 pig genome
assembly, remained for the further analysis. In total 132 SNPs reached the threshold of sugges-
tive significance for an association with EBV FCR (-log;o[p-value] > 4.7) (Fig 1; S1 Table).

The largest number of associated SNPs were located on SSC4 (30 SNPs) and SSC1 (25 SNPs)
followed by SSCX (15 SNPs) and SSC6 (12 SNPs). A total of 25 SNPs mapping to 10 porcine
autosomes crossed the Bonferroni-adjusted genome-wide significance threshold (-log;,[p-
value] > 6). Of the 25 SNPs, 5 were located within a 2.37 Mb segment on SSC4 and pointed to
Methyltransferase like 11B (METTL11B) and Coagulation Factor V (F5) as positional candi-
date genes (Table 2). A search for genes in the window surrounding the significantly associated
markers revealed Selectin L (SELL), Selectin P (SELP) and Protein kinase, DNA-activated, cat-
alytic polypeptide (PRKDC) as putative candidate genes for FCE. On SSC15, Neuronal guanine
nucleotide exchange factor (NGEF) and 5-hydroxytryptamine (serotonin) receptor 2B, G pro-
tein-coupled (HTR2B) genes were revealed as functional candidate genes, whereas DIS3 and
ARL4C were identified as positional candidates. Two significant SNPs on SSC6 were located
near Feline Gardner-Rasheed sarcoma viral oncogene homolog (FGR) and Protein tyrosine
phosphatase, receptor type, U (PTPRU). A further search for genes with putative relevance for
processes related to FCE in this region revealed Tetratricopeptide repeats 1 (WDTCI) and

6

~logo(p)
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Chromosome

Fig 1. Manhattan plot of the genome-wide association analysis of EBV FCR. The red and blue lines indicate the suggestive
(-log10[p-value] > 4.7) and the Bonferroni-adjusted genome-wide significance threshold (-log10[p-value] > 6), respectively.

https://doi.org/10.1371/journal.pone.0173482.g001
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Table 2. Genes located closest to the genome-wide significant SNPs.

EBV® SNP Neglogo (p-value) = SSC* Position (bp) Region Nearest gene* Gene position (bp)

FCR H3GA0002102 6.32 1 84,686,166 Intronic ENSSSCG00000004415 84,644,862—-84,709,541
FCR MARCO0000845 6.26 4 86,747,415 Intergenic ENSSSCG00000024309 | 86,796,081-86,804,148
FCR ALGA0026204 6.47 4 87,021,547 Intergenic MCM4 87,134,012-87,185,073
FCR H3GA0013204 7.96 4 88,311,790 Intergenic METTL11B 88,441,595-88,460,670
FCR ALGA0026230 6.84 4 89,104,182 Intronic F5 89,027,936-89,109,573
FCR ALGA0026233 6.91 4 89,118,147 Intergenic F5 89,027,936-89,109,573
FCR ASGA0028724 6.44 6 78,297,229 Intergenic FGR 78,358,088-78,326,491
FCR ALGA0035847 6.43 6 80,577,487 Intergenic PTPRU 80,106,273-80,024,322
FCR MARCO0015113 7.40 15 146,404,317 Intronic DIS3L2 146,381,891-146,596,424
FCR ALGA0119312 6.27 15 149,350,761 Intergenic ARL4C 149,122,784-149,123,362
D110 ALGA0060013 6.32 10 72,375,760 Intergenic AKR1C3 72,091,036-72,106,952
D110 H3GA0030777 6.92 10 72,766,001 Intergenic KLF6 72,992,245-73,001,823
D110 MARCO0036947 6.92 15 2,640,639 Intergenic LYPD6B 2,443,675-2,456,793
D110 ALGA0115976 6.89 15 2,798,633 Intronic KIF5C 2,730,359-2,901,565
D110 ALGA0113899 6.78 15 2,835,746 Intronic KIF5C 2,730,359-2,901,565
D110 MARCO0072361 7.75 15 2,843,921 Intronic KIF5C 2,730,359—-2,901,565
D110 ALGA0083417 8.15 15 3,322,649 Intergenic MBD5 3,354,689-3,361,520

SEstimated breeding value;
*Sscrofa 10.2 assembly

https://doi.org/10.1371/journal.pone.0173482.t1002

~log1o(p)

Opioid receptor, delta 1 (OPRD1). Furthermore, a significant SNP mapped to SSC1 was
located in an uncharacterised gene and the nearest annotated gene was CD164 molecule, sialo-
mucin (CD164). Nuclear receptor subfamily 2, group E, member 1 (NR2E1) and Sphingomye-
lin phosphodiesterase 2, neutral membrane (SMPD2) were identified as functional candidate
genes in this region.

In total 71 SNPs reached the threshold of suggestive significance for an association with
EBV D110 (-log;[p-value] > 4.7) (Fig 2; SI Table). The largest number of associated SNPs
was located on SSC15 (10 SNPs), SSC1 and SSC4 (9 SNPs), SSC3 (8 SNPs), followed by SSC10
and 13 (5 SNPs). A total of 12 SNPs mapping to 7 porcine autosomes crossed the Bonferroni-
adjusted genome-wide significance threshold (-log;o[p-value] > 6). Of the 12 SNPs, 5 were
located within a 682 Kb segment (between 2.64 and 3.32 Mb) on SSC15. Three of these mark-
ers were located within an intron of Kinesin family member 5C (KIF5C) gene (Table 2). Two
remaining markers mapped near Methyl-CpG binding domain protein 5 (MBD5) and LY6/

Chromosome

Fig 2. Manhattan plot of the genome-wide association analysis of EBV D110. The red and blue lines indicate the suggestive
(-log10[p-value] > 4.7) and the Bonferroni-adjusted genome-wide significance threshold (-log10[p-value] > 6), respectively.

https://doi.org/10.1371/journal.pone.0173482.9002
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PLAUR domain containing 6B (LYPD6B). A further search for genes revealed Methylmalonic
aciduria cblD type, with homocystinuria (MMADHC) with functional relations to D110. On
SSC10, Kruppel-like factor 6 (KLF6) and Aldo-keto reductase family 1, member C3 (AKR1C3)
were identified as positional candidate genes with a putative contribution to D110.

Functional enrichment among mapped genes

A total of 86 and 16 genes mapped within 1Mb upstream and downstream of significant mark-
ers for EBV FCR and D110, respectively, were uploaded into Ingenuity Pathways Analysis.
Functional annotation of the positional candidate genes to biological processes and canonical
pathways (top 5) is presented in Tables 3 and 4. The top canonical pathways significantly over-
represented among the positional candidate genes for EBV of FCR were related to cell cycle
control, estrogen receptor signaling, RXR and subfamily 1 nuclear receptors activation, granu-
locyte mediate inflammation, and sphingomyelin metabolism. Functional annotation revealed
organismal development and organ morphology, lymphoid tissue and hematological system
development, and immune cell trafficking to be significantly enriched among the genes located
in QTL regions for EBV FCR. Moreover, bile acid and androgen biosynthesis, TR/RXR Activa-
tion, methylglyoxal detoxification, and retinoate biosynthesis pathways were the top pathways
associated with the positional candidate genes for EBV D110. Furthermore, statistically associ-
ated biological functions with the positional candidate genes for EBV D110 were energy, lipid
and drug metabolism, endocrine system development, and small molecule biochemistry.

SNP array validation

Four SNPs located near the QTLs for EBV FCR (rs80900450, rs319738340, rs340456509 and a
novel SNP) in PRKDC, SELL, NR2E1 and OPRDI respectively, and two SNPs mapped close to
the QTL for EBV D110 (rs332368013 and rs81508945) in MBD5 and AKRIC3 respectively
were confirmed to be polymorphic in target populations by sequencing. Subsequently, these
six SNPs were genotyped in 436 Maxgro boars. Allelic frequencies and HWE are presented in
Table 5. SNP in MBD5 significantly departured from HWE (P-value < 0.05) indicating a slight
deficiency of homozygotes in the studied population and SNP in OPRD]1 displayed minor
allele frequency less than 5%. All SNPs, with the exception of the SNP in MBD5 and OPRD1
were tested for association with breeding values for FCR and D110 (Table 6). SNP rs80900450
and rs319738340 showed significant association with EBV FCR. Moreover, SNP rs340456509
was found significantly associated with both traits. The occurrence of the G allele was shown
to be beneficial for both growth and feed efficiency. Significant additive effects of SNPs
rs80900450, rs81508945 and rs340456509 were observed. In addition, SNP rs340456509
showed a dominant effect for EBV D110, however only one percent of the phenotypic variance
was attributable to the dominant genetic variance.

Discussion

In this study, a genome-wide association analysis was performed to elucidate the genetic archi-
tecture of feed conversion efficiency and growth rate in pigs. A number of candidate genes
neighbouring the identified QTL regions were selected for downstream analysis. A further val-
idation confirmed significant associations between these genes and EBV FCR / D110. The
most prominent regions for EBV FCR were identified on SSC 1, 4, 6 and 15. For EBV D110,
the most promising QTLs were detected on porcine chromosome 10 and 15. None of the iden-
tified QTL regions overlap for both traits. Alignment of the genetic and physical maps on the
Sscrofa 10.2 genome assembly (PigQTLdb) enabled the identified QTLs from the present
study to be compared with previously described QTL regions. A QTL from this study located
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Table 3. Top molecular themes for the positional and functional candidate genes located within 1Mb of the genome-wide significant markers for
EBV of FCR and D110.

EBV
FCR

FCR

FCR

FCR

FCR

D110

D110

D110

D110

D110

Category
Hematological System

Development and Function
Immune Cell Trafficking
Lymphoid Tissue Structure and
Development

Organ Morphology

Organismal Development
Endocrine System Development
and Function

Small Molecule Biochemistry
Energy Production

Lipid Metabolism

Drug Metabolism

B-H p-value* |Genes

8.53E-05- CEBPD, SRSF4, SELL, ATPIF1, FGR, SELE, F5, THEMIS2, EPB41, HTR2B, SELP,
9.68E-02 ZBTB24, WASF2, PRKDC, FOX0O3, OPRD1

8.53E-05-9E- | SELP, SELL, FGR, SELE, F5, FOX0O3, OPRD1

02

2.89E-03-9E- | THEMIS2, SELP, SELL, SELE, F5, PRKDC

02

2.89E-03- CEBPD, SELL, ECEL1, NR2E1, SELE, CHRNG, WASF1, GPR3, EIF4E2, HTR2B,
9.68E-02 CHRND, SELP, KIFAP3, SEC63, SYTL1, PRKDC, FOXO3

2.89E-03- CEBPD, SELL, ATPIF1, NR2E1, FGR, SELE, F5, NPPC, WASF1, GPR3, THEMIS2,
9.14E-02 EIF4E2, HTR2B, SELP, KIFAP3, WASF2, PRKDC, FOXO3

4.7E-06- AKR1C3, MBD5, ACVR2A, AKR1C1/AKR1C2, AKR1C4

8.62E-02

4.7E-06- PFKP, AKR1C3, MBD5, ACVR2A, AKR1C1/AKR1C2, AKR1C4

6.21E-02

3.51E-05- AKR1C3, AKR1C1/AKR1C2, AKR1C4

2.45E-02

6.06E-05- AKR1C3, AKR1C1/AKR1C2, AKR1C4

5.44E-02

3.68E-04- AKR1C3, AKR1C1/AKR1C2, AKR1C4

3.01E-02

*Range of B-H multiple testing correction p-values of enriched biological functions within the category; candidate genes selected for downstream validation
are highlighted in bold

https://doi.org/10.1371/journal.pone.0173482.t003

at 78.3 to 80.5 Mb on SSC 6 coincided with a QTL for FCR in a European Wild Boar x Meishan
cross mapped in the region of 127.3 cM (64.9 to 89 Mb, PigQTLdb) [18]. Additionally this
QTL overlapped with a QTL for body weight detected at 78.3 to 78.7 Mb in Iberian x Landrace
and Iberian x Meishan crosses [19]. This QTL has thus been independently discovered in dif-
ferent populations, which supports attributing it to biologically relevant common genetic
variation [20]. QTL located at 86.7 to 89.1 Mb on SSC 4 found in this study was in a close prox-
imity to QTL for FCR in a European Wild Boar x Pietrain cross mapped by Cepica et al. [21] at
75 cM (89.5 to 98.2 Mb, PigQTLdb). Another QTL on SSC 4 was detected at 20 cM (7.2 to 12.6

Table 4. Top canonical pathways for the positional and functional candidate genes located within 1Mb of the genome-wide significant markers for
EBV of FCR and D110.

EBV
FCR
FCR
FCR
FCR
FCR
D110
D110
D110
D110
D110

Ingenuity Canonical Pathways

Cell Cycle Control of Chromosomal Replication
Estrogen Receptor Signaling

PXR/RXR Activation

Granulocyte Adhesion and Diapedesis
Sphingomyelin Metabolism

Bile Acid Biosynthesis, Neutral Pathway

TR/RXR Activation

Androgen Biosynthesis
Methylglyoxal Degradation Il
Retinoate Biosynthesis |

P-value Genes

4.66E-03 RPA2, MCM4

1.27E-02 TAF12, MED18, PRKDC

2.59E-02 UGT1A1, FOXO3

2.62E-02 SELP, SELL, SELE

2.96E-02 SMPD2

5.57E-08 AKR1C3, AKR1C1/AKR1C2, AKR1C4
1.87E-05 PFKP, AKR1C3, AKR1C1/AKR1C2
3.32E-05 AKR1C3, AKR1C4

4.38E-05 AKR1C3, AKR1C1/AKR1C2
1.91E-04 AKR1C3, AKR1C4

Candidate genes selected for downstream validation are highlighted in bold

https://doi.org/10.1371/journal.pone.0173482.t1004

PLOS ONE | https://doi.org/10.1371/journal.pone.0173482 June 12,2017

8/15


https://doi.org/10.1371/journal.pone.0173482.t003
https://doi.org/10.1371/journal.pone.0173482.t004
https://doi.org/10.1371/journal.pone.0173482

o ®
@ ’ PLOS | ONE GWAS for feed conversion efficiency

Table 5. Observed and expected heterozygosity of the SNPs selected for validation.

Gene SNP Location (SSC 10.2) = Alleles Variant MAF  Observed heterozygosity Expected heterozygosity HWE*®
MBD5 rs332368013 | 15:3,359,994 A/G | missense 0.300 0.471 0.420 0.014*
NR2E1 rs340456509 | 1:83,552,036 G/T | intron 0.211 0.359 0.334 0.155
PRKDC | rs80900450 | 4:87,256,301 C/T | missense 0.268 0.370 0.392 0.282
SELL rs319738340 | 4:88,935,116 C/T | splice region | 0.166 0.276 0.276 1
AKR1C3 |rs81508945 | 10:72,102,793 G/C | missense 0.120 0.213 0.212 1
OPRD1 | NOVEL 6:79,658,669 C/A | downstream | 0.022 0.044 0.043 1

£p-value for test for departure from Hardy-Weinberg Equilibrium (HWE);
*Significant departure from HWE (p<0.05)

https://doi.org/10.1371/journal.pone.0173482.1005

Mb, PigQTLdb) in a three-generation full-sib population, created by crossing Pietrain sires
with Large White x Landrace x Leicoma dam line [22], which is very distant from the QTL
identified in this study. These QTLs were detected by linkage analysis and therefore were
mapped with very low resolution and cover large intervals. A genome-wide association study
in a Danish Duroc population identified QTL for FCR located on SSC 4 at 63.8 to 64 MbD [6].
Another GWAS revealed QTL for FCR on SSC 4 at 4 to 5 Mb in a Duroc terminal sire popula-
tion [8]. The remaining QTL regions for EBV FCR / D110 identified in this study on SSC 1, 10
and 15 did not colocalize closely to regions affecting FCR and growth rate found in the litera-
ture. Furthermore, Jiao et al. [8] mapped a QTL for daily feed intake in Duroc boars at 73.1 to
73.9 Mb, which is ~700 Kb from the QTL for EBV D110 detected in the present study. The
very small number of overlapping QTL regions is in accordance with Gregersen et al. [23] who
reported limited overlap of QTL for a particular trait between breeds. This might suggest that
different QTLs regulate feed efficiency traits in the Maxgro boars compared to other breeds
[4]. Moreover, the EBVs, which were used as response variable in the current study, are known
to behave differently compared to raw phenotypes. EBVs have been reported to be more inde-
pendent from environmental factors compared to raw phenotypes [20]. However, a recent

Table 6. Association of the five SNPs, located in selected functional genes mapped within 1Mb of the genome-wide significant markers, with
breeding values for FCR and D110. Lower breeding values indicate higher feed efficiency.

SNP (gene) Trait P-value Least squares means of EBVs per genotype Additive effect Dominant effect
rs80900450 C/Cn=36 C/Tn=161 T/Tn=238 P-value  a'(variance?)  P-value  d'(variance?®
(PRKDC) | EBv D110 0.085 |-8.77145.80 |-8.4165.78 |-9.2141578
EBV FCR <.0001 | -0.036%0.15 | -0.057#0.15 |-0.084%0.15 | <.0001 | 0.0377 (5%) 0.838 0.0026
rs319738340 C/Cn=303 C/Tn=120 T/Tn=12
(SELL) EBV D110 0.366 | -8.89945.78 | -8.3895.78  -9.14215.86
EBV FCR 0.026 | -0.073%0.15 | -0.049+0.15 |-0.047+0.15 | 0.852 -0.0019 0.800 0.0048
rs340456509 G/Gn=265 T/Gn=156 T/Tn=14
(NR2ET) | EBV D110 0.033 | -9.2241578 | -8.3274578 |-7.6315.84 | <.0001 | -0.4849 (16%) |0.044 -0.2665 (1%)
EBV FCR <.0001 | -0.085%0.15 | -0.047+0.15 |-0.021$0.15 | 0.015 0.0230 (1%) | 0.559 -0.0101
rs81508945 C/Cn=6 C/Gn=93 G/G n =337
(AKR1C3)  Egv D110 0.195 | -6.632%5.92 | -8.5615.79 |-8.95315.78
EBV FCR 0.468 | -0.043:0.15 | -0.058%0.15 |-0.069+0.15

Significant associations are in bold;
Additive (a) and dominant (d) effect of an allelic substitution on a phenotype;
2 Phenotypic variance in percentage explained by SNP; Where delta was not significant, the alpha was reported from the first regression model.

https://doi.org/10.1371/journal.pone.0173482.t1006
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evaluation of the direct use of EBVs for GWAS revealed issues of power, type I error and QTL
effect sizes related to the incorporation of familial information in the estimation of EBV [16].
To account for these weaknesses linked to EBVs, the familial relationship (i.e. as genomic rela-
tionship matrix) was included in the statistical model as previously applied in other association
analyses using EBV's [24-26]. The comparison of results obtained from different GWAS meth-
ods revealed that the used methodologies provide a further source for variation of results
between different studies [27].

Pathways and biological functions of genes mapped near the significant
SNPs

Functional annotation revealed a number of pathways and biological processes significantly
overrepresented among the positional candidate genes for EBV FCR and D110. Nearby genes
to the significant markers for EBV FCR (SELP, SELL, FGR, SELE, F5, FOXO3 and OPRDI)
were identified to be involved in immune cell trafficking. Similarly, THEMIS2, SELP, SELL,
SELE, F5 and PRKDC were clustered in lymphoid tissue structure and development category.
It is well documented that the activity of the immune system is linked to feed intake and there-
fore provide a relevant aspect for feed efficiency [28]. When immune response is activated, the
available energy resources are shifted away from skeletal muscle accretion and prioritised to
production of antibodies in order to fight the infection. This in turn might result in reduced
rates of weight gain and feed conversion [29]. In addition, functional annotation of the posi-
tional candidate genes for EBV FCR to biological processes revealed a cluster of seventeen
genes overrepresented in an organ morphology category (CEBPD, SELL, ECELI, NR2E1, SELE,
CHRNG, WASF1, GPR3, EIF4E2, HTR2B, CHRND, SELP, KIFAP3, SEC63, SYTL1, PRKDC and
FOXO03). A study conducted by Njoku et al. [30] on Large White pigs revealed that visceral
organ growth is stimulated by feed intake. Moreover, low RFI pigs have been associated with
decreased visceral organ weight [31,32]. This is in agreement with Ferrell and Jenkins [33] pos-
tulating that a lower maintenance costs are associated with reduced visceral organ weight and
decreased feed intake. A number of genes (AKRIC3, MBD5, ACVR2A, AKRIC1/AKRIC2and
AKR1C4) located within 1Mb of the significant markers for EBV D110 were clustered in an
endocrine system function and development category. Previous study identified smaller thy-
roid glands in low residual feed intake pigs [34]. Moreover, Gabarrou et al. [35] reported a
decreased thyroid function in low RFI cockerels. Additionally, these genes belonging to Aldo-
Keto Reductase family were significantly overrepresented in lipid metabolism and energy pro-
duction. Lipid metabolism pathway as well as energy pathway were statistically associated with
residual feed intake in muscle and adipose tissue of pigs [36-38].

Candidate genes for feed conversion efficiency

Positional and functional genes located within 1 Mb of the GWAS SNPs significantly associ-
ated with breeding values for FCR/D110 were selected and examined. On SSC 4, SNP
rs80900450 and rs319738340 in PRKDC and SELL respectively, were significantly associated
with breeding value for FCR. PRKDC is a gene encoding the catalytic subunit of the DNA-
dependent protein kinase (DNA-PK), which plays a part in DNA double stranded break repair
[39]. PRKDC s involved in the signalling pathway responsible for the formation of fat from
carbohydrates in the liver [40]. Wong et al. [40] conducted a study, in which they postulated
that during fasting, inactivation of Fatty Acid Synthase (FAS) promoter occurs. However upon
feeding, the FAS promoter becomes activated by PRKDC gene. In PRKDC deficient scid (severe
combined immunodeficient) mice, feeding-induced transcriptional activation of the FAS gene
and lipogenesis were impaired. As a result, reduced triglyceride level and decreased adipose
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tissue in PRKDC deficient scid mice were observed [40]. L-selectin (SELL) plays a role in lym-
phocyte trafficking to lymph nodes and Peyer’s patches, as well as targeting lymphocytes and
neutrophils to an inflammation source [41]. The SELL encoded protein is a member of selec-
tins belonging to a family of transmembrane glycoproteins and its role is to support adhesion
of blood leucocytes to the vessel wall upon inflammatory and immunological response [42].
Significant reduction of L-selectin, which could affect the neutrophil’s ability to activate and
travel to a source of inflammation, was observed in morbidly obese patients [43]. Yang et al.
[44] proposed that L-selectin is responsible for mediating leukocyte homing to islets which
would suggest it might be associated with autoimmune disease such as diabetes mellitus.
Moreover, T668C SNP in SELL was associated with insulin-dependent diabetes mellitus [45].
Additionally, allele L206 of L-selectin gene was associated with inflammatory bowel disease
[46].

NR2E1 is a member of a ligand dependent transcriptional factors group, which controls a
number of biological and disease related processes. NR2E1 is abundantly expressed in the
brain where it is involved in neurogenesis [47]. Christie et al. [48] and Kumar et al. [49]
reported reduced neurogenesis in adult mice with NRIEI deletion. Moreover, the NR2EI
knockout mice had reduced volume of olfactory bulb [49], a first central structure involved in
processing of the olfactory information [50]. Interestingly, in the present study rs340456509
SNP in the NR1E2 was significantly associated with breeding values for FCR and D110. Olfac-
tory bulb plays an important part in regulating food intake as it is targeted by signals responsi-
ble for the regulation of energy balance [50], therefore it is hugely relevant for feed conversion
efficiency.

AKRI1C3belongs to a large aldo and keto reductase enzyme family and is expressed in a
wide variety of tissues including liver and adipose tissue. The protein encoded by this gene
plays a role in conversion of active androgens, oestrogens and prostaglandins to their non-
active metabolites [51]. AKRIC3 has been associated with androgen inactivation induced
adiposity, where large adipocytes had higher expression level compared to small adipocytes
[52,53]. This finding was supported by a study conducted on obese patients having decreased
AKRIC3 expression upon diet induced weight loss [52]. Svensson et al. [52] also postulated
that there might be a link between the AKRIC3 gene and glucose intolerance. Moreover,
White et al. [51] found an association between rs2211623 SNP and liver inflammation, which
in turn might be related to insulin resistance. Nevertheless, in this study the selected SNP
rs81508945 SNP in the AKRIC3 was not found significantly associated with the breeding val-
ues for FCR or D110.

MBD?5 is a member of the methyl-CpG-binding domain (MBD) family of proteins. It is
highly expressed in neurons [54] and is involved in mediating DNA methylation [55]. MBD5
also plays an essential role in the regulation of postnatal growth and glucose homeostasis [56].
A study conducted on MBD5 knockout mice revealed severe growth retardation and persistent
hypoglycemia, hypoinsulinemia, enhanced glucose intolerance and elevated insulin sensitivity.
Moreover, mice lacking the MBD5 gene exhibited significantly smaller body size and reduction
of subcutaneous and perigonadal fat [56]. Nevertheless, in this study the selected SNP
rs332368013 in the MBD5 was out of HWE. The protein encoded by OPRD1, a member of the
opioid family of G-protein-coupled receptor, is broadly distributed in a number of brain areas
involved in the regulation of energy homeostasis [57]. In particular, OPRDI is highly expressed
in olfactory bulb and anterior olfactory nucleus [58]. OPRDI knockout mice fed with high
energy diet were found to be resistant to weight gain and had lower fat mass. They also exhib-
ited higher energy expenditure due to increased thermogenic activity in the brown adipose tis-
sue [57]. Additionally, a number of SNPs within the OPRD1 gene were significantly associated
with anorexia nervosa [59,60]. Although it would be interesting to examine the role of OPRDI
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for feed efficiency and growth, the minor allele frequency of the identified novel SNP within
this gene was lower than 5 percent and thus it was excluded from the further analysis.

Conclusions

In summary, the present study demonstrated a number of chromosomal regions significantly
associated with feed conversion efficiency and growth rate in the examined terminal pig sire
line. Most of the regions were described for the first time, although some of them were located
not far from previously reported QTLs. Validation of putative candidate genes from GWAS
mapping near the significant SNPs confirmed a number of genes significantly associated with
feed conversion efficiency and its related trait, days to 110 kg. Feed efficiency is a highly com-
plex trait affected by a number of factors. This study suggests that the genetic predisposition of
analysed traits is driven by lipogenesis, olfactory reception, and also immunological status. In
depth characterisation of these genes to determine their molecular architecture and identify
the causative mutations would be of benefit. Moreover, it would be useful to validate these
SNPs in other commercial pig population regarding their effects on feed conversion efficiency
and growth rate.
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