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Abstract

Background: Neutral endopeptidase, also known as neprilysin and abbreviated NEP, is considered to be one of the key
enzymes in initial human amyloid-b (Ab) degradation. The aim of our study was to explore the impact of NEP deficiency on
the initial development of dementia-like symptoms in mice.

Methodology/Principal Findings: We found that while endogenous Ab concentrations were elevated in the brains of NEP-
knockout mice at all investigated age groups, immunohistochemical analysis using monoclonal antibodies did not detect
any Ab deposits even in old NEP knockout mice. Surprisingly, tests of learning and memory revealed that the ability to learn
was not reduced in old NEP-deficient mice but instead had significantly improved, and sustained learning and memory in
the aged mice was congruent with improved long-term potentiation (LTP) in brain slices of the hippocampus and lateral
amygdala. Our data suggests a beneficial effect of pharmacological inhibition of cerebral NEP on learning and memory in
mice due to the accumulation of peptides other than Ab degradable by NEP. By conducting degradation studies and
peptide measurements in the brain of both genotypes, we identified two neuropeptide candidates, glucagon-like peptide 1
and galanin, as first potential candidates to be involved in the improved learning in aged NEP-deficient mice.

Conclusions/Significance: Thus, the existence of peptides targeted by NEP that improve learning and memory in older
individuals may represent a promising avenue for the treatment of neurodegenerative diseases.
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Introduction

Neutral endopeptidase (NEP) E.C. 3.4.24.11, also known as

neprilysin or enkephalinase A and abbreviated NEP, is widely

accepted as one of the most prominent known enzymes for initial

amyloid-b peptide (Ab) degradation [1–5]. This has been basically

described in vitro by Howell et al. [6] and in vivo by Iwata et al. [7],

who reported human Ab (hAb) degradation through limited

peptidolysis conducted by NEP. It has been further demonstrated

that pharmacological interventions can be used to modify the Ab
concentration via NEP activity. For example, NEP inhibitor

infusions in the rat brain paralleled by hAb gavages resulted in

pathological deposition of Ab [8]. This is all the more important,

since cerebral NEP is modulated by several factors such as age,

behavior, and environment and can thus significantly modify Ab
concentrations [8,9]. NEP was found to catabolize not only

monomeric, but also oligomeric forms of Ab [10].

The capacity of NEP to proteolyze Ab was further confirmed by

findings that NEP-deficient mice demonstrated higher cortical Ab

levels than wild-type ones, and human Ab was more slowly degraded

when injected into NEP-deficient mouse brains than into corre-

sponding wild-types [11]. However, a very recent publication showed

that the learning abilities of young NEP knockout mice were

unaltered, in spite of elevated Ab levels in the brain of these mice [12].

Surprisingly, although Alzheimer’s disease is common in old

age, none of the previous research investigated whether the

increased Ab levels observed in the NEP-deficient mouse brain

were accompanied by a significant impairment in learning and

memory in older animals.

Thus, using old NEP-deficient mice of different ages and

behavioral, immunohistological, and electrophysiological approach-

es, it was the aim of our study to clarify the impact of NEP deficiency

for the initial development of dementia-like symptoms in mice.

Results and Discussion

Our first experiment focused on detecting possible Ab
depositions in NEP-deficient brains of mice at very different ages.
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Basically, these knockout mice were characterized by lower blood

pressure and an enhanced lethality to endotoxin shock [13,14].

Using a monoclonal antibody against human and murine Ab [15],

we failed, even in very old NEP-deficient mice, to stain Ab deposits

(Figure 1b and d), which is a classical morphopathological

feature detectable in brains of Alzheimer patients (Figure 1f). As

expected, neither the cortex of wild-type mice (Figure 1a, c) nor

that of a person killed in an accident stained positively for Ab
deposits (Figure 1e).

To quantify the postulated endogenous Ab accumulation in

brains of these mice at different time points, including very old

mice (two-year-old mice), we used an ELISA based on a

description by Tucker et al. [16]. While elevated Ab levels in very

young NEP knockout mice were already described [11,12], we, for

the first time, observed significantly higher Ab levels in NEP-

deficient mouse brains at all investigated time points in

comparison to their age-matched wild-type mice (Figure 2). This

elevation in endogenous Ab, but the absence of any deposition

(Figure 1b and d), underlines the different aggregation tendency

of murine Ab compared to that in humans.

Our results seem to be in contrast to findings by Iwata et al. [7]

and Dolev & Michaelson [17], who described plaque formation

and fibrillization, respectively, of endogenous Ab in rats and mice

after treatment with thiorphan, a non-peptidic inhibitor of NEP.

Consistent with previous studies showing a broad spectrum of

peptidases inhibited by that peptidase inhibitor [18], we

hypothesized that there were other factors inhibited by thiorphan

as a requisite for murine Ab accumulation.

Since already the accumulation of soluble forms of Ab
(monomeric and oligomeric) without plaque or fibril formation is

assumed to induce neuronal pathology and consequently learning

and memory deficits [12,19,20], we tested learning and memory

Figure 1. Cortical Ab deposition in brains of humans and mice. Representative examples of immunostaining for Ab in brain sections obtained
from 6-month-old (b) and 24-month-old NEP-deficient mice (d) and corresponding age-matched wildtype controls (a,c), and from post mortem
human brain material of a 75-year-old Alzheimer patient (f) and a 31-year-old human control (e). Images shown in a–d represent the mouse
somatosensory cortex (barrel field), while human brain sections (e,f) were obtained from the temporal cortex. All sections were immunostained
under the same conditions and in the same experimental session with the biotinylated primary antiserum 4G8 which is known to react with both
human and murine Ab peptides. Scale bar represents 200 mm.
doi:10.1371/journal.pone.0004590.g001
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performance in NEP knockout mice in comparison to wild-type

animals. Six- and 21-month-old mice were subjected to behavioral

tests, including spatial memory. Spatial memory is assessed by

measuring the animal’s ability to recognize objects or its sense of

orientation in mazes. Whereas the genotypes did not differ at the

age of six months (Figure 3a; Repeated measure of ANOVA with

factors time, number of training sessions and genetic status:

F1.41 = 0.072; P = 0.79; data shows the time the animals needed

within the first trial per day to reach the platform), 21-month-old

NEP-knockout mice required significantly less time than their

wild-type littermates to find the hidden platform in a Morris water

maze (Figure 3b; Repeated measure of ANOVA with factors

time, number of training sessions and genetic status: F1.19 = 7.02;

P = 0.016; data shows the time the animals needed within the first

trial per day to reach the platform). Importantly, as expected, the

21-month-old wild-type mice required more time than the

younger controls to find the hidden platform in a Morris water

maze. However, this significant age-dependent impairment in

spatial learning was not detected in NEP-deficient mice

(Figure 3c), which suggests that a lack of NEP might sustain

the learning ability (spatial memory) and the ability to efficiently

complete the maze at an advanced age.

One aim was to determine whether these observed differences

in spatial memory would be also evident in learning tasks with

different motivation. In a two-way active avoidance task (shuttle

box), mice had to learn to associate a sound (conditioned stimulus)

delivered through rods on the floor of the shuttle box. They could

avoid foot shock by moving to the opposite site of the chamber as

soon as the conditioned stimulus was presented. The 6-month-old

mice did not differ in any measured parameter (data not shown).

We also found no significant differences in the training phase

between the two groups of 21-month-old mice, but relearning

performance was much better in NEP-deficient mice (Figure 3d).

Thus, the age-dependent differences between the two genotypes

further confirm the findings of the Morris water maze, and

therefore two independent behavioral tests support the preserved

learning in older mice deficient for the NEP gene. To test the

emotional status of the knockout mice, both groups underwent the

marble burying test. The data obtained suggests that knockout

mice showed more anxious behavior towards novel objects than

the wild-type strain (Figure 3e). Since it is commonly accepted

that anxiety negatively affects learning performance [21,22],

improved learning behavior despite increased anxiety underscores

the better performance of our NEP-deficient mice and indicates

that elements of the mice’s emotional behavior fail to dominate the

differences in learning and memory in our experiments.

Cognitive processes such as learning and memory are believed

to depend on changes in synaptic efficacy in certain key brain

regions, including the hippocampus [23] and the amygdala [24].

To assess the importance of hippocampus- and amygdala-

dependent forms of learning and synaptic plasticity in NEP

knockout mice, we also examined the ability of hippocampal and

amygdaloid synapses to support both paired pulse facilitation, a

form of short-term plasticity, and long-term potentiation (LTP).

Electrophysiological experiments were performed in anatomically

well-characterized horizontal slices [25] as described in detail

elsewhere [26]. Although several studies on aging and hippocam-

pal LTP failed to demonstrate any age-related deficits using high-

frequency stimulation (HFS) [27], theta burst stimulation (TBS)

revealed age-related deficits in the induction of LTP [28]. The

type of CA1-LTP induced by HFS seems to be genuinely different

from LTP induced by learning processes or theta-patterned

stimulation. Moreover, TBS-induced LTP in the CA1 region of

the hippocampus depends only on N-methyl-D-aspartate receptors

(NMDAR) [29] and NMDA receptor-dependent LTP appears to

decline in the CA1 area of aged rats [30].

For this reason, we decided to induce TBS-LTP in the CA1

region of the hippocampus. After completing behavioral testing

and a 3-week resting period, the animals were sacrificed and their

brains subjected to LTP analysis.

Except for impaired paired pulse facilitation in the CA1 region

in the range of 10 to 70 ms in adult NEP knockout mice compared

Figure 2. Ab accumulation in brains of NEP-deficient mice. ELISA-measured murine Ab(1–40) accumulation in the cortex of 6-, 12-, and 24-
month old mice (2/2 = NEP knockout [black bars]; +/+ = wild-type [white bars]); n$6; average6s.e.m.; all differences were statistically calculated by a
Student’s t test. **P,0.01, ***P,0.001.
doi:10.1371/journal.pone.0004590.g002
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to the adult wild-type (P,0.05), we found no significant differences

in basal transmission (input/output curves) or the strength of LTP

between 9-month-old NEP-deficient and wild-type mice (CA1:

TBS-induced LTP; LA: HFS-induced LTP; Figure 4a). In

contrast, the 24-month-old knockout mice showed enhanced LTP

in both the hippocampus and amygdala compared to their wild-

type group (Figure 4b). Importantly, this enhancement of LTP in

the CA1 region obtained in knockout mice compensated the age-

related impairment of LTP obtained in the 24-month-old wild-

type group compared to the 9-month-old controls (Figure 4c,
left diagram). We also demonstrated for the first time an age-

dependent decrease in LA-LTP that has been much less

pronounced in preparations from brains lacking NEP

(Figure 4c, right diagram). Paired pulse facilitation was

significantly reduced in both structures of aged NEP-deficient

mice, suggesting the involvement of presynaptic mechanisms

(data not shown).

While murine Ab accumulates but does not aggregate to

macrostructures, the effect of oligomeric Ab on neuronal function

is thought to be pathological, because even very small aggregates

affect neuronal function, learning and memory abilities in humans

[19,20]. Our behavioral animal studies may not support this

conclusion, since NEP-deficient mice characterized by more Ab,

more oligomeric Ab [12], but no macrostructural deposits do not

demonstrate impaired learning in our 9-month-old mice. This

finding is also supported by a recent publication showing unaltered

learning abilities in very young (3–4 months) NEP-deficient mice

[12], while it was significantly impaired if human Ab (containing

the Swedish double mutation) was expressed in addition in these

knockout mice [13,31].

Figure 3. Behavioral studies in NEP-deficient mice and their wild-type controls. (a–c) Morris water maze: (a) Comparison of 6-month-old
NEP-knockout mice (dotted line with open circles; n = 24) and their wild-type age-matched littermates (line with open quadrates; n = 19). Group
means of escape latencies for the first trial per day to reach the platform 6s.e.m. in sec. Where standard variation is not visible it is within the symbols
(b) Comparison of 21-month-old NEP-knockout mice (dotted line with filled circles; n = 12) and their wild-type age-matched littermates (line with
filled quadrates; n = 9). Group means of escape latencies for the first trial per day to reach the platform 6s.e.m. in sec; statistical analyses by repeated
measures of ANOVA (P = 0.016). (c) Comparison of time (in sec) animals needed to find the platform at both investigated time points; data were
pooled for the three days of the experiment and plotted; statistical analysis by Student’s t test (**P,0.01). (d) Shuttle box: group means of the
number of conditioned reactions 6s.e.m. of 21-month-old NEP-knockout mice (filled bars; n = 12) and their wild-type littermates (open bars; n = 10)
during a training interval on five training days in this two-way active avoidance paradigm. Statistical analysis by repeated measures of ANOVA
(**P,0.01). (e) Marble burying test: Comparison of the number of marbles that have been buried by 21-month-old NEP-knockout mice (filled bars;
n = 9) and their wild-type littermates (open bars; n = 11). Average6s.e.m., statistical analysis by Student’s t test (*P,0.05).
doi:10.1371/journal.pone.0004590.g003
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Surprisingly, our data show that two-year-old knockout mice

have an even greater ability to learn than their age-matched

controls as demonstrated in two independent behavioral tasks

(Morris water maze and shuttle box experiments). It is even more

remarkable that the age-dependent decline in learning ability as

shown for our wild-type animals is eliminated in aged NEP

knockouts. These findings are strengthened by our electrophysi-

ological findings. Since considerable effort has gone into attempts

to relate hippocampal LTP to learning and memory [32,33], we

examined behavior and electrophysiology in the same subjects as

an approach to link LTP with learning. Our data shows that

sustained learning and memory in aged mice was paralleled by an

improved LTP in horizontal brain slices of the hippocampal CA1

region and the lateral nucleus of the amygdala. The hippocampus

is known to be involved in a variety of learning tasks, especially

spatial learning in rodents. Long-term synaptic plasticity of

glutamate-mediated transmission in the CA1 region of the

hippocampus is believed to be an important process in learning

and memory in vertebrates. In addition to the crucial role played

by amino acid-mediated synaptic transmission, the hippocampus

also receives a variety of non-amino acid-mediated synaptic input

with the capacity to either promote or restrict the induction of

long-term synaptic plasticity.

The underlying mechanisms leading to better learning and

improved LTP are still speculative. However, this improved

learning seems more likely to be an Ab-independent effect in our

mouse model. With respect to that conclusion, it is interesting to

note that local Ab accumulation following short-term inhibition of

NEP by thiorphan infusion in either hippocampus [34] or the

cortical ventricle [35] led to impaired learning and memory. These

authors pharmacologically inhibited NEP in young rats for 4

weeks. Thus, their elegant approach to demonstrate that increased

Ab amounts are linked to impaired learning does not reflect on the

situation in the aged NEP-deficient brain where, regardless of

Figure 4. LTP studies in NEP-deficient mice and their wild-type controls. LTP in the hippocampus (CA1 region) and the amygdala (lateral
nucleus of the amygdala (LA)) in adult (n = 7 mice) and aged NEP knockout mice (2/2; n = 7 mice) in comparison to wild-type (+/+) mice (n = 5 mice
in each group). (a) 9-month-old mice: LTP magnitude (CA1: # +/+, n = 9 slices; N 2/2, n = 11 slices; LA: # +/+, n = 10 slices, N 2/2, n = 11 slices).
Inserted representative records of PS potentials in the CA1 region before and after TBS and in the LA before and after HFS, above: obtained from 2/
2, below: obtained from +/+. (b) 24-month-old mice: LTP in both the CA1 region (# +/+, n = 11 slices; N 2/2, n = 16 slices) and the LA (# +/+, n = 11
slices; N 2/2, n = 10 slices). Data points in a and b represent mean amplitudes (mean6s.e.m.) normalized with respect to baseline values. Inserted
representative records of PS potentials in the CA1 region before and after TBS and in the LA before and after HFS, above: obtained from 2/2, below:
obtained from +/+. (c) Bar histogram of data points shown in Figures 4a–b, averaged 56 to 60 min after TBS/HFS and normalized with respect to
baseline (mean6s.e.m.). *P,0.05.
doi:10.1371/journal.pone.0004590.g004
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accumulating Ab, the concentration of other peptides is altered.

Moreover, comparing the results of thiorphan-treatment

[11,34,35] with experiments in NEP-knockout mice, we have to

consider that thiorphan inhibits further NEP-like peptidases whose

activities are not impaired in NEP-deficient mice [18]. Neverthe-

less, further experiments should also prove a second possible

explanation for the difference between genetically generated NEP

deficiency and pharmacologically reduced NEP activity by

thiorphan, namely that the unconditioned knockout of NEP

results in several compensatory changes in the activities of

peptidases discussed to be involved in Ab degradation.

It has been shown that NEP targets a variety of peptides

involved in learning and memory such as oxytocin [36], NPY [37]

or CCK [38]. Thus, marked improvement in learning and

memory in very old NEP-deficient mice if compared with their

aged-matched controls appears to be explained best by these NEP-

degradable neuropeptides. Nevertheless, the known catalytic

properties of NEP - it preferentially hydrolyses oligopeptides by

cleaving on the N-terminal side of hydrophobic amino acid

residues - and the knowledge of further potential learning-

associated peptides [39–42] motivated us to test several other

neuropeptides for being potential NEP substrates. Consequently,

we initiated our own studies on the postulated NEP-dependent

metabolism of GLP-1 and galanin. First results underscore the

likelihood of our assumption. We observed in vitro a significant

GLP-1 degradation by rcNEP (Figure 5a) and a reduced rate of

GLP-1 degradation in brains lacking NEP (Figure 5b) compa-

rable to that in wild-type membranes pretreated with NEP

inhibitor candoxatrilat (data not shown). This is in agreement

with a study of Hupe-Sodmann et al. (1995) postulating NEP

peptidolytic activity for GLP-1 [39]. Our finding is all the more

important, since GLP-1 has been found to improve associative and

spatial learning if injected intracerebroventricularly [40]. Learn-

ing-associated properties are also known for galanin [41,42], and

due to its chemical structure, galanin is a prominent candidate for

degradation by NEP. As shown in Figures 5a and b, we also

identified galanin as a NEP substrate. Since, as we showed, GLP-1

and galanin are substrates for NEP, NEP deficiency may lead to an

elevation of both peptides, thus improving learning and memory.

To also test this hypothesis, we measured the concentration of

both peptides in the cortex of NEP-deficient mice and their wild-

type controls, and checked for possible age-dependency. While

differences did not occur for galanin or have been minor for GLP-

1 in 6-month-old mice that could not be discriminated in their

learning capacity, significantly higher levels of both peptides were

measured in aged NEP knockouts that are characterized by

sustained learning capacity (Figure 5c). These findings further

strengthen the hypothesis that both peptides could be involved in

the improved learning in mice lacking enzymatic NEP activity.

Thus, known NEP-dependent peptides such as NPY, CCK, and

oxytocin, and the two peptides GLP-1 and galanin, identified here

as being NEP-dependent, appear to be potential candidates

responsible for the improved learning and neuronal electrophys-

iology in NEP-deficient mice. Further studies will have to evaluate

these candidates and may identify further peptides which

accumulate under NEP deficiency and have beneficial effects on

learning in aged mice.

In summary, our data provides the first direct evidence that the

accumulation of endogenous Ab does not per se cause Alzheimer-

like symptoms in mice, contrary to findings with human Ab
expressed in transgenic mice (human APP-overexpressing mice)

[43]. Importantly, this accumulation, without plaque formation, in

contrast to the plaques observed in the human APP-overexpressing

mice, did not hinder better learning abilities in aged NEP-deficient

mice. Therefore, this data reveals the potential of peptides

degradable by NEP to have a capability to improve cognitive

properties in mammals and thus suggest that the pharmacological

inhibition of NEP under normal conditions could sustain learning

and memory in older individuals. However, NEP inhibition,

although cardioprotective, could be a dangerous treatment

strategy in humans, since the lack of central human NEP might

lead to Ab accumulation, plaque and fibril formation (in contrast

to murine Ab that does not aggregate to such macrostructures).

On the other hand, the stimulation of central NEP may be

beneficial in neurodegenerative disorders to reduce Ab-derived

depositions but may cause learning deficits by promoting the

degradation of peptides with positive effects on LTP, learning and

memory.

However, since our data strongly suggests the existence of these

peptides targeted by NEP that improve learning and memory in

older individuals, our study may open a promising avenue for the

treatment of neurodegenerative diseases.

Materials and Methods

Animals
We used male NEP-knockout mice that were originally

generated by Lu et al. [13] and maintained in the breeding stocks

of T.W. at the Charité, Campus Benjamin Franklin (CBF), Berlin,

Germany. The animals have been back-crossed to C57BL/6

background for more than 8 generations. Experimental animals

were bred from parents, which were F2 after hemizygous mating.

The lack of compensation for the loss of NEP by functionally and

structurally related peptidases (APN, ACE) in the untreated

animals shows that NEP-deficient mice and their corresponding

wild-type strain constitute an excellent animal model to charac-

terize NEP-related processes [44–47]. Animals were housed in

litters at 2261uC in a 12 h/12 h light/dark cycle with unrestricted

access to food and water. Behavioral tests were performed between

9:00 a.m. and 12:00 p.m.

All experiments were performed according to the German

National Guidelines for the Use of Experimental Animals.

Human brain material
Post mortem human brain material was obtained from the

Reference Center for Neurodegenerative Diseases Leipzig (cour-

tesy gift from T. Arendt, University of Leipzig, Germany).

Temporal cortices from a 75-year-old female Alzheimer patient

(stage VI/C according to Braakk and Braak [48] and from a male

31-year-old patient (stage I-0-0) were used in this study.

Tissue preparation and sampling of sections
Mice were deeply anesthetized and transcardially perfused with

saline containing heparine, followed by fixative (4% paraformal-

dehyde in 0.1 M phosphate buffer, pH 7.4). Brains were removed

from the skull and post-fixed in the same fixative overnight (for

18 hours) at room temperature. Following equilibration in 30%

sucrose in phosphate buffer, 30-mm sections were cut in the

coronal plane between bregma 21.06 mm and 22.30 mm

according to the brain atlas of Franklin&Paxinos [49] and

immersed in 0.1 M phosphate buffer (pH 7.4).

Post mortem human brain material used in this study was

immersion-fixed in 4% paraformaldehyde for 4 days, followed by

equilibration in 30% sucrose for 2 days, and stored in 30% sucrose

in the presence of 0.1% sodium azide at 4uC. Thirty-mm sections

were cut and immersed in 0.1 M phosphate buffer (pH 7.4),

pending immunocytochemical analysis.

Amyloid-b, NEP, and Learning
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Figure 5. NEP-dependent neuropeptide degradation. (a) HPLC-monitored degradation (recovery in %) of GLP-1 and galanin (each 5 mM) over
120 min using recombinant (rc) NEP (20 ng; R&D Systems, Wiesbaden, Germany); mean values with s.e.m.; n$3. The reactions were stopped by
adding 0.35 M perchloric acid. In parallel assays, heat-inactivated probes (5 min at 90uC) were used as a control. After centrifugation of sedimented

Amyloid-b, NEP, and Learning
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Immunohistochemical procedures
Immunohistochemical staining of Ab. Immunohisto-

chemical staining of Ab was performed on free-floating sections

using the mouse monoclonal human Ab protein antibody, clone

4G8, raised against amino acid residue 17–24 of the Ab peptide

(Signet, purchased from BioCat, Heidelberg, Germany).

Tissue sections were first treated with 85% formic acid for

10 min (mouse) and 20 min (human). Four immunoperoxidase

labeling sections were thoroughly washed in Tris-buffered saline

(TBS; pH 7.4) and pretreated with 5% normal goat serum in TBS

also containing 0.3% Triton-X 100 (TBS-NGS-T) for 1 h.

Sections were immunoreacted with the biotinylated primary

antiserum 4G8 (1:1000) for 20 h at room temperature. Thereafter,

the sections were rinsed in TBS containing 2% bovine serum

albumin (BSA) and then incubated for 1 h at room temperature

with avidin–biotin peroxidase complex at room temperature for

1 h. Immunoreactivity was visualized by using 0.025% 3.39-

diamino-benzidine (DAB; Sigma, Deisenhofen, Germany); in the

presence of 0.001% hydrogen peroxide diluted in 0.05 M Tis-HCl

buffer (pH 8.0). For qualitative analysis, the reaction was

intensified adding nickel–ammonium sulphate hexahydrate

(0.05%; Merck, Darmstadt, Germany) to the DAB reagent.

Finally, the sections were mounted onto gelatine-coated glass

slides, air-dried, and covered with Enthelan.

Omission of the primary antibodies in control slides resulted in

the absence of any immunoreactivity.

To minimize variations in experimental conditions, both human

and murine brain sections of all specified ages were incubated with

the same solution of antibodies and treated altogether in one

experimental session. Stained brain sections were analyzed using a

Zeiss Axioplan 2 light microscope including a Sony DXC-930P

color video camera system (Zeiss, Jena, Germany).

Immunohistochemical staining of glucagon-like peptide 1

and galanin. For galanin and glucagon-like peptide 1 (GLP-1)

immunohistochemistry, the ABC (avidin-biotin-horseradish

peroxidase complex) method was performed. Sections were

incubated with rabbit polyclonal anti-galanin antibodies (1:100;

Biozol, Eching, Germany ) or rabbit polyclonal anti-GLP1

antibodies (1:100; Biozol, Eching, Germany) for 3 days at 4uC,

followed by sequential incubation with biotinylated anti-rabbit

IgG (Vector Labs., Burlingame, CA, USA) for 1 h and with ABC

complex for 1 h at room temperature. Immunoreactive products

were visualized by the nickel ammonium sulfate-intensified

diaminobenzidine reaction. The sections were dehydrated in a

graded series of alcohol, cleared in xylene, and cover-slipped with

Entellan (Merck, Darmstadt, Germany).

Amyloid b peptide measurement
Mice were killed by decapitations, the brains were removed

rapidly, and the corresponding brain regions were prepared as

described on chilled Petri dishes [50], weighed and immediately

frozen on dry ice. For further treatment, tissues were rethawed in a

30-fold volume of ice-cold 1% (v/v) trifluoracetic acid, and

homogenized at 4uC using a glass-teflon potter (Satorius-S,

Göttingen, Germany). After centrifugation at 4uC and 17,0006g

for 20 min, the supernatants were directly subjected to solid-phase

extraction.

Sep-Pak cartridges (octadecasilyl-silica; C18 Sep-Pak Vac 3cc,

Waters Corporation, Milford, USA) were rinsed first with 4 ml

acetonitrile, followed by a 20 ml rinse with 1% (v/v) trifluoroacetic

acid. After sample (see above) application, the cartridges were

washed with 15 ml 1% (v/v) trifluoroacetic acid. Finally, the

peptides were eluted with 4.3 ml acetonitrile: 1% (v/v) trifluor-

oacetic acid (3:2 v/v) at flow rates of 0.7 ml/min. The eluate was

dried overnight using a rotation vacuum concentrator (Alpha-

RVC, Christ, Germany). The probes were stored until used at

220uC.

According to the manufacturer’s manuals, murine Ab(1–40)

concentrations were exemplarily measured by a sandwich enzyme-

linked immunosorbent assay (human/rat Ab(1–40) ELISA kit;

Wako Pure Chemical Industries, Osaka, Japan). The extraction

recovery was 66.8% for murine Ab(1–40) after spiking with the

peptides. The dose-response curves paralleled the sample dilution

curves. The cross-reactivity of murine Ab(1–40) was 119% in this

ELISA kit using anti-human Ab(1–40) antibodies and human

Ab(1–40) as standards (the kit uses the following antibodies: anti

human Ab(1–40) MoAb clone no. BA27 Fab-HRP; and anti

human Ab(11–28) MoAb clone no. BNT77). Antecedent exper-

iments with murine Ab(1–40) (not shown) and confirmed the

aptitude and linearity of the assays. All differences were statistically

calculated by a Student’s t test.

Peptide degradation studies
The production of brain membranes and the HPLC-monitored

peptide degradation procedures were performed as described in

detail by Siems et al. [45]. The peptides (galanin, GLP-1) were

purchased from Bachem (Weil am Rhein, Germany) or Phoe-

nixpeptide (Karlsruhe, Germany). The recombinant NEP was

obtained from R&D Systems GmbH (Wiesbaden, Germany). The

specificity of NEP-caused degradation was confirmed by 10 mM of

the NEP inhibitor candoxatrilat (Pfizer, Karlsruhe, Germany).

Quantification of GLP-1 and galanin
Unequivocally stained regions for either GLP-1 or galanin in

the murine cortex were localized and defined as ROIs (regions of

interest). Furthermore, adjacent regions without detectable

staining were defined as ‘‘reference ROIs’’ (both n = 40).

Luminosities of the localized regions were measured using the

software of the confocal microscope LSM510-META (Carl Zeiss

MicroImaging GmbH, Jena, Germany) whereby the ‘‘reference

ROIs’’ were set as 100%. The calculated differences reflect the

staining of both neuropeptides. The antibody-evoked specificity of

staining ensured the specificity of the method.

Behavioral tests
Morris water maze. Sets of neurological and behavioral

examinations demonstrated no differences in sensorimotoric or

proteins, HPLC analyses were performed by isocratic elution as described by Siems et al. [45]. (b) HPLC-monitored peptide degradation (in %) of GLP-
1 and galanin (5 mM) in brain membranes (0.5 mg protein/ml) of wild-type (+/+) and knockout mice (2/2) over 30 min. The reactions were stopped
by addition of 0.35 M perchloric acid. In parallel assays, heat-inactivated NEP (5 min at 90uC) was used as a control. HPLC analysis was performed by
isocratic elution as described [45]. The significance of differences was calculated by two-sided t test; n$4; **P,0.01. (c) For galanin and GLP-1
immunohistochemistry, slices were incubated with the specific antibodies, followed by incubation with biotinylated anti-rabbit IgG. Immunoreactive
products were visualized by the nickel ammonium sulfate-intensified diaminobenzidine reaction. Unequivocally stained regions in the murine cortex
were localized and defined as ROIs (regions of interest), and luminometrically compared with adjacent regions without detectable staining (reference
ROIs) (for both regions n = 40). The calculated differences were shown as mean6s.e.m.). Significant differences were calculated by Student’s t test,
indicated by **P,0.01, ***P,0.001.
doi:10.1371/journal.pone.0004590.g005
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motivational functions between NEP knockout and wild-type

mice. Thus, the hidden-platform test was performed in this study.

The Morris water maze was a round pool (1 m in diameter,

46 cm high) filled with water (20uC) to a depth of 26 cm. Different

patterns were assigned to each segment for navigation. The platform

(10 cm in diameter) was submerged by 0.2 cm. Water was made

opaque by adding SAKRET� (SAKRET Trockenbaustoffe Europa

GmbH, Wiesbaden, Germany) dispersion color. For three consec-

utive days, each mouse was placed in the pool six times at different

starting points with a 20-min interval between trials at different

places (training). Mice were given 120 sec to swim. After locating the

platform, mice were allowed to remain on it for 15 sec before being

returned to their home cages. Mice that did not locate the platform

were placed on it and scored as 120 sec. Escape latencies for

individual mice were averaged from each daily trial and for the time

the animals needed within the first trial per day to reach the

platform. Age-dependent differences were statistically calculated by a

Student’s t test. Genotype-dependent differences over time were

calculated by a two-way ANOVA test. In an independent

experimental setting different swimming speed between the two

genotypes was excluded (NEP knockout: 13.161.5 vs. wild-type:

14.461.2 m/min).

Shuttle box experiments. The automatic shuttle box

(0.3560.1360.15 m) was divided into two identical

compartments separated by a 5 cm hurdle. The conditioned

stimuli were light (40 W bulbs located on the central ceiling of

each compartment) and a sound produced by a buzzer. The

unconditioned stimulus was an electric stimulation of 0.2–0.4 mA

depending on the individual sensitiveness of the animal

(discernible reaction of the animal to the stimulation) whilst

remaining below the vocalization threshold, delivered through

stainless steel rods covering the floor (50 Hz, impulse widths

10 ms, pulsatile direct current). The conditioned stimuli -

unconditioned stimulus interval was 4 sec. The stimuli were

switched off when the mouse had moved to the goal compartment.

One trial was limited to 20 sec if the animal failed to react within

this period. The mean interval between trials was 30 sec. Prior to

the first session, the mice were allowed to explore the box for

5 min. The training session involved 80 light/foot shock

combinations. The next day, a relearning session was performed

under identical conditions after one minute of habituation. The

number of conditioned reactions (reaction time ,4 sec) and

intertribal activity were recorded. In-time escape from the shock-

prone compartment was evaluated as a positive trial.

In a second shuttle-box experiment, another group of animals

was tested on 5 consecutive days in the shuttle box. The animals

were given 30 light/foot shock combinations a day. Test

conditions (current, stimuli, stimuli intervals, and habituation)

were identical to those described above. Significant differences

were calculated by a Student’s t test.

Marble burying test. The marble burying test is a validated

model for object-related anxiety and compulsive-like behavior

[51–53]. This test was performed in Macrolon II cages. The floor

of each cage was covered with 5 cm of commercial bedding

material (Rettenmaier GmbH, Rosenberg, Germany) on which 12

glass marbles (diameter 1.2 cm) were spaced. The mice were

placed individually in a cage and left undisturbed for 30 min. The

room was illuminated with standard fluorescent strip lights. After

the test, the number of buried marbles (more than 75% of the

marble volume) was counted and the bedding changed. The

marbles were washed with 70% ethanol and dried prior to the first

test and after each test. Significant differences were calculated by a

Student’s t test.

Electrophysiology
Wild-type and knockout adult (9-month-old) or aged (24-month-

old) mice were used in electrophysiological experiments. As

described earlier in detail [54], the mice were anesthetized and

decapitated. Their brains were rapidly removed and placed in ice-

cold artificial cerebrospinal fluid (ACSF) with the following

composition: NaCl: 124 mM; KCl: 3 mM; NaHCO3: 26 mM;

Na2HPO4: 1.25 mM; MgSO4: 1.8 mM; CaCl2: 1.6 mM; glucose:

10 mM. The slices were placed in an interface chamber and

allowed to equilibrate for 120 min at 34uC. They were superfused

continuously with ACSF (1.5 ml/min). The pH was maintained at

7.4 by equilibration of the solution with 95% O2 and 5% CO2.

Extracellular recordings from the lateral nucleus of the amygdala

(LA) and CA1 region were made in parallel in different slices.

Although we obtained similar results in in vitro experiments

investigating long-term depression of activity in the LA recorded

either intracellularly or extracellularly [26], it should be considered

that the negative wave recorded extracellularly in the LA reflects a

summation of both EPSPs and synchronized action potentials

(population spike component; PS) [55,56]. Watanabe et al. [55]

have carried out intracellular recordings of evoked potentials and

confirmed that the latency of peak negative field potentials (5–

6 ms) corresponds well with that of intracellularly recorded action

potentials, indicating that the extracellularly recorded sharp

negativity seems to be a population spike. We therefore preferred

to analyze the amplitude of field potentials in the present study.

Additionally, the slope measure in the lateral amygdala is more

sensitive to variability and noise in the signal, making it more

difficult to analyze [55]. Thus, we decided to record PS also in the

CA1 region of the hippocampus, to get a better comparison of

results between these two limbic structures.

The input/output (I/O) response curves were constructed by

varying the intensity of single-pulse stimulation (interstimulus

interval: 10 sec; pulse duration: 100 msec) and averaging 6

responses to each intensity. To evaluate short-term synaptic

interactions, paired-pulse stimuli were delivered with interstimulus

intervals ranging from 10 to 500 ms. To induce LTP in the CA1

region of the hippocampus, we stimulated Schaffer collaterals with

a bipolar electrode placed on the surface of the slice to record

population spikes (PS) in the pyramidal layer of the CA1 area. The

stimulus was adjusted to elicit a PS at 30% of the maximal

response, which was fixed at this level throughout the experiment.

In different slices of the same mice, we recorded field potentials in

the caudoventral part of the LA by stimulating fibers running

through the external capsule. Since the LA does not have a clear

architecture like the hippocampus and theta burst stimulation

(TBS) was not able to induce stable LA-LTP in aged mice, we

adjusted the stimulus to elicit a field potential at 50% of the

maximal response and used high frequency stimulation (HFS) to

induce LA-LTP. To express and compare changes of the field

potentials (LA) or PS amplitude (CA1) between the animal groups,

we averaged responses from the 56–60 min period after HFS and

TBS. While HFS was induced by 26100 Hz, duration 1 sec,

30 sec apart, TBS consisting of two sets of five theta bursts

separated by 30 sec (265 TBS) was used with each burst involving

four pulses at 100 Hz delivered at an interval of 200 ms. The

significance of the changes was assessed by the Mann-Whitney U

test using a commercial statistics package (Graph Pad prism 5.0).
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