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Disentangling the Effects  
of Land Management and  
Soil Heterogeneity on Soil 
Moisture Dynamics
Tobias L. Hohenbrink,* Gunnar Lischeid, Uwe Schindler, 
and Johannes Hufnagel
Soil moisture is the essential control of water and energy dynamics at arable 
sites. Time series of soil moisture reflect the interplay of various processes, 
each of which influences the overall soil moisture dynamics. In this study we 
tested an approach to break down observed soil moisture behavior into 
the respective contributions of individual processes. We applied a princi-
pal component analysis to soil moisture time series from a field experiment 
comprising two crop rotation systems and two different soil tillage practices. 
We concentrated on 57 soil moisture time series measured over nearly 4 yr 
at 12 plots and five soil depths, down to 1.5 m. About 77.9% of the variance 
was reflected by the first component being almost identical to a time series 
of averaged soil moisture. It described the effect of the meteorological 
boundary conditions. The second component described the effect of the 
input signal damping increasing with soil depth and accounted for 7.8% of 
total variance. The signal transformation over depth proved to be more or 
less uniform throughout the test site, despite considerable soil heterogeneity. 
Another 3.6% of the total variance (third component) was unambiguously 
explained by the different cropping systems. On the contrary, different soil 
tillage practices had no significant effect. The suggested approach opens 
up many possibilities to analyze and better understand complex soil system 
behavior. The data-based approach of time series analysis provides model-
independent, quantitative information about the key factors and processes 
controlling soil water dynamics. Hence, it is especially valuable for model 
building, calibration, and evaluation.

Abbreviations: MAE, mean absolute error; PC, principal component; PCA, principal 
component analysis.

Soil moisture q [L3 L−3] is probably the most important measurable status variable to 
evaluate the water and energy budgets of arable sites (Vereecken et al., 2008). However, soil 
moisture usually exhibits considerable spatial heterogeneity (Corradini, 2014; Vereecken et 
al., 2014), making all means of data evaluation more complicated. This heterogeneity can 
be caused by natural effects, such as the spatial variability of soil texture (e.g., Hohenbrink 
and Lischeid, 2014; Jawson and Niemann, 2007; Schlüter et al., 2012), as well as by dif-
ferent land use practices, such as soil tillage techniques (e.g., Perfect and Caron, 2002; 
Schwen et al., 2011). The impacts of land use practices on soil moisture dynamics must be 
quantified to evaluate the efficacy of specific management decisions. Interactions between 
different land management effects are usually investigated using simulation models (an 
overview of which is provided by Boote et al., 2013). However, this always requires a priori 
knowledge or assumptions about the governing processes. Therefore, model-independent 
diagnostic tools to disentangle the different sources of soil moisture heterogeneity are 
urgently needed to analyze existing monitoring data sets. Such tools could even be used 
to reduce uncertainty in numerical models.

Core Ideas
•	We performed time series analysis of 

existing large soil moisture data sets.
•	Observed behavior was decom-

posed into respective contributions 
of single processes.

•	Consider ing input s ignal trans-
formation instead of mass f lux 
considerations.

•	Our approach opens many new 
possibilities to analyze complex soil 
system behavior.
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There are several approaches to determine the patterns hidden in 
moisture data sets (for an overview see Vereecken et al., 2014), each 
emphasizing different features of soil moisture patterns. Classical 
geostatistical methods are used to characterize the spatial distri-
bution of soil moisture. The spatial covariance of soil moisture 
from different locations is usually expressed as a function of dis-
tance, illustrated by variograms (e.g., Baroni et al., 2013; Joshi and 
Mohanty, 2010; Korres et al., 2015). More recently, more sophis-
ticated methods, such as wavelet analysis (e.g., Biswas, 2014; Peng 
et al., 2013; Rivera et al., 2014), self-organizing maps (e.g., Zou 
et al., 2012), or fractal analysis (Korres et al., 2015), were used to 
investigate the spatial distribution of soil moisture. Temporal sta-
bility analyses of soil moisture patterns (Vachaud et al., 1985) are 
designed to identify locations with soil moisture dynamics repre-
sentative of the whole observation site. This approach is based on 
the observation that the ranks of soil moisture values from differ-
ent locations remain almost constant over time (see the overview 
by Vanderlinden et al., 2012). Standard methods of time series 
analysis, such as autocorrelation and cross-correlation analyses, 
have been used to compare soil moisture dynamics from various 
depths (De Lannoy et al., 2006; Hohenbrink and Lischeid, 2015; 
Mahmood and Hubbard, 2007) and relate them to other variables 
such as precipitation and temperature (Mahmood et al., 2012). 
Low-pass filtering behavior (i.e., changing periodicity of soil mois-
ture oscillations) was investigated for vadose zones (Hohenbrink 
and Lischeid, 2015; Katul et al., 2007) and entire catchments (Gall 
et al., 2013). Slopes of the power-spectra were used to character-
ize and compare the periodicity distributions of time series from 
different locations. Principal component analysis (PCA), also 
known as empirical orthogonal functions analysis (see Vereecken 
et al., 2014), was frequently used to decompose the variance in soil 
moisture data sets from arable fields into uncorrelated patterns 
and relate them to specific explanatory variables (e.g., Baroni et 
al., 2013; Korres et al., 2010; Qiu et al., 2014).

Applying the presented methods to monitoring data sets from 
various investigation sites revealed that soil moisture patterns can 
be controlled by topography (e.g., Qiu et al., 2014; Yoo and Kim, 
2004), soil textural properties (e.g., Baroni et al., 2013; Jawson 
and Niemann, 2007; Yoo and Kim, 2004), soil organic carbon 
content (Korres et al., 2010), vegetation (e.g., Baroni et al., 2013; 
Korres et al., 2015), land management (e.g., Korres et al., 2010, 
2015), and meteorological conditions (e.g., Joshi and Mohanty, 
2010; Qiu et al., 2014). However, most researchers only investi-
gated spatiotemporal moisture patterns from a shallow soil depth 
on a few selected dates. Hupet and Vanclooster (2002) stressed the 
importance of using measurements from the entire hydrologically 
active zone to investigate soil moisture spatial variability. However, 
few studies analyze long-term soil moisture dynamics in vertical 
profiles deeper than 1 m (De Lannoy et al., 2006; Hu and Si, 2014). 
Hohenbrink and Lischeid (2015) proposed to apply a PCA on soil 
moisture time series measured in vertical soil profiles. They investi-
gated the effects of textural heterogeneity on the transformation of 

hydrological signals (e.g., rainfall, snow melt) propagating through 
the vadose zone. Furthermore, they stated that the approach has 
great potential to distinguish independent effects contributing to 
hydrological behavior observed in soil systems. Their approach 
was introduced with the example of simulated time series result-
ing from a numerical experiment. However, the transferability of 
their results from a “simulated world” to the “real world” still has 
to be proven based on soil moisture time series measured under 
field conditions. In fact, that approach has already been success-
fully applied to groundwater head time series (Böttcher et al., 2014; 
Lehr et al., 2015; Lischeid et al., 2010; Page et al., 2012).

Our objectives were to identify and describe the specific effects of 
soil heterogeneity and land management practices on soil mois-
ture dynamics. To achieve this, we decomposed the total variance 
of measured soil moisture time series by PCA as suggested by 
Hohenbrink and Lischeid (2015). An adequate monitoring data set 
of soil moisture time series was required to apply the approach. We 
used a monitoring data set from a multifactorial field experiment 
in northeastern Germany as it had the following features: (i) inten-
sive instrumentation, (ii) large number of replicates, (iii) different 
well-documented soil treatments, (iv) homogeneous precipitation 
inputs due to the small size of the test site, and (v) large soil het-
erogeneity spatially uncorrelated with the experimental set-up. In 
this paper the term hydrological signal designates spatiotemporal 
changes in the soil moisture which are propagated through the 
vadose zone (see Hohenbrink and Lischeid, 2015). We use the term 
functional heterogeneity to express the variability among measured 
time series (see Basu et al., 2010; Hohenbrink and Lischeid, 2015) 
bearing information about the hydrological system behavior of the 
soils investigated.

66Methods
Field Experiment
The experimental test site (52°31¢01²N, 14° 07¢27²E, 62 m a.s.l.) 
was situated in the lowlands of northeastern Germany close to the 
city of Müncheberg. It is located in the transition area between a 
maritime climate and a continental climate. Between 1 Jan. 1981 
and 1 Jan. 2012, the annual sums of precipitation and potential 
evaporation were 529 and 659 mm, and the mean annual tempera-
ture was 9.1°C (DWD, 2014). The experimental site is covered by 
a layer of sediment from the Late Pleistocene, with a flat surface. 
Sand layers alternate at short distances with glacial till contain-
ing clay and marl, resulting in large textural heterogeneity. More 
information about the depth distribution of soil texture at the 
experimental site can be found in a data set published by Mirschel 
et al. (2010). The predominant FAO soil type at the test site is 
Orthic Luvisol.

Twelve experimental plots with an area of 788 m2 each were 
arranged on an experimental field (Fig. 1). Six plots were managed 
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using a cultivation system designed to stabilize the organic carbon 
content of the soil. This featured a 4-yr crop rotation system of 
winter rye (Secale cereale L.), forage sorghum [Sorghum bicolor 
(L.) Moench], winter triticale (´Triticosecale  Wittm. ex A. 
Camus [Secale ´ Triticum]), a mixture of alfalfa, clover and grass 
(Medicago sativa L., Trifolium pretense L., and Lolium perenne 
L.), and maize (Zea mays L.) each harvested as whole plants. This 
system is hereafter referred to as “CropRo4.” The other six plots 
were cultivated using a 1-yr crop rotation system of maize and 
winter rye designed to maximize the yield of biomass (hereafter 
referred to as “CropRo1”). The maize was harvested as a whole 
plant. The winter rye was only grown for erosion protection in the 
winter (as a cover crop) and was removed at an early stage of growth. 
Thus, its soil water consumption was marginal. Half of the plots 
were managed by plowing and the others were not tilled (direct 
seeding). Thus, each combination of cultivation system and tillage 
practices was performed in three replicates. Each experimental plot 
was equipped with seven FDR soil moisture sensors (ThetaProbe 
ML2x, Delta-T Devices) at depths of 0.3, 0.6, 0.9, 1.2, 1.5, 2.0, and 
3.0 m. All devices and cables were installed at least 30 cm below 
the ground to ensure that the upper 25 cm of the soil could be 
plowed. The soil moisture was measured for nearly 4 yr between 
1 May 2008 and 23 Apr. 2012 with an hourly time resolution and 
aggregated to daily data.

Data Preparation
The measured time series were initially plotted in a diagram and 
checked visually for plausibility. They cannot be shown here, due 
to their large number. Time periods with frozen soil water had 
to be omitted from the data set, because the FDR probes were 
calibrated for non-frozen soils only. Thus, an exclusion criterion 
was defined on the basis of soil temperature time series measured 
by DWD (2014). Soil moisture values were not considered when 
the soil temperature at either 0.2 or 0.5 m was smaller than 1°C, 
yielding four data gaps during the winter. Two additional time 
periods of 30 d (from 20 May 2009 to 18 June 2009) and 41 d 
(from 14 July 2011 to 23 Aug. 2011) were omitted due to data 
gaps in several time series caused by malfunctioning data loggers. 
The time series measured at 150 cm at Plots 03, 06, and 10 and at 

200 cm at Plot 11 had to be omitted totally because those sensors 
malfunctioned. All measurement gaps in the remaining time series 
were smaller than 6 d. An autocorrelation analysis of all time series 
showed that the minimum autocorrelation for time lags of 6 d was 
0.80. This means that missing values can be predicted by existing 
with an accuracy of at least 80%. Thus, all gaps smaller than 6 d 
were interpolated linearly. The fraction of interpolated data points 
considered in the analysis was 1.24%.

Each individual moisture time series q(t) was scaled to zero mean 
and unit variance (z transformation)

( ) ( )
*( )
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q

q -q
q =

s
	 [1]

Information about the absolute values and amplitudes of q (t) are 
lost during z transformation, but it makes the scaled moisture time 
series q*(t) comparable and they are weighed equally. In the first 
step, only data from the upper five depths (z £ 150cm) were con-
sidered for detailed analyses and discussion, because plant effects 
were presumably more significant here compared to greater depths. 
The z-transformed moisture series exhibited annual fluctuations 
with maxima in winter and minima in summer (Fig. 2). As the soil 
depth increased, the time series became smoother and lagged in 
time. However, time lags varied between different time periods. In 
Fig. 2 time shifts between the shallow and great depths are high-
lighted for two local minima. Time lags of soil moisture time series 
were much larger in the autumn of 2008 (marked with an “a”) 
compared to the summer of 2010 (marked with a “b”), although 
they were measured at identical positions. All z-transformed time 
series were organized in an input matrix Q where each column 
represented a time series and each row a date.

Principal Component Analysis  
of Time Series
A PCA was applied to the input matrix of time series. This is an 
ordination method to analyze the structure of a multivariate data 
set and to identify common temporal patterns among time series. 
A PCA finds a new orthonormal basis for the multivariate data 

Fig. 1. Experimental design of the long-
term field experiment in northeastern 
Germany comprising two crop rotation 
systems and two different soil tillage 
practices. At each plot, soil moisture 
time series were measured at different 
soil depths.
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space spanned by all input time series. The total variance of the 
input data is decomposed into independent fractions. This results 
a set of uncorrelated principal components (PCs). Here, the target 
is to identify a first component which explains most of the total 
variance, a second component which explains most of the remain-
ing variance and so on. All the resulting PCs are summarized in a 
matrix P in the order of the fraction of variance they explain. The 
transformation of the input matrix Q into P can be computed by

TP® = QQ L 	 [2]

The matrix Λ contains the eigenvectors of the correlation matrix 
of Q ordered by their corresponding eigenvalues. The fraction of 
total variance explained by a PC can be calculated by dividing 
the corresponding eigenvalue by the sum of all eigenvalues. Often 
only few PCs are needed to explain much of the total variance. We 
refer to Jolliffe (2002) for a detailed mathematical description of 
PCA. One important limitation of PCA is that only linear pat-
terns are detected. Nonlinear patterns in a data set can only be 
approximated by gradually superposing several linear PCs (Lee and 

Verleysen, 2007). The input time series should ideally be normally 
distributed, but this condition is less important when PCA is con-
sidered a mainly descriptive technique (Jolliffe, 2002).

The PCs represent time series describing uncorrelated temporal 
patterns that presumably reflect different effects on the observed 
dynamics. Pearson correlation coefficients among PCs and the 
measured time series are known as loadings, L. The fraction of 
variance 2

expls  of individual time series explained by the m first 
components can be calculated by the loadings

2 2
expl 1 1m

kk L=s = £å 	 [3]

We calculated the arithmetic mean values 2
expls  of the explained 

variances 2
expls  of all individual time series from each measuring 

plot. The means of explained variances 2
expls  were used to quantify 

the prevalence of temporal patterns described by single or several 
PCs at the individual measuring plots. On the basis of 2

expls , 
2
expls , L, and additional information (e.g., the measuring depth 

of the moisture time series), the temporal patterns described by 
individual components can be related to specific factors causing 
the observed patterns. We systematically tested whether all PCs 
were associated with effects of the following factors (significance 
level: 0.01):

1.	 Mean soil moisture behavior: The Pearson correlation was 
calculated between the daily arithmetic mean values of all input 
time series and the scores of each PC. A t test was performed 
to see whether the resulting correlation coefficients r differed 
from 0.

2.	 Soil depth: The Pearson correlation was calculated between 
the installation depth of single sensors and the loadings of the 
corresponding time series for each PC. A t test was performed 
to see whether the resulting correlation coefficients r differed 
from 0.

3.	 Cropping system: A Wilcoxon–Mann–Whitney test was 
performed for each PC to see whether the loadings from the 
CropRo1 and CropRo4 plots differ.

4.	 Soil tillage: A Wilcoxon–Mann–Whitney test was performed 
for each PC to see whether the loadings from the tilled and 
nontilled plots differed.

In cases where the first component describes the mean course of all 
the considered soil moisture time series and another component 
represents an effect of soil depth, Hohenbrink and Lischeid (2015) 
suggested evaluating the input signal transformation behavior of 
the vadose zone on the basis of both components. A signal damp-
ing coefficient D quantifying the extent of smoothing and time 
lagging in each moisture series can be derived from the ratio of 
the loadings L1 and L2 as described by Hohenbrink and Lischeid 
(2015) and Lischeid et al. (2010). The damping coefficient D repre-
sents a dimensionless relative measure that can only be interpreted 
in the context of the data set evaluated by the PCA. Temporal 
dynamics explained by components of a higher order are neglected 

Fig. 2. z-transformed soil moisture time series shown as an example for 
three soil depths at four experimental plots. Time shifts in two local 
soil moisture minima between shallow and great depths are high-
lighted with an “a” and a “b.”
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by D because it is only based on the first two components. In this 
study all calculations and statistical analyses were performed with 
the R software package (R Development Core Team, 2010).

66Results
Mean Behavior of Soil Moisture and Effect 
of Soil Depth
First Principal Component
The first PC explained 77.9% of the data set’s total variance. The 
mean values of explained variances ranged from 2

expls  = 0.653 at 
Plot 09 to 2

expls  = 0.841 at Plot 06 (Table 1). All loadings were 
positive (Fig. 3a). The absolute values of the loadings were between 
0.697 and 0.960. Thus, the first PC described a temporal pattern 
that was apparent in every single time series. At each plot, the larg-
est loadings appeared at medium depths, showing that the pattern 
described by the first PC was most predominant in the center of 
the soil profiles. The first PC was nearly identical (r2 > 0.999, p 
value = 0.01) to a time series representing the daily arithmetic 
mean values of all input time series. Thus, the first PC described 
the mean behavior of soil moisture, which was strongly influenced 
by atmospheric controls.

Second Principal Component
The fraction of total variance explained by the second PC was 7.8%. 
The loadings of the time series on the second PC varied between 

−0.446 and 0.439 and were correlated (r2 = 0.884, p value = 0.01) 
with soil depth. Loadings increased with the depth, from negative 
values in the topsoil to positive values at greater depths (Fig. 3b). 
Thus, the second PC reflected deviations from the mean behavior 
(first component) depending on the soil depth. Combining the 
first two PCs by linear combination according to the principle 

of superposition resulted in reconstructed time series. They rep-
resented approximations of moisture dynamics that could be 
expected if soil depth were the only influencing factor. Different 
desired soil depths were specified using the ratio of combination. 
Adding the second PC to the first one yielded a time series (blue 
line in Fig. 4) that was more strongly damped (smoother) and time 
lagged compared to the mean behavior (black line). Temporal pat-
terns of this kind were observed at large soil depths, where loadings 
of the second PC were positive. On the contrary, subtracting the 
second PC from the first one yielded a weaker damped time series 

Fig. 3. Loadings of all time series on the (a) first and (b) second principal 
components. Bars represent individual time series grouped by measur-
ing plot. Plots are ordered by the management options CropRo1/
tillage (gray), CropRo1/no tillage (reddish colors), CropRo4/tillage 
(green), and CropRo4/no tillage (blue). Within each plot, the time 
series are sorted by measuring depth, which increases from left to right.

Table 1. Arithmetic mean values 2
expls  of the explained variances of all 

individual time series from each measuring plot. The mean values 2
expls  

provide a measure of the prevalence of temporal patterns described by 
the principal components (PCs) at each measuring plot.

Mean of explained variances 2
expls

First PC Second PC Third PC

Plot 01 0.792 0.110 0.014

Plot 05 0.774 0.111 0.027

Plot 09 0.653 0.090 0.094

Plot 02 0.812 0.098 0.009

Plot 04 0.805 0.073 0.026

Plot 12 0.753 0.092 0.039

Plot 03 0.837 0.044 0.048

Plot 07 0.719 0.075 0.046

Plot 11 0.718 0.055 0.021

Plot 06 0.841 0.059 0.024

Plot 08 0.832 0.066 0.028

Plot 10 0.808 0.058 0.055
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(orange line) with temporally preceding dynamics compared to the 
mean behavior. Such moisture time series were observed at shallow 
depths and loaded positively on the second PC. The variances of 
the first and second component were combined in the ratio 70:30 
to construct the moisture dynamics shown in Fig. 4. Following 
Eq. [3] this corresponds to the loadings L1 = 0.7  = 0.83 and 
L2 = 0.3  = ±0.54. Soil depth had a slightly stronger effect in 
the constructed time series than in the observed ones, since the 
absolute values of L2 were slightly larger than those of the time 
series measured at shallow and great depths (Fig. 3).

Time shifts between the moisture dynamics reconstructed for shal-
low and great soil depths varied between different time periods 
similarly to the measured moisture series. In Fig. 4, different time 
lags of local minima in the autumn of 2008 and the summer of 
2010 are highlighted with “a” and “b” as in Fig. 2.

Signal Damping
It was possible to calculate signal damping coefficients D quanti-
fying the damping status of each measured time series, since the 
loadings on the second PC were correlated with the soil depth. The 
calculation of D was based on the loadings of the first two compo-
nents only. Thus, the determination of D made use of 85.7% of the 
data set’s total variance. The mean value of variances explained by 
the first two PCs used to calculate D varied between 2

expls  = 0.743 
at Plot 09 and 2

expls  = 0.910 at Plot 02 (Table 1). At each plot D 
increased along with the soil depth; in other words, time series mea-
sured at a greater soil depth were more strongly damped compared to 
those from shallow depths (Fig. 5). The relation between D and soil 
depth was almost linear. A regression line (intersect: −84.5 cm; slope: 

−129.4 cm per unit of D; r2 = 0.88) described the field-averaged 
signal damping status of the measured time series. Its slope indicated 
the averaged signal transformation intensity and thus characterized 
the signal transformation behavior of the vadose zone. Moisture 
dynamics showing the averaged damping state can be reconstructed 
for any soil depth by combining the first two components. That way, 
the measured soil moisture time series can be functionally averaged. 
This means averaging the signal transformation behavior of the 
vadose zone at the experimental site (see Hohenbrink and Lischeid, 
2015). The damping coefficients of individual time series differed 
only slightly from the field average, showing that hydrological signals 
were similarly transformed at all plots. Mean absolute errors (MAEs) 
and correlation coefficients (R2) between individual and averaged 

damping profiles were used to evaluate deviations from the averaged 
behavior. Plot 12 (MAE = 0.031, R2 = 0.989) and Plot 03 (MAE = 
0.040, R2 = 0.994) behaved most similarly to the average while the 
largest deviations from the mean behavior occurred at Plot 10 (MAE 
= 0.147, R2 = 0.990) and Plot 05 (MAE = 0.132, R2 = 0.815). All 
time series from Plot 10 were more strongly damped than the field 
average. Hence, the damping profile ran parallel to the averaged one. 
Note that the mean values of explained variances 2

expls  were corre-
lated neither with MAE (r2 < 0.005) nor with R2 (r2 < 0.04). This 
shows that moisture dynamics deviating from the field-averaged 
damping status can be approximated by the first two components 
to the same extent as those representing the average behavior.

Effect of Cropping System
The third PC covered 3.6% of the data set’s total variance. In con-
trast to the first two components, the mean value of explained 
variances (Table 1) was largest at Plot 09 ( 2

expls  = 0.094) and 
smallest at Plot 02 ( 2

expls  = 0.009). The loadings were clustered 
in two groups (Wilcoxon–Mann–Whitney Test, p value = 0.01). 
The time series measured at the CropRo1 plots were positively 
correlated with the third PC (Fig. 6), and those measured at the 
CropRo4 plots were negatively correlated. Consequently, the third 
PC discriminated between the cropping systems with respect to 
differences in the soil moisture dynamics between the CropRo4 
and the CropRo1 plots (Fig. 7). Positive scores of the third PC 
indicate that the z-transformed soil moisture values were greater 
at the CropRo1 plots than at the CropRo4 plots. The opposite was 
true during time periods with negative scores. Color bars at the 
top and bottom of Fig. 7 indicate the plants grown at the CropRo1 
(top) and CropRo4 (bottom) plots during different time periods. 
In May 2008 the rye plants at the CropRo4 plots consumed more 
water than the very young maize plants at the CropRo1 plots. 
Hence, soil moisture at the CropRo4 plots decreased compared 
to the CropRo1 plots, as indicated by increasing scores of this com-
ponent. This development promptly reversed after the rye harvest 
(marked with an “a” in Fig. 7). The scores decreased until the maize 
was harvested at the CropRo1 plots (marked with a “b”). During 
this time period, the maize plants built up much of their biomass, 
consuming more water than the millet plants at the CropRo4 plots. 
The same interplay of plant growth and water consumption was 
observed in the following year, 2009 (turning points marked “c” 
and “d”). The course of the third PC also showed a response to 
the alfalfa–clover–grass mixture being mowed (marked “e” and 

Fig. 4. Time series showing the scores 
of the first two principal components 
(PCs) superposed in different ratios. 
Time shifts in two local minima are 
highlighted with an “a” and a “b.”
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“f ”). The scores increased before the 
mowing dates, showing that water con-
sumption was higher at the CropRo4 
plots. After mowing, the water con-
sumption of the alfalfa–clover–grass 
mixture was reduced, leading to 
decreasing scores. This effect was not 
clearly visible when the mowing date 
was shortly before or after maize har-
vesting at the CropRo1 plots (marked 

“d” and “g”). In the last observed season 
in 2011 and 2012, all plots were uni-
formly cultivated with maize followed 
by rye in the winter. During this time 
span, the scores of the third component 
were close to zero. Thus, there were 
no major differences in soil moisture 
dynamics between the CropRo4 and 
CropRo1 plots. It is worth mentioning 
that the third component described 
relative soil moisture dynamics instead 
of providing information about abso-
lute soil moisture values, since each 
input time series was z transformed 
(Eq. [1]).

The first three PCs can be combined to 
reconstruct time series approximating the soil moisture dynamics 
that could be expected if only the soil depth and cropping system 
affected soil moisture. Such reconstructed time series aggregate 
the most pronounced effects of soil depth and the cropping system. 
They can be used both for (i) detailed analyses of the specific effects 
and (ii) upscaling purposes. The time series shown in Fig. 8 were 
composed by superposing the first three PCs. The third PC was 
considered both positively (CropRo1) and negatively (CropRo4). 
The ratios for combination were determined by their fraction of 
explained total variance, where the sum of explained total vari-
ance of 89.2% was set to 100%. Thus, the third PC accounted 
for 4.03%. The remaining 95.97% were then assigned to the first 
(95.80%) and second PC (0.17%) in a ratio determined by the field-
averaged value of D for a depth of 90 cm. Note that the second PC 
only accounted for 0.17% because the pattern represented by this 
PC was almost nonexistent in the middle of the soil profile (Fig. 
3b). The time series show reconstructed soil moisture dynamics 
that can be expected for both cropping systems at a soil depth of 
90 cm. The temporal patterns emerging from mean behavior, soil 
depth, and cropping system were functionally averaged for the 
whole experimental field. The moisture dynamics are controlled 
by precipitation and plant transpiration. The most significant dif-
ferences between the cropping systems appeared in the summer 
months when transpiration rates were highest and soil moisture 
deficits were not rapidly compensated by precipitation.

Fig. 5. Depth profiles of the signal damping coefficient D for each measuring plot. The panels are ordered 
into columns based on the management options CropRo1/tillage (gray), CropRo1/no tillage (reddish 
colors), CropRo4/tillage (green), and CropRo4/no tillage (blue). The black lines describe the averaged 
damping behavior of the vadose zone. The three quality criteria indicate the mean value of variances 
explained by the first two components ( 2

expls ), as well as the mean absolute error (MAE) and correlation 
(R2) between the individual and averaged damping profiles.

Fig. 6. Loadings on the third component. Bars represent individual 
time series grouped by measuring plot. Plots are ordered based on the 
management options CropRo1/tillage (gray), CropRo1/no tillage 
(reddish colors), CropRo4/tillage (green), and CropRo4/no till-
age (blue). Within each plot, the time series are sorted by measuring 
depth, which increases from left to right.
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Effect of Soil Tillage

The design of the field experiment 
included two soil tillage options (Fig. 
1). The loadings of the time series from 
tilled and nontilled plots differed sig-
nificantly for the 27th component 
(Wilcoxon–Mann–Whitney Test, p 
value = 0.01), indicating that it pro-
vides information about soil tillage 
effects. However, it only accounted for 
0.046% of the total variance. This frac-
tion is too small for reasonable process 
interpretations. Nevertheless, it pro-
vides an estimation of the maximal 
fraction of total soil moisture variance 
below the plowing zone that could be 
caused by soil tillage effects.

Considering Data from 
Different Soil Depths
The previous sections showed the 
results from analyses of the upper five 
measuring depths between 30 and 
150 cm. The described effects of mean 
behavior, signal damping, and plant 
water consumption were also detected 
using PCA when different numbers 
of measuring depths were considered. 
However, their relevance differed. 
The fraction of variance explained by 
the mean behavior decreased from 
84.9% (upper three depths) to 72.0% 
(all seven depths) when time series 
from more soil depths were consid-
ered (Table 2). Conversely, the effect 
of signal damping was strongest 
(explained total variance: 9.0%) when 
all measuring depths were considered. The effect of water con-
sumption of plants slightly became weaker with increasing number 
of considered measuring depths. The total amount of variance that 
could clearly be assigned to specific influencing factors decreased 
from 93.9% (upper three depths) to 84.0% (all seven depths).

66Discussion
Decomposing the Soil Moisture Variance
Applying PCA to the z-transformed input data set yielded three 
meaningful components accounting for 89.3% of the total variance 
in the upper five soil depths. A large share of the observed temporal 
dynamics recurs in each time series, showing that soil moisture 
dynamics exhibited only a small degree of functional heterogeneity 

at the experimental site. This becomes particularly obvious when 
looking at the first component. More than three-quarters of the 
total variance could already be aggregated by one single tem-
poral pattern that was almost identical to a time series of mean 
values from all measuring locations. These findings are in good 
agreement with the results of Korres et al. (2010), who analyzed 
spatiotemporal soil moisture patterns at shallow soil depths using 
empirical orthogonal functions. They also found a PC reflecting 
the mean soil moisture dynamics at a pasture site and an arable 
field. Similarly to our results, this main pattern explained more 
than 70% of soil moisture variance from the arable site, although 
Korres et al. (2010) considered only 10 measuring dates.

The explanatory power of a PCA to identify specific effects 
strongly depends on the information content of the analyzed 

Fig. 7. Scores of the third component shown as time series. Color bars indicate plants grown in the dif-
ferent cropping systems CropRo1 (top) and CropRo4 (bottom). Black dots indicate the dates when the 
alfalfa–clover–grass mixture was mowed.

Fig. 8. Functional averaged time series at a medium depth of 90 cm reconstructed for CropRo4 and 
CropRo1 plots. The time series are composed by superposing the first (95.80%), second (0.17%), 
and third component (4.03%). Color bars indicate plants grown in the different cropping systems 
CropRo1 (top) and CropRo4 (bottom). Black dots indicate the dates when the alfalfa–clover–grass 
mixture was mowed.
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data set. Thus, the experimental design already determines the 
applicability of a PCA. Our results have shown that the fraction 
of variance explained by specific effects was determined by the 
number of soil depths considered. However, the nature of the 
resulting PCs and, thus, the specific effects identified by the PCA 
were similar for all the numbers of soil depths considered. This 
underlines how robustly PCA identifies first-order controls.

A PCA is often used as a dimensionality reduction tool. In that 
case it is necessary to test how many components contain signifi-
cant information and can thus be considered for interpretation 
(Peres-Neto et al., 2005). Our purpose, however, was to identify 
and extract the effects of specific factors known beforehand. Thus, 
we systematically tested whether each PC contained information 
about the factor of interest, notwithstanding the fraction of vari-
ance it explained.

Signal Transformation Behavior
The second component described the part of the deviation from 
the mean behavior (first PC) that can be explained by effects of 
soil depth. The fraction of total variance explained by the first two 
components (85.7%) was very similar to the results of Hohenbrink 
and Lischeid (2015). In their study both components explained 
88.7% of soil moisture dynamics simulated in a heterogeneous soil 
profile. It is noteworthy that the measured dynamics are no more 
complex than the simulated ones, although the latter were gener-
ated for strongly idealized and simplified model cases. However, it 
is worth mentioning that Hohenbrink and Lischeid (2015) consid-
ered model cases covering nearly the whole range of possible soil 
textures, while the soils at the monitoring site were dominated by 
sandy textures.

Time series with different degrees of signal transformation were 
reconstructed by combining the scores of the first two components 
(Fig. 4) as proposed by Hohenbrink and Lischeid (2015). This 
was a prerequisite to derive D from the loadings of the first two 
components. The depth profiles of D (Fig. 5) provided evidence 
that hydrological input signals were continuously transformed 
into a more strongly damped status while propagating through 
the soil profiles. This might be a trivial result known before (e.g., 
Mahmood et al., 2012; Pan et al., 2011), but the novelty of this 
approach is that D represents a robust measure to quantify the 

signal transformation behavior of soil systems. The fact that D 
mostly increased linearly with the soil depth easily enables the 
functional averaging of soil moisture dynamics, that is, averag-
ing the signal transformation behavior irrespective of small scale 
heterogeneities.

The damping coefficients of single time series only deviated slightly 
from the field-averaged damping profile. Furthermore, the slopes 
of the damping profiles from all measuring plots were very similar. 
Thus it can be concluded that the general signal transformation 
behavior of the vadose zone proceeds relatively homogeneously at 
the field scale. Similarly to temporal stability analyses (Vachaud et 
al., 1985; Vanderlinden et al., 2012), the concept of signal transfor-
mation analysis can be used to identify measuring locations that 
reflect the mean behavior of the whole investigation site.

At some plots, D increased linearly with the soil depth, indicat-
ing that water flow was relatively uniform. At other plots, D was 
scattered around the mean damping profile, as indicated by larger 
values of the mean absolute errors MAE and the correlation coef-
ficients R2 between the individual and averaged damping profiles 
(Fig. 5). This shows that heterogeneous water flow fields occurred 
at plot scale; that is, hydrological signals were preferentially propa-
gated along distinct water pathways. This effect can be caused by 
small-scale textural heterogeneity. In heterogeneous flow fields, 
the signal transformation along preferred water pathways is less 
intensive than in surrounding regions with a reduced water flow 
(Hohenbrink and Lischeid, 2015). Thus, time series measured at a 
certain depth can be less strongly damped than others from shal-
lower depths. However, the prevalence of both temporal patterns 
captured by D was not reduced on the occurrence of heteroge-
neous flow fields, since 2

expls  was neither correlated with MAE 
nor with the correlation coefficients R2. Soil moisture dynamics 
emerging in heterogeneous flow fields were still composed of the 
first two components to the same extent as under uniform flow 
conditions. Similarly to Hohenbrink and Lischeid (2015), this 
shows that textural heterogeneity does not necessarily cause func-
tional heterogeneity, since no additional, more complex temporal 
patterns were generated by heterogeneous water flow. Soil hetero-
geneity merely caused different signal transformation intensities 
per depth unit instead of inducing completely different kinds of 
signal transformation. Thus, the effect of textural heterogeneity 

Table 2. Effect of the number of soil depths considered on the fraction of total variance explained by the first three principal components (PCs).

Considered soil depths Number of time series

Fraction of total variance explained by

First PC 
Mean behavior

Second PC: 
Signal damping

Third PC: 
Water consumption of plants Sum

cm

30, 60, 90 36 0.849 0.052 0.038 0.939

30, 60, 90, 120, 150 57 0.779 0.078 0.036 0.893

30, 60, 90, 120, 150, 200, 300 80 0.720 0.090 0.030 0.840
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is much more systematic than, for example, random noise added 
to the data (Hohenbrink and Lischeid, 2015).

Effects of local heterogeneities, that is, different intensities of 
signal transformation, can balance each other out. This can be 
visualized using the example of layered soil profiles. Input signals 
entering any soil layer correspond to the output signal of the layer 
above. An input signal entering the soil surface is propagated in 
this way through several layers with different thicknesses, textures, 
and small-scale heterogeneities. Given that (i) the general kind of 
signal transformation does not differ between different layers and 
that (ii) signals can only be transformed to a more strongly damped 
status, it is possible to find a corresponding homogeneous soil with 
the same average signal transformation behavior as the layered soil. 
This is a basic condition for applying the concept of temporal aver-
aging for different purposes, such as for upscaling soil moisture 
dynamics by averaging the signal transformation behavior of the 
vadose zone.

The calculation of D makes use of the first two PCs, represent-
ing linear approximations of the two most prevalent uncorrelated 
temporal patterns, that is, the mean soil moisture behavior and 
the effect of soil depth. If all depth effects occurring cannot fully 
be described by the second principal component, there is a risk of 
neglecting some parts of relevant variance that are also induced 
by soil depth. This typically happens if signal transformation 
induces nonlinear structures that can only be approximated by 
stepwise superposition of several linear components (Hohenbrink 
and Lischeid, 2015). There is further need for research into the 
nonlinear behavior of signal transformation. We could not find 
Pearson correlations between the soil depth and the loadings on 
higher-order PCs. However, loadings of the fourth component 
(data not shown) seemed to have a curve-shaped dependency on 
depth. Thus, more sophisticated measures for nonlinear depen-
dence, such as mutual information—as defined by Shannon (1948), 
for its estimation see Fraser and Swinney (1986) or Kraskov et al. 
(2004)—would be needed to detect further nonlinear relations 
between loadings and soil depth. However, this is beyond the scope 
of our study.

Effects of Cropping System and Soil Tillage
The effect of the cropping systems represented by the third PC 
accounted for 3.6% of the total variance. This fraction was smaller 
than we would have expected beforehand, since both cropping 
systems comprised plants with different water demands, vary-
ing harvest times, and nonparallel growing seasons. The third 
component nevertheless described a clear and unambiguously 
interpretable temporal pattern. This holds true for both (i) the 
clustering of loadings in the two groups of CropRo1 and CropRo4 
and (ii) the interpretation of the temporal dynamics described by 
the scores of the third component. The clarity of these results 
highlights the great potential of PCA in detecting minimal but 
significant patterns hidden in data sets of time series (Thomas 

et al., 2012). Soil moisture temporal patterns accounting for only 
small fractions of variance can still be interesting and can even 
have important impacts on dominant soil water processes. This 
can be illustrated by the example of threshold-controlled processes 
such as macropore flow occurring under particular moisture con-
ditions. It can be the main reason for solute leaching (reviewed by 
Jarvis, 2007), although it often accounts for only small fractions 
of the total soil moisture variance.

Korres et al. (2015) used various analyzing tools to reveal spatio-
temporal soil moisture patterns emerging under different land uses. 
With regard to arable sites, they found large spatial soil moisture 
variability among neighboring fields. They explained this effect by 
strongly varying evaporation rates due to shifted periods of maxi-
mum water uptake by different crops and different agricultural 
management (e.g., planting dates, harvesting dates, field sizes). It 
is worth noting that we identified very similar effects of crops on 
soil moisture patterns by time series analysis, such as Korres et al. 
(2015) found by spatial analysis. Baroni et al. (2013) performed a 
PCA on a data set containing soil moisture measured at a shallow 
depth in an agricultural field. Among other PCs they identified 
a component describing a plant effect. It was spatially correlated 
with the crop factors leaf area index and plant height. This veg-
etation-controlled pattern prevailed when the soil became dryer. 
Our third component also revealed that soil moisture differences 
between the cropping systems were the greatest in dry conditions, 
because the scores showed the highest absolute values during the 
dry summer months (Fig. 7).

There is agreement in the literature that in comparison to plow-
ing, nontillage causes (i) greater bulk density, (ii) more stable soil 
aggregates, (iii) increased soil biota abundance generating macro-
pores, and (iv) higher soil carbon contents (e.g., Arai et al., 2014; 
Holland, 2004; Soane et al., 2012). Tillage-induced alterations of 
these substantial soil characteristics can have various effects on soil 
hydraulic properties (e.g., Schwen et al., 2011; Strudley et al., 2008). 
Thus, it might be expected that soil moisture dynamics would also 
differ between different tillage practices. However, we could not 
detect significant differences between tilled and nontilled plots. 
Some authors reported tillage effects on spatial soil moisture pat-
terns at shallow soil depths (e.g., Korres et al., 2010; Perfect and 
Caron, 2002). Similar effects could possibly also be found at very 
shallow depths at our investigation site. However, we only ana-
lyzed time series from greater soil depths, since it is not possible 
to measure long-term data with sensors placed at fixed positions 
when the surrounding soil is regularly tilled.

66Conclusions
By applying a principal component analysis to measured soil 
moisture time series, we achieved our objectives of identifying, 
describing, and evaluating the specific effects of soil heterogene-
ity and land management on soil moisture dynamics. The method 
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turned out to be powerful as long as relative temporal dynamics 
are of interest rather than absolute values. Based on the results that 
three meaningful components accounted for 89.2% of the total soil 
moisture variance, we can draw the following conclusions.

First, contrary to common assumption, the interactions of infiltra-
tion, soil heterogeneity, and different land management practices 
do not necessarily induce complex soil moisture dynamics in 
deeper soil layers. Nearly 78% of the observed soil moisture vari-
ance was identical at all measuring locations. Thus, functional 
heterogeneity, that is, variability among all soil moisture time 
series, only accounted for the remaining 22% of variance. About 
35% of that was unambiguously attributed to the deterministic 
effect of input signal transformation with increasing soil depth. 
The large textural heterogeneities at the test site had no effect on 
the general nature of signal transformation, but did affect its inten-
sity, which varied at different sites. Land management only slightly 
affected soil moisture dynamics, since the different cropping sys-
tems induced 16.3% of functional heterogeneity. Soil tillage was 
not found to have any significant effect.

Second, the suggested approach opens up new possibilities to 
analyze and better understand complex soil system behavior. 
Functional averaging, that is, averaging the signal transformation 
behavior of the vadose zone, provides time series representing the 
most relevant characteristics of the system behavior. The approach 
does not require a priori assumptions about the nature of physical 
processes, since it is solely based on information provided by the 
data. Thus, it provides model-independent information on how 
individual effects contribute to the observed dynamics, making it 
especially valuable for model building, calibration, and evaluation.
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