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Abstract

In this study the benefit of metabolome level analysis for the prediction of genetic value of three traditional milk traits was
investigated. Our proposed approach consists of three steps: First, milk metabolite profiles are used to predict three
traditional milk traits of 1,305 Holstein cows. Two regression methods, both enabling variable selection, are applied to
identify important milk metabolites in this step. Second, the prediction of these important milk metabolite from single
nucleotide polymorphisms (SNPs) enables the detection of SNPs with significant genetic effects. Finally, these SNPs are used
to predict milk traits. The observed precision of predicted genetic values was compared to the results observed for the
classical genotype-phenotype prediction using all SNPs or a reduced SNP subset (reduced classical approach). To enable a
comparison between SNP subsets, a special invariable evaluation design was implemented. SNPs close to or within known
quantitative trait loci (QTL) were determined. This enabled us to determine if detected important SNP subsets were enriched
in these regions. The results show that our approach can lead to genetic value prediction, but requires less than 1% of the
total amount of (40,317) SNPs., significantly more important SNPs in known QTL regions were detected using our approach
compared to the reduced classical approach. Concluding, our approach allows a deeper insight into the associations
between the different levels of the genotype-phenotype map (genotype-metabolome, metabolome-phenotype, genotype-
phenotype).
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Introduction

In dairy cattle, traditional milk traits are recorded regularly

during the standard milk performance test to monitor e.g., the

status of health of the cows and the feeding in order to apply this

information for breeding purposes. In general, milk traits for

monitoring the state of health are not sufficiently sensitive

regarding diagnostic efficiency, e.g., acetone is an accepted

indicator for ketosis [1], but is increased only if ketosis is acute.

Hence, in the last years an increased trend to find new molecular

traits, such as metabolite which can be used as helpful indicators,

has been observed. These new molecular traits are expected to

improve several applications in this field, e.g., to allow for the

possibility to detect diseases earlier or to find new opportunities for

non-invasive techniques to monitor metabolic processes in cows.

Such enhancements also play an important role for the economic

aspect. In the recent literature, new molecular traits were

investigated and proposed to be used as indicators. For example,

Klein et al. [2] proposed the ratio of milk glycerolphosphocholine

to phosphocholine as an indicator for the risk of ketosis. The study

of Cabrita et al. [3] suggested that heptandecanoic acid (C17:0) has

the potential to be an indicator for protein deficiency. Farr et al. [4]

proposed to use lactic acid for the detection of mastitis in its early

stage. A possible strategy to reveal metabolites important for the

prediction of traits of interest, in the following termed as important

metabolites, is to apply statistical learning methods which allow

variable selection [5] to obtain a measure of importance for each

metabolite (as proposed by Melzer et al. [6]). In our case,

investigated traditional milk traits were considered surrogates for

interesting health or management traits. Milk metabolites or

groups of metabolites revealed to be important could serve as

possible biomarker or biosignature candidates [6]. In general, an

important metabolite can be considered a new molecular milk

trait, and genetic effects on it may be analyzed with prediction

methods from the field of genomic selection [7,8]. In a recent

study, milk metabolites were considered new molecular traits and

their genetic variability was investigated [9]. Here, we are

interested to find single SNPs with a genetic impact on the

important metabolites. Estimated SNP effects may be used to

predict genetic values in future generations (test generations).

Today it is common to genotype only elite animals, mostly bulls,

because of the cost of a high-density panel e.g., IlluminaH SNP

Chip 50K. Hence, it is also of interest to design low-density SNP

panels (3K–6K), based on SNPs selected from the high density

SNP panel, which can be used for a broader screening. A low

density SNP panel should cover as many milk traits associated with

breeding (selection) goals as possible in order to obtain an

appropriate prediction precision for several traits [10]. To

determine an appropriate SNP subset from a high-density SNP

PLOS ONE | www.plosone.org 1 August 2013 | Volume 8 | Issue 8 | e70256



panel, different strategies were proposed in the recent literature.

For instance, Habier et al. [11] proposed to use equally spaced

SNPs to obtain a SNP subset for several traits. Weigel et al. [12]

used Bayesian Lasso to find an optimal SNP subset for one trait, in

which SNPs were ranked based on their genetic effects. A similar

study is presented by Moser et al. [13] who used ridge regression

and partial least squares regression to find an appropriate SNP

subset for several production traits.

In this context, we that prediction precision may increase if SNP

subsets determined for a molecular species, in our case metabo-

lites, with an impact on the trait of interest, in our case milk traits,

are used for prediction. It is possible that important SNPs, which

have little genetic effect on a milk trait, may have stronger genetic

effects on the corresponding important metabolites. We expect

that SNPs with a strong genetic effect on a milk trait (e.g., the SNP

in the region of DGAT1 [14,15] has a large impact on fat) show

also a strong genetic effect on at least one of the determined

important metabolites.

To address these presumptions, our metabolite approach

employs different sub-steps, in which the metabolome level was

considered for genetic value prediction in addition to the SNP

information. The following prediction precisions were compared:

metabolite SNPs, all SNPs (classical approach), important SNPs

determined for a milk trait (reduced classical approach), only SNPs

which were within or close to known QTL regions (QTL

approach) A special evaluation design was applied, i.e., an

invariable double 10-fold cross-validation design, enabling direct

and fair comparisons between the different approaches. Our main

focus was to compare the prediction precisions of the different

approaches A second objective was to compare positions of

selected SNPs with known QTL positions (enrichment analysis).

Materials and Methods

Experimental Data
Our experimental data set includes traditional milk traits and

SNP genotypes (IlluminaH Bovine SNP 50K) of 1,305 Friesian

Holstein cows reared on 18 farms in Mecklenburg-Western

Pomerania. The traditional milk traits were measured via infrared

spectroscopy (Kombi-FOSS, FT6000-FC, FOSS, Hillerød, Den-

mark) during the standard milk performance test at the State

Control Association for Quality Inspection (LKV, Güstrow,

Germany). One milk sample per cow was taken between the

21st and 120th day of the first lactation. Further, the Max Planck

Institute of Molecular Plant Physiology (Potsdam-Golm, Germany)

measured milk metabolite spectra, which were obtained via GC-

MS ([16]) of the hydrophilic phase of milk. For this purpose, a

specific experimental design was implemented as balanced as

possible to enable an unbiased correction and analysis regarding

the following factors: GC-MS batch (day of milk measurement),

half-sib structure (sire effect), farm and test day [17]. More detailed

information of the preparation of the metabolite profiles can be

found in [6]. In total, 187 known metabolites were identified, and

three unknown metabolites were measured.

Each cow had less than 10% missing SNP genotypes. SNP data

were subjected to further quality checks. SNPs with unknown

position according to the annotated bovine genome (Btau4.2, [18])

were deleted. Further, SNPs were excluded if MAF was v1%, if

the Hardy-Weinberg equilibrium was not fulfilled (P-

valuev10{4, [19]), or if a SNP locus had more than 10% missing

values over all cows. In our experimental data set, 40,317 SNPs

met all criteria. The rarely missing SNP genotypes were imputed

using Beagle v3.2 [20].

The narrow-sense heritability (h2) was estimated using a sire

model (R package nlme [21,22]) for each milk trait. This analysis

reveals that fat content (ĥh2 = 0.23), protein content (ĥh2 = 0.24) and

pH value (ĥh2 = 0.39) show the highest estimated narrow-sense

heritability and therefore they were chosen for the presented

analyses. It is known that the number of animals and heritability of

a trait have an important influence on the accuracy of the

prediction of genetic values (e.g., [23,24]). In a previous study [6],

relationships within these milk metabolites and milk traits as well

as relations between milk metabolites and milk traits were deeper

investigated using univariate as well as multivariate analysis

methods. The Pearson correlation coefficients between all milk

metabolites and chosen milk traits were in a range of [20.14; 0.19]

for fat content, and [20.28; 0.34] for protein content and [20.18;

0.12] for pH value [6].

Known QTL regions for fat content and protein content
For the implementation of the QTL approach, the cattle QTL

database (cattleQTLdb; [25]) was searched to determine known

QTL regions of the bovine genome based on the given

cattleQTLdb markers for fat and protein. Entries of the

cattleQTLdb were filtered for: trait milk fat percentage and milk

protein percentage, analysis type equal to QTL, breed equal to

Holstein, and chromosome number, flanking markers (of the

confidence interval of the QTL) or peak markers had to be

specified. The location of selected cattleQTLdb markers is given in

the genetic unit centiMorgan (cM). Then, these markers were

assigned to Btau4.2 (as used for the experimental data), using the

corresponding marker information from the National Center for

Biotechnology Information (NCBI; [26]), to obtain marker

positions in the physical unit base pair (bp). In total, 34 QTL

regions were associated with fat, and 50 QTL regions with protein.

The QTL marker positions used for both milk traits are listed in

Table S1. Additionally, the known quantitative trait nucleotide

(QTN) DGAT1 [15] was considered a QTL for fat and protein.

The position of another known QTN for protein, ABCG2 [27],

was already covered by a QTL. Based on the filtered QTL marker

positions (bp) it was possible to select SNPs which are close to a

QTL peak marker or between two flanking markers of a QTL

region:

(a) QTL region: all SNPs between left (end bp) and right (start

bp) flanking marker of the QTL interval.

(b) QTL peak: left and right SNP next to the peak position.

(c) DGAT1: a SNP directly in the DGAT1 region (DGAT1:

chromosome 14, position 411,147–446,810 bp, www.ncbi.

nlm.nih.gov accessed 2011 February 18). The SNP is located

on 443,937 bp and termed DGAT1-SNP.

The joint set of SNPs (a)–(c) were termed QTL-SNPs in the

following analyses.

Cross-validation scheme
In general, a cross-validation design is necessary, since we did

not have separate experimental data as test set available. Thus, to

enable investigations on the experimental data set, it was first

divided to obtain a classical 10-fold cross-validation, which is

termed outer cross-validation [5].The whole data set was divided

into 10 equal parts with equal proportions of half-sib families,

representing the outer test sets (cf. Figure 1). To create a

corresponding outer training set for a test set, the remaining outer

test sets were merged. In detail, to create training set No. 1 for test

set No. 1, the following test sets were combined: test set No. 2

SNPs and Metabolite Profiles for Prediction
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(Part2) to test set No. 10 (Part10). This was realized for each test

set and thus each cow appeared exactly once in each outer test set.

This 10-fold cross-validation is used only for the final prediction of

genetic values (cf. Section ‘‘Analysis design’’).

To enable optimization of subsets, i.e., metabolites or SNP

subsets (cf. ection Analysis design), a further inner 10-fold cross-

validation is necessary. The inner 10-fold cross-validation was

obtained by dividing each outer training set into 10 equal parts

representing the inner test sets, and the corresponding inner

training sets were assembled as explained above for the outer

training sets.

The invariability of the design and the use of the same seeds for

the random number generator in the analysis ensures the

comparability of the different approaches.

Analysis design
The following three-step analysis design was performed to

investigate associations between three levels of data: SNP

genotypes, standardized metabolites and milk traits.

Step 1 - inner 10-fold cross-validation. The following

statistical model [6] was fitted to metabolites and milk traits (y):

yijkl~ahi|stpjzgldkzb1|ltpzb2|ltp2zselzeijkl ,

with

farm ahð Þ i ~ 1,:::,18,

test day stpð Þ j ~ 1,:::,39,

GC - MS batch gldð Þ k ~ 1,:::,47,

day of lactation ltpð Þ ltp [ f21,:::,120g,
sire effect seð Þ l ~ 1,:::,214:

The interaction ah|stp (63 levels) of farm and test day, GC-MS

batch, and linear and quadratic regression on day of lactation with

regression coefficients b1 and b2 were considered fixed effects. The

sire effect sel*N(0,s2
v ) and the residual effect ei,j,k,l*N(0,s2

e) were

considered as random. Sire effect accounts for the half-sib structure,

and sires were assumed to be unrelated. Based on the pedigree

data received from the computing center (vit Verden, Germany),

cows were assigned to 192 sires, but 22 animals had unknown sires

treated as if offspring from independent sires. Note that in the case

of milk traits, the factor GC-MS batch was excluded from the linear

model.

The standardized residuals of metabolites and milk traits were

used for the regression of milk traits on metabolite profiles with

random forest (RF, [28]; R package randomForest [29]) and

partial least squares (PLS, [30]; R package mixOmics [31]). Both

regression methods enable variable selection, which allows the

Figure 1. Scheme of the invariable double 10-fold cross-validation (CV) design. To obtain the outer 10-fold CV, which represents a classical
CV [5], the whole data set is first divided into ten equal parts considering the half-sib structure, which results in the 10 outer test sets. The outer
training set for each test set is created by merging the remaining nine test sets. The outer cross-validation is only used for the genetic value
prediction. To enable optimization, i.e., in our case to find optimal milk metabolites for a milk trait, an inner CV is necessary. The inner 10-fold CV is
created based on the 10 outer training sets, where each outer training set is again divided in 10 equal parts.)
doi:10.1371/journal.pone.0070256.g001
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extraction of the importance of each metabolite for the prediction

of the investigated milk traits. For this purpose, the mean decrease

in accuracy for RF and the vip function measure [31] for PLS

were used. A metabolite was defined as important for a specific

milk trait if its measure of importance was larger than the 90%
quantile of all metabolite importances in each inner cross-

validation run and for each regression method. In this step, the

prediction precision (r) was defined as the correlation between

estimated and observed milk trait values. Analyses were imple-

mented in R [22].

Step 2 - outer training set. The impact of each SNP on

either important metabolites or milk traits was estimated. An SVS

method similar to Ishwaran & Rao [32,33] was applied, including

the estimation of the systematic effects as in the linear model and

additive genetic effects covered by SNPs. SVS was run using Gibbs

sampling with the following settings: 100,000 iterations were used,

the first 40,000 of which were disregarded as burn-in phase. Three

chains were produced for each trait, and the mean values of

estimated genetic effects were determined. These mean values

were used in combination with the proportion of non-zero genetic

effects to determine significant genetic effects, representing the

important SNPs, using an empirical selection method (as described

in [33]). SVS was implemented in Fortran. The different

important SNPs observed for each of the important metabolites

for a milk trait were combined and termed metabolite SNPs. The set

of important SNPs for an investigated milk trait directly found by

SVS was termed reduced SNPs.

After this step was completed, the important SNPs were rated

related to the known QTL. For this, we used the over-

representation analysis which is a type of enrichment analysis

[34]. The aim of this analysis is to determine if a list of genes,

representing the gene set, is over-represented (more genes than

expected by chance) with regard to another gene list, representing

the target set. A specific reference set is applied to quantify how

likely the over-representation is, which is calculated following the

hypergeometric distribution [35]. In our case, the entirety of SNPs

represent the reference set. The target set corresponds to the

QTL-SNPs, and we investigated its enrichment with regard to the

SNP subsets detected in the metabolite approach and the reduced

classical approach. The analysis was performed in R, using the

function phyper to calculate the P-values based on the hypergeo-

metric distribution, the significance level a was set to 0.05.

Step 3 - outer 10-fold cross-validation. Different SNP

subsets were used to estimate genetic effects on milk traits using

SVS (same settings as in Step 2): (a) metabolite SNPs, (b) reduced

SNPs, (c) all SNPs, (d) QTL-SNPs. Here, mean values of estimated

genetic effects in the outer training set were used to predict the

genetic values in the outer test set. In this step, the prediction

precision (r) was defined as the correlation between the predicted

genetic values and the observed characteristics of a milk trait.

Finally, the observed prediction precisions of the different

approaches were rated. The observed prediction precision for the

reduced classical approach and the metabolite approach were

assessed regarding the obtained average SNP subset. For the

rating, a Wilcoxon signed-rank test for paired samples was applied

to determine if the observed prediction precisions differed

significantly among the various investigated SNP subsets for

SVS (a was set to 0.05). This analysis was realized in R.

To evaluate the reduced classical approach and the metabolite

approach, it was tested if SNP subsets determined for a milk trait

were superior to random subsets. To quantify the significance of

the observed prediction ability for the original design, we applied a

resampling approach for which SNP subsets were chosen

randomly for each investigated milk trait. For each of the 10

outer cross-validation runs 100 SNP subsets were drawn at

random corresponding to the observed quantity of SNPs in the

respective approach and Step 3 was processed. Thus, the

evaluation was based on resamplings, resulting in an empirical

distribution of prediction precisions (rR). It was counted how often

a rR value was larger or equal than the observed prediction

precision (r). The significance level a was set to 0.05.

This step was also used to investigate the prediction ability using

all SNPs or only SNPs selected by SVS (from Step 2) for each

important milk metabolite. Finally, the prediction precisions of the

two different SNP subsets were rated using the Wilcoxon signed-

rank test for paired samples (see above).

Results

Predicting milk traits from metabolite profiles
Two regression methods (RF and PLS) were applied to

determine important metabolites for the investigated milk traits.

The observed mean prediction precisions were similar for both

methods, e.g., rRF = 0.63 and rPLS = 0.64 for protein. Protein

showed the highest mean prediction precision, whereas mean

prediction precisions for fat and pH value were about 0.35 for

both regression methods. The important metabolites and their

occurrence counts over the 10 inner cross-validation sets are listed

in Table 1. In this table, the Pearson correlation coefficients

between important milk metabolites and milk traits are listed

(adapted from [6]). It is obvious that mostly milk metabolites have

an impact as they show a strong correlation to the investigated

milk trait. An exception represents threonic acid detected by pH

value which has not a direct biological association with the milk

trait, but in multivariate analysis it has strong correlation to other

revealed milk metabolites related to the investigated milk trait (cf.

Figure S1). In Figure S1 the correlations within important milk

traits for each investigated milk trait are presented.

For fat content 11 different metabolites were found to be

important, e.g., 1–3-dihydroxyaceton, aspartic acid and galactitol,

six of which were found in each inner cross-validation run. In

total, 10 different important metabolites were found for pH value,

of which only glycerol-2-phosphate and glycine were found to be

in each inner cross-validation run. For protein, 16 metabolites,

e.g., alanine, asparagine and pyroglutamic acid, were detected as

important, and 11 of them were observed in all inner cross-

validation runs. Arabitol, aspartic acid and pyroglutamic acid were

important for both fat and protein and they were observed in all

inner cross-validation runs.

Determining important SNPs via SVS
The average number of SNPs selected by SVS for each

important milk metabolite is listed in Table 1. For the metabolite

approach (the reduced classical approach) the average number of

SNPs selected by SVS is: 129 (30) SNPs for fat content, 302 (88)

SNPs for protein content and 114 (80) SNPs for pH value. In

general, the average number of important SNPs was larger for the

metabolite approach than for the classical approach, at least

42.5% more SNPs were detected. The set of QTL-SNPs

(peakQTL-SNPs) contains 3,034 SNPs (57 SNPs) for fat content

and 3,593 SNPs (69 SNPs) for protein content. For the QTL

approach, at least 12 times as many SNPs were declared important

as in the reduced classical approach or metabolite approach. In

contrast, in the peakQTL approach the number of SNPs is similar

to the reduced classical approach and the metabolite approach.

Finally in most cases, the average number of important SNPs was

clearly smaller for important metabolites compared to milk traits,

for the reduced classical approach (cf. Table 1).

SNPs and Metabolite Profiles for Prediction
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In addition, we observed that the DGAT1-SNP was detected for

all three investigated milk traits. Hence, it was evaluated how often

the DGAT1-SNP was detected over all inner cross-validation sets

for important metabolites. The DGAT1-SNP was identified for

the following metabolites in all : arabitol, aspartic acid, and

pyroglutamic acid, for fat and protein. Additionally, the DGAT1-

SNP had an impact on 2-amino-butanoic acid and asparagine

when studying protein. For pH value, the DGAT1-SNP was

identified nine times based on the metabolite glycine.

Table 1. Information about the important metabolites detected within inner 10-fold cross-validation (CV) runs.

Milk trait metabolite ĥh2 P Counts in 10-CV No. of SNPs rall rsubset P-value

Fat content 1,3-Dihydroxyaceton 0.09 0.19 10 5.30 0.06 0.03 0.38

Arabitol 0.21 0.19 10 16.90 0.14 0.11 0.23

Aspartic acid 0.17 20.13 10 29.00 0.14 0.06 0.03*

Butanoic acid, 4-amino- 0.18 20.09 1 4.00 0.13 20.04 n.a.

Galactitol 0.00 20.14 10 18.10 20.01 20.08 0.06

Glucaric acid-1,4-lactone 0.05 20.12 10 7.40 0.05 20.05 0.03*

Muramic acid, N-acetyl- 0.04 0.12 1 6.00 20.03 20.02 n.a.

myo-Inositol-1-phosphate 0.18 0.13 8 6.88 0.12 0.03 0.01*

Pyroglutamic acid 0.15 20.12 10 41.50 0.15 0.06 0.01*

Pyruvic acid 0.08 0.11 4 10.75 0.05 20.02 0.25

Sedoheptulose, 2,7-anhydro-, beta 0.00 20.10 1 4.00 20.02 0.03 n.a.

pH value Alanine, beta- 0.22 20.18 8 10.00 0.14 0.09 0.08

Arabitol 0.21 0.11 3 18.00 0.17 0.11 0.25

Glutaric acid, 2-hydroxy- 0.48 0.11 4 33.25 0.38 0.32 0.12

Glycerol-2-phosphate 0.11 20.15 10 25.60 0.14 0.14 1

Glycerol-3-phosphate 0.18 20.13 7 53.57 0.22 0.19 0.58

Glycine 0.21 20.18 10 20.60 0.15 0.08 0.03*

Phenylalanine 0.03 20.13 1 8.00 20.02 0.13 n.a.

Threonic acid 0.11 0.00 1 4.00 20.01 0.04 n.a.

Tryptophan 0.05 20.11 1 10.00 0.14 0.08 n.a.

Tyrosine 0.01 20.13 1 15.00 0.14 0.17 n.a.

Protein content 2-Piperidinecarboxylic acid 0.37 20.21 10 23.50 0.17 0.09 0.03*

Adipic acid, 2-amino- 0.19 20.28 10 24.60 0.16 0.06 0.00*

Alanine 0.16 20.13 3 9.00 0.05 0.04 1

Arabitol 0.21 0.34 10 16.30 0.14 0.09 0.08

Asparagine 0.06 20.23 10 12.30 0.12 0.02 0.01*

Aspartic acid 0.17 20.22 10 28.40 0.14 0.05 0.01*

Butanoic acid, 2-amino- 0.27 20.24 10 29.10 0.14 0.07 0.05*

Cinnamic acid, 3,4,5-trimethoxy-,
trans-

0.02 0.30 10 4.90 0.06 0.04 0.56

Glyceric acid-3-phosphate 0.09 0.23 4 23.50 0.10 0.08 0.88

Glycerol-2-phosphate 0.11 0.19 1 29.00 0.06 0.13 n.a.

Glycerol-3-phosphate 0.18 0.30 10 55.10 0.22 0.17 0.11

myo-Inositol-1-phosphate 0.18 0.27 10 6.50 0.12 0.07 0.19

Phosphoenolpyruvic acid 0.41 0.25 7 36.29 0.22 0.17 0.11

Pyroglutamic acid 0.15 20.18 10 41.80 0.15 0.10 0.03*

Spermidine 0.02 0.28 10 11.20 0.07 0.02 0.28

Thiazole, 4-methyl-5-hydroxyethyl- 0.20 0.21 7 11.43 0.05 0.04 0.69

The table presents the number of occurrences in 10 CV runs (Counts in 10-CV) as well as the average number of selected SNPs (No. of SNPs) over the corresponding CV
runs for each important metabolite. In addition, results of the genetic value prediction using all SNPs (rall ) and selected SNPs (rsubset) for each metabolite are presented,
using the outer 10-fold cross-validation runs. Moreover the P-values (P-value) obtained from the Wilcoxon signed rank test are listed. The test was applied when a milk

metabolite was detected in more than two inner cross-validation runs (i.e., Counts in 10-CVw2). Additionally, the estimated narrow-sense heritabilities (ĥh2) as well as the
Pearson correlation coefficients (P; adapted from [6]) obtained between each milk trait and important milk metabolite are presented. For the latter the whole data set
was used.
*- significant difference (a~0:05).
doi:10.1371/journal.pone.0070256.t001

SNPs and Metabolite Profiles for Prediction
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Enrichment analysis of important SNP subsets with
respect to known QTL

For fat content and protein content, it was investigated if sets of

metabolite SNPs or reduced SNPs were enriched in the set of

QTL-SNPs for all 10 cross-validation sets. In Table 2, the

observed P-values as well as the number of expected and observed

important SNPs located in QTL-SNPs are listed. For both

investigated milk traits, the observed P-values were not significant

on the significance level a = 0.05, except in one case for the

reduced classical approach (i.e., in the range of ½0:048; 0:930� for

fat). For the metabolite approach, however, the observed P-values

were small and in almost all cases significant (e.g., in a range of

½0:001; 0:032� for fat). The important SNP positions for each milk

trait which were detected in more than seven cross-validation runs

with the metabolite approach are listed in Table S2. Also, it is

marked if a SNP position lies in a known QTL. The SNP positions

were specified, and aside from important SNPs in known QTL,

further SNP positions were often detected, indicating their

importance for the investigated milk trait.

Predicting traits using different SNP subsets
For all investigated milk traits, boxplots of the observed

prediction precisions for each SNP subset approach are presented

in Figure 2. A significant difference between two approaches

regarding the observed prediction precisions is marked with a

black dashed line (r = 0.05); the corresponding observed P-value is

also given. For fat content (Figure 2A), the reduced classical

approach (r = 0.221) was surpassed by the following three

approaches the classical approach (r = 0.299), the metabolite

approach (r = 0.290) and the QTL approach (r = 0.293 for QTL-

SNPs). Between these approaches no significant difference was

observed. In addition, no significant difference was observed

between these and the peakQTL approach (r = 0.254). Also no

significant difference was observed between the reduced classical

approach and peakQTL approach. Further, the highest single

prediction precision of _ = 0.450 was observed for the metabolite

approach, whereas for the classical approach the highest

prediction precision was 0.377 and r = 0.430 for the QTL

approach. In case of fat content, the most relevant approaches

are the classical approach, the metabolite approach and the QTL

approach, whereby compared to the classical approach and the

QTL approach, less than 1% of the total amount of (40,317) SNPs

were used for the prediction via the metabolite approach.

For protein content (Figure 2B), the classical approach

(r = 0.237) outperformed the following three approaches: reduced

classical approach, metabolite approach and QTL approach in

terms of prediction precision. The peakQTL approach shows the

highest mean prediction precision (r = 0.259), signi_cantly out-

performing the metabolite approach. The highest single prediction

precision of r = 0.376 was observed for the peakQTL approach.

Moreover, no significant difference between the reduced classical

approach (r = 0.147) and the metabolite approach (r = 0.126) or

QTL approach (r = 0.188) was observed. For pH value

(Figure 2C), the observed P-value for the comparison of the

classical approach and the metabolite approach is 0.049 which is

close to the bound of r = 0.05, whereas between the classical

approach and the reduced classical approach a clearly significant

difference was observed (P-value = 0.002). To validate that mean

prediction precisions observed for metabolite SNP subsets and

reduced SNP subsets were significantly different compared to

those of random subsets, we implemented a resampling analysis.

For fat content, a significant difference regarding prediction

precision was observed for both approaches, whereas no

significant difference occurred for protein content. For pH value,

the observed resampling P-value was 0.051 for the metabolite

approach and 0.055 for the reduced classical approach.

Additionally, the prediction ability of important milk metabo-

lites was investigated using all SNPs and selected SNPs by SVS.

The corresponding mean prediction precisions as well as the

estimated h2 are listed in Table 1. The estimated h2 lie in a range

of [0; 21] for fat content, [0:01; 0:48] for pH-value and [0:02;

0:41] for protein content. Most of the important milk metabolites

(30 in total) have a small estimated h2 (23 in total), whereas only

few have medium or high heritability. The observed prediction

precisions for both SNP-subset (all SNPs and selected SNPs) were

also rated. Rating was realized if the important metabolite was

detected more than two times for the 10 cross-validations

performed (22 milk metabolites in total). In 64% of all cases no

significant difference between all SNPs and selected SNPs was

observed. In general the mean prediction precisions were mostly

similar although the estimated h2 were different.

Discussion

The aim of this study was to investigate the usefulness of

metabolite profiles as additional information. For this purpose,

three traditional milk traits were investigated. To predict these

milk traits, a stochastic variable selection method was applied to

different approaches resulting in various SNP subsets. The

Table 2. P-values resulting from rating the important SNPs
for the reduced classical approach and the metabolite
approach for each outer training set using an over-
representation analysis.

Reduced classical approach Metabolite approach

Trait P-value Expected Observed P-value Expected Observed

Fat
content

0.737 2.56 2 0.010* 7.75 15

0.588 3.01 3 0.001* 7.30 17

0.930 2.56 1 0.032* 8.13 14

0.048* 2.03 5 0.001* 9.26 20

0.897 2.18 1 0.005* 7.90 16

0.395 2.26 3 0.003* 9.56 19

0.904 2.26 1 0.006* 9.48 18

0.395 2.26 3 0.014* 6.62 13

0.613 2.03 2 0.008* 8.28 16

0.807 1.58 1 0.001* 6.77 16

Protein
content

0.270 7.04 9 0.002* 20.76 35

0.400 8.91 10 0.073 20.14 27

0.488 8.56 9 0.017* 23.35 34

0.921 6.86 4 0.011* 24.24 36

0.815 7.93 6 0.025* 18.98 28

0.717 7.04 6 0.004* 27.36 42

0.690 7.93 7 0.069 28.79 37

0.268 7.93 10 0.025* 23.97 34

0.307 7.31 9 0.013* 20.41 31

0.688 9.00 8 0.050* 18.54 26

The values of ‘‘Expected’’ and ‘‘Observed’’ correspond to the number of
expected and observed important SNPs located in the belonging QTL.
*significance level a = 0.05.
doi:10.1371/journal.pone.0070256.t002

SNPs and Metabolite Profiles for Prediction

PLOS ONE | www.plosone.org 6 August 2013 | Volume 8 | Issue 8 | e70256



metabolite approach, representing our new proposed strategy, was

realized by including information about metabolite profiles to

select informative SNP subsets for the genotype to phenotype

prediction step.

We could show that the observed mean precision of genetic

value prediction using important SNPs of the metabolite approach

was mainly more similar to the classical approach than to the

reduced classical approach. Hence, our metabolite approach

performed similarly but worked with a much smaller SNP subset

compared to the classical approach. Further, significantly more

important SNPs in known QTL regions were detected using the

metabolite approach compared to the reduced classical approach.

In the following we discuss our findings with emphasis on

consequences and importance for future applications.

Relevance of results
Milk trait prediction from milk metabolite profiles. In

Step 1 of the ‘‘Analysis design’’, where milk metabolites are used to

predict milk traits to enable the detection of milk metabolites

which are important for the investigated milk trait. For this step all

190 milk metabolites were used, which represents about 10% of

the expected metabolites in cow’s milk [36]. These milk

metabolites were measured via GC-MS and thus cover predom-

inantly short-chain water-soluble metabolites of the energy

metabolism [6]. Moreover, milk metabolites mirror only a partial

picture of the metabolic pathways and metabolites important for

milk trait, since many of the latter are not contained in milk. In

this context, ‘‘another aspect to be considered is that many of the

measured milk metabolites are used for synthesis of milk

components by the alveolar epithelial cells or are involved in

intracellular metabolism, which leads to the questions of why they

are measured in milk’’ [6].

In general, the recorded experimental measurements for milk

metabolites and milk traits of the Holstein cows represent a

snapshot of the current metabolic state and lactation stage,

including the energy status which is known to change over the

lactation stage. In our data, more important milk metabolites were

detected for protein content than for fat content and pH value (cf.

Table 1). Also the mean prediction precision over the inner 10

cross-validation runs were clearly higher for protein content

compared to the other both milk traits. This leads to the

assumption that the measured part of the milk metabolome

includes more relevant metabolites for protein content. The

detected milk metabolites can be seen as possible biomarker

candidates, although no multiple measurements of milk traits as

well as milk metabolites were available [6]. In Melzer et al. [6]

these measurements were intensively studied and some of the

important milk metabolites could be assigned a possible role with

respect to the investigated milk trait. As an example, spermidine

was detected as important for protein content. It is known that this

metabolite is involved in the production of protein [37–39]. In

Melzer et al. [6] it was also mentioned that their physiological role

is necessary to further investigations as well as to study the degree

of change of the milk metabolites over the course of lactation stage.

In this context it would be advantageous to investigate also

correlation structure of metabolite profiles to find possible relations

or functional grouping structures. Hence, such structures could be

used related to a priori functional knowledge like for example

metabolite pathways. Such knowlegde could help to understand

the functional basis of biosignature candidates as well as to

improve learning algorithms which are able to use a priori

information (e.g., [40]). Finally, the important milk metabolites

which were revealed should be validated with another data set.
Comparison between the reduced classical approach and

metabolite approach. The presented metabolite approach

allows for the selection of important SNPs regarding an

investigated milk trait, and it represents a new strategy compared

to proposed SNP subset selection strategies found in the recent

literature, e.g., Habier et al. [11] and Moser et al. [13]. The

metabolite approach enables investigations in two different

directions. On the one hand, using metabolite profiles to predict

milk traits enables detecting important metabolites for an

investigated milk trait. On the other hand, being the focus of the

current study, the important metabolites were used to determine

associated SNPs (Step 2 ‘‘Analysis design’’) which were involved in

milk trait prediction (Step 3 ‘‘Analysis design’’). Both steps were

also performed for the reduced classical approach. Our findings

Figure 2. Boxplots of the observed precision of genetic value prediction over the 10 outer cross-validation runs for the classical
approach (all), reduced classical approach (red), metabolite approach (met), QTL approach (QTL) and peakQTL-approach (pQTL).
The following milk traits were investigated: fat content (A), protein content (B) and pH value (C). If two approaches differ significantly (a = 0.05), this is
marked with a black dashed line and the observed P-value is given. The gray line represents a possible upper bound for the accuracy of prediction
given as the square root of the estimated narrow-sense heritability based on a sire model.
doi:10.1371/journal.pone.0070256.g002
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regarding both approaches are discussed in more detail in the

following, especially in order to find evidence that SNPs detected

by the metabolite approach are important for the investigated milk

traits, and to show that the SNP subsets, e.g., detected for fat

content, can have a clear advantage for milk trait prediction

compared to the reduced classical approach:

N Importance of selected SNPs by SVS for investigated milk

trait: Significantly more SNPs located in known QTL were

detected using the metabolite approach compared to the

reduced classical approach (Table 2) for fat content and

protein content, which was surprising. This finding comes with

the restriction that not all QTL for a trait are known. A

possible reason could be that for the reduced classical

approach, despite a possibly large number of important SNPs,

some of the genetic effects of SNPs are overlaid and may

cancel out (as discussed in [41]), if the complex milk trait itself

is investigated. It is imaginable that important SNPs for single

milk metabolites show stronger genetic effect sizes. To enable a

clear statement, further investigations are necessary regarding

testing each or groups of SNPs detected for an important

metabolite as well as groups of important metabolites for their

relevance for the milk trait.

N A SNP with an important impact on a milk trait may also have

an impact on at least one metabolite: The DGAT1-SNP had

an impact on at least one metabolite important for protein and

fat. The DGAT1-SNP was also detected using the reduced

classical approach for both milk traits. The DGAT1-SNP

coincided with the SNP position with the largest importance

found by Cole et al. [42] or Weller et al. [14]. For pH value, the

DGAT1-SNP was observed 10 times via the reduced classical

approach, and nine times for the metabolite glycine via the

metabolite approach (Table 1). In general, it is not surprising

that this SNP position was not detected in all cases, due to the

smaller number of the important metabolites for this milk trait.

This observation supports our expectation that a SNP with a

significant genetic effect on a milk trait also shows a significant

effect on at least one of the important metabolites.

To which extent it hold true for other significant detected SNPs

is not clear. Since known genome loci with an high impact on a

milk trait are rare. To our knowledge only the two QTNs DGAT1

and ABCG2 are known [14]. In our case, before this study it was

not known that the DGAT1-SNP will also be detected for milk

metabolites which are associated with the investigated milk trait.

This could be seen as a first indication that SNPs detected for milk

metabolites could be also important for the investigated milk trait.

N Important SNP subsets in respect to milk trait prediction: For

fat content, the mean prediction precision was significantly

higher for the metabolite approach (r = 0.290) than for the

reduced classical approach (r = 0.221). In this case, no

significant difference was observed between the classical

approach and the metabolite approach. For pH value, the

difference regarding the observed prediction precisions

between the classical approach and the metabolite approach

was very small. In this context, it is expected that no significant

difference will be observed, if e.g., a more suitable part of the

metabolome is measured for pH value. For protein content it

seems difficult to find a suitable SNP subset to obtain an

appropriate prediction precision without a priori information

(see below). The reason for this result might be the genetic

architecture of this milk trait, since protein content probably

depends on many QTL with small genetic effect sizes, which

makes it hard to detect the relevant SNPs for this trait. This

assumption is supported by the finding of the resampling

analysis, which yielded no significant difference between the

reduced classical approach and the metabolite approach with

regard to prediction precision. In this case, we assume that

milk metabolites have a similar complex underlying genetic

architecture as milk traits. Another explanation for the bad

results of the metabolite approach in the case of protein

content could be that we did not measure the relevant milk

metabolites for this trait.

In general, the resampling analysis also con_rms indirectly that

the detected important SNP subsets for the metabolite approach

and the reduced classical approach are important for fat content

and pH value. Findings for fat content and pH value indicate that

the SNP subsets selected by the metabolite approach are more

suitable for prediction of the investigated milk traits than using the

reduced classical approach. As mentioned above the metabolite

approach detected a significant number of important SNPs located

in known QTL, showing the relevance of most of the important

SNPs for investigated milk traits. This suggests that the other

important SNPs could be relevant or are possibly located in

unknown QTL for the investigated milk traits. To enable a clear

statement further investigations are necessary. Important SNPs

observed with the metabolite approach in at least eight cross-

validation runs are listed in Table S2.

N Finally, it is expected that more than 2,000 metabolites exist in

cow’s milk (as mentioned above). In our case, we analyzed

about 10% of them, originating primarily from the central

carbon and energy metabolism. We suppose that the

prediction precision will increase if more relevant metabolites

are measured for the investigated milk trait, which will become

possible in the near future as GC-MS databases increase.

Using SNP subsets based on a priori information in

respect to their role for the investigated milk trait. For

protein and fat, the prediction precisions obtained via the QTL

approach are also presented in Figure 2. In general, the QTL

approach has two disadvantages:

N First, not all QTL for a trait are known.

N Second, most of the QTL regions comprise a long segment of

the corresponding chromosome (Table S1). Some of the

selected SNPs in these regions are not necessarily important for

the investigated milk trait, because most QTL regions have a

QTL peak location, which is the position with the highest or

lowest value depending on the used test statistic.

Hence, it was further investigated if a higher prediction

precision is observed if only the peak locus is considered instead

of the whole QTL region. The results show that similar prediction

precisions were obtained with the peakQTL approach compared

to the QTL approach. Moreover, we observed that peakQTL

approach showing larger prediction precision than the QTL

approach in case of protein content. A significant difference

between the classical and the QTL approach was observed, but

not between the classical approach and peakQTL approach.

Further, the resampling results obtained for the reduced classical

approach (88 SNPs instead of 69 SNPs peakQTL approach) show

that the observed prediction precision is significant. The same

holds true for fat content. In this context, it is to recommended to

use SNPs which are close to peaks of QTL instead of the QTL

approach, but it is not clear to which extent possible additional

SNPs are included in these QTL regions which have also a

relevance for the investigated milk trait. Hence, further investiga-
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tions are necessary and such investigations could be also relevant

to improve variable selection methods such as SVS.

Benefits and constraints of methods
In general, as mentioned above, it would be desirable to have

multiple measurements from milk metabolites and milk traits.

To determine important metabolites for an investigated milk

trait the regression methods and were applied. Both methods were

selected based on a preliminary study in which the same settings

were used and reliable results were obtained [6].

The important SNP subsets for the metabolite approach and the

reduced classical approach were analyzed in various tests to

determine their importance for the investigated milk trait more

precisely. For this, other data in the form of known QTL were

used to enable the confirmation of some of the important SNPs. A

resampling approach was realized to quantify the significance of

the observed prediction ability for the metabolite approach as well

as for the reduced classical approach.

In the recent literature (e.g., [23,24]), it is often mentioned, that

traits with a low heritability require a larger sample size than traits

with moderate or high heritability to obtain an acceptable

prediction precision. This implies that more false-positive SNPs

would be found for traits with low heritability if the sample size is

too small., to test if an appropriate prediction precision can be

obtained for each metabolite using the resampling approach as

above. On the one hand, this would allow for a deeper insight into

the genetic architecture of a metabolite. On the other hand, such

information could be used to improve our approach. Our findings

show that, even if the heritability of the metabolite was not taken

into account, an appropriate mean prediction precision was for fat

(e.g., r = 0.29 and rR95% = 0.23 for the metabolite approach) but

not for protein (e.g., r = 0.13 and rR95% = 0.21 for the metabolite

approach).

In this study, each analysis step was evaluated separately, and

based on the observed result the next step was realized. We

suppose, that an embedded approach, optimizing our three step

approach in a common cross-validation design could be superior.

Also, conceivable alternatives would be to use other data from the

metabolome or genome level to optimize filter criteria or to use

such information for weighting SNPs.

In addition, in this study the pedigree information was neglected

based on following reasons:

N The prediction of genetic values was realized without

considering the pedigree information, since marker data and

phenotypes are adequate and sufficient for the genetic value

prediction [43].

N To estimate the heritabilities is most common to use an animal

model [24], since the animal model is more accurate in some

cases than the sire model. The advantage of the sire model is

that it needs clearly less equations [44], i.e., the covariance

matrix does not need to be created, and thus can be estimated

without much effort. In addition, the narrow-sense heritability

of milk traits was also estimated based on an animal model by

Dr. D. Wittenburg, including the pedigree information. The

estimated heritabilities of the animal model as well as of the

sire model were similar (results not shown).

N In our case, the sire model was suitable, since heritability was

mainly estimated to obtain an upper bound for the prediction

precision of the genetic value for the investigated trait. Also it

enables a better correction for the fixed effects for the

investigations of relationships between milk metabolites and

milk traits.

In this context, it should be investigated if the prediction of milk

traits from metabolite profiles can be improved if additionally the

pedigree information are considered.

Finally, it is recommended to evaluate our approach for the

inclusion of non-additive effects. For example, Lee et al. [45] and

Toro & Varona [46] have shown that using an additive-

dominance model results in a larger prediction precision.

Conclusions

In our study, we demonstrated the usefulness of considering

metabolite profiles for the genetic value prediction realized in a

three step approach based on different SNP subsets. Our results

show that using the metabolite approach led to a prediction

precision similar to that of the classical approach, but required less

than 1% of the total amount of (40,317) SNPs. In most cases, the

approach performed better than the reduced classical approach.

Our approach allows for a deeper insight into the associations

between the different levels of the genotype-phenotype map

(genotype-metabolome-phenotype) and to analyze the reported

important and their associated SNPs regarding their role for the

investigated milk trait. It was possible to prove the importance of

some of the observed important SNPs via the metabolite approach

using known QTL positions. The here presented investigations

come with the restriction that for all used measurements, i.e., milk

metabolites and milk traits, only a single measurement was

available.

The success of our approach depends, among other things, on

the underlying genetic architecture of the investigated milk trait,

and presumably on the measured part of the milk metabolome.

Supporting Information

Figure S1 Correlations between important milk metab-
olites for all investigated milk traits. The correlation values

were adapted from [6].

(PDF)

Table S1 Known QTL regions or QTL peaks, which
were filtered from the cattleQTL database [25]. The

following criteria were applied: trait name equal to milk fat

percentage and milk protein percentage, analysis type equal to

QTL, breed equal to Holstein, and chromosome number and both

flanking markers or peak markers had to be available. Based on

the marker names it was possible to locate the marker in the

physical unit base pair (bp) using the annotation Btau4.2 of the

bovine genome from the National Center for Biotechnology

Information (NCBI; [26]). Also, the known QTN DGAT1 [15]

was considered QTL for both milk traits. The SNP marker ARS-

BFGL-NGS-4939 was located directly in the DGAT1 region and

was used in the analysis.

(TEX)

Table S2 Important SNP markers, occurring in more
than seven cross-validation (CV) runs, for each milk
trait obtained via the metabolite approach. For this

analysis, the 10 training sets from the outer cross-validation was

used.

(PDF)

Acknowledgments

The authors thank the participating farm owners and cooperation partners.
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