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Abstract

Parkinson’s disease (PD) is a complex multifactorial ailment predetermined by the interplay of various environmental and
genetic factors. Systemic and intracellular magnesium (Mg) deficiency has long been suspected to contribute to the
development and progress of PD and other neurodegenerative diseases. However, the molecular background is unknown.
Interestingly, gene SLC41A1 located in the novel PD locus PARK16 has recently been identified as being a Na+/Mg2+

exchanger (NME, Mg2+ efflux system), a key component of cellular magnesium homeostasis. Here, we demonstrate that the
substitution p.A350V potentially associated with PD is a gain-of-function mutation that enhances a core function of
SLC41A1, namely Na+-dependent Mg2+ efflux by 69610% under our experimental conditions (10-minute incubation in high-
Na+ (145 mM) and completely Mg2+-free medium). The increased efflux capacity is accompanied by an insensitivity of
mutant NME to cAMP stimulation suggesting disturbed hormonal regulation and leads to a reduced proliferation rate in
p.A350V compared with wt cells. We hypothesize that enhanced Mg2+-efflux conducted by SLC41A1 variant p.A350V might
result, in the long-term, in chronic intracellular Mg2+-deficiency, a condition that is found in various brain regions of PD
patients and that exacerbates processes triggering neuronal damage.
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Introduction

The crucial role of magnesium (Mg) in normal cellular

physiology has been described in many reports. Thus, unsurpris-

ingly, Mg2+ deficiency and/or changed intracellular Mg homeo-

stasis (IMH) has been associated with a multitude of serious

ailments among them neurodegenerative, neurological, and

psychiatric disorders such as Alzheimer’s disease (AD) [1], stroke

[2], aggressive behavior [3], increased stress sensitivity [4], and

hyperactivity [5]. In particular, several studies have suggested an

association between a disturbed IMH and the incidence of

Parkinsoǹs disease (PD) [6,7,8], a chronic, progressive, neurode-

generative disorder of the motor system mainly characterized by

the degeneration of neurons in the substantia nigra pars compacta and

the formation of Lewy bodies [9,10]. PD is estimated to affect

,1% of people over 60 years of age or ,0.3% of the entire

population in industrialized countries [11,12]. Oyanagi and

colleagues [13,14] have shown that continuous low Mg intake

for two generations induces exclusive loss of dopaminergic neurons

in rats. In agreement with previous data, the results of a study

conducted among the population of Guam [15] and of a more

recent case control study in Sweden [6] demonstrate that low Mg

intake is linked to an increased risk of idiopathic PD. By means of

phosphorus magnetic resonance spectroscopy (31P-MRS), Barbir-

oli and colleagues [16] have demonstrated a significantly increased

content of inorganic phosphate accompanied by a decreased

concentration of free cytosolic Mg2+ ([Mg2+]i) in the occipital lobes

of PD patients compared with healthy subjects. On the other

hand, Mg has been shown to decrease negative interactions

between environmental (herbicides) and molecular factors (a-

synuclein) that are known to be involved in PD pathophysiology

[17]. Moreover, Hashimoto and colleagues [18] have reported the

significant preventive effects of Mg against 1-methyl-4-phenylpyr-

idinium (MPP+) toxicity [19] to dopaminergic neurons.

Although these studies have demonstrated a beneficial effect of

sufficient Mg intake for PD prevention and/or the deceleration of

PD progression in patients, and despite an obvious link between

IMH and PD pathophysiology, the underlying mechanism(s) has

(have) remained elusive until now. However, the recent discovery

of SLC41A1 as a Na+/Mg2+ exchanger (NME; Mg2+-efflux
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system) [20] and its localization within the newly identified PD

locus PARK16 [21,22,23,24] makes this protein an interesting

candidate to explain the involvement of disturbed intracellular

Mg2+ homeostasis in PD pathophysiology.

Human SLC41A1 has been mapped to chromosome 1q31-32

and encodes a protein consisting of 513 amino acids having a

molecular mass of 56 kDa [25]. Its 5-kb transcript has been

detected in most of the tested tissues in humans and mice (notably

in heart, muscle, testis, thyroid gland, and kidney) [25,26].

SLC41A1 has been characterized as an integral protein that is

located in the cytoplasmic membrane [27] and that possesses 10

(strongly preferred computer-predicted model) or 11 transmem-

brane domains [28] with the N-terminus being oriented intracel-

lularly [27,28]. SLC41A1 has also been demonstrated to form

hetero-oligomeric complexes. However, the identities of its

binding partners and their relevance for the normal NME

function of SLC41A1 in vivo remain uncertain [27].

The evidence for NME being involved in PD etiology has

further been strengthened by the identification of PD-specific

SLC41A1 variants (c.436A.G resulting in p.K146E; c.1440A.G

resulting in p.P480P; and c.552+50G.A) in the Chinese

population [24] and of the variant of SLC41A1 carrying the

amino acid substitution p.A350V (c.1049C.T) in one PD patient

of Caucasian origin [23]. Noteworthy is also the fact that

SLC41A3, also a member of the SLC41 family, when knocked-

out in mice displayed abnormal locomotor coordination (www.

knockoutmouse.org; [29]).

Furthermore, the null mutation c.698G.T resulting in skipping

of exon 6 of SLC41A1 (an in-frame deletion of a transmembrane

helix) has been associated with a nephronophthisis-like phenotype

(NPHP), therefore, suggesting that the disturbed renal Mg2+

homeostasis may lead to tubular defects that result in a phenotype

similar to NPHP [30]. Also, SLC41A1 has been found to be over-

expressed in preeclamptic placental samples with an approxi-

mately five times higher frequency than in normoevolutive

placental samples [31].

In this study, we have mainly examined the effect of the

substitution p.A350V potentially related to PD on the perfor-

mance of the Na+/Mg2+ exchanger SLC41A1. Our findings show

that the substitution p.A350V in SLC41A1 is a gain-of-function

mutation leading to increased Mg2+ extrusion from the cell.

Materials and Methods

HEK293-derived cell lines/growth media and culture
conditions

Tetracycline-inducible HEK293-(HA-strep-SLC41A1) and

HEK293-(HA-strep-SLC41A1-p.A350V) were constructed in co-

operation with Dualsystems Biotech AG. Briefly, full-length

human wild-type (wt) and point-mutation-carrying SLC41A1

cDNA was cloned into pNTGSH vector (Dualsystems Biotech

AG) with an N-terminal HA-strep tag. Point mutation

c.1049C.T (p.A350V) was introduced by PCR-site-directed

mutagenesis [32]. Introduction of the mutation was confirmed

by bidirectional sequencing. The obtained pNTGSH-HA-strep-

SLC41A1 and pNTGSH-HA-strep-SLC41A1-c.1049C.T were sep-

arately electroporated into the Flp-InTM T-RExTM HEK293 cell

line (Invitrogen). Cells were placed under hygromycin selection;

hygromycin-resistant clones were screened for tet-inducible

expression of the wt or mutated (p.A350V) HA-strep-tagged

SLC41A1. Protein expression was induced by the addition of

tetracycline (1 mg.ml21) for 24 hours.

HEK293-(HA-strep-SLC41A1) and HEK293-(HA-strep-

SLC41A1-p.A350V) cells were cultured in Dulbecco’s modified

Eagle’s medium (PAN Biotech) containing 10% fetal bovine serum

(PAN Biotech), 4.5 g.l21 glucose (Sigma-Aldrich), 2 mM gluta-

mine (PAN Biotech), PenStrep (PAN Biotech), NormocinTM

(0.1 mg.ml21, Cayla), blasticidin (15 mg.ml21, Cayla), and hygro-

mycin (0.1 mg.ml21, Cayla).

The preparation (cloning protocol) and culture conditions of

tetracycline-inducible HEK293-(flag-SLC41A1) were as previous-

ly described [20,27].

Cell survival assay
HEK293 cells inducibly over-expressing wt or the p.A350V

variant were grown to approximately 80% confluency, rinsed

twice with PBS (PAN Biotech) and provided with fresh culture

medium. Cell viability was determined, with a TC10 automated

cell counter (BioRad), at 0 h and 24 h from the beginning of the

induction.

Quantitative real time PCR
To determine the transcription activity of both transgenic

variants of SLC41A1, namely wt and c.1049C.T, by the

quantitative real time PCR (q-RT-PCR) method in induced

(+tet) and non-induced (-tet) cells, we used the following primers:

hSLC41A1fw, 59-TTGGACGCTCGCCTTGCCTG-39 and

hSLC41A1rev, 59-TGGTGTGGAACACCTGCGCC-39. Expres-

sion activities of SLC41A2 and SLC41A3 were determined with

following primer pairs: hSLC41A2fw, 59-TGGTTATAAGTAG-

CATTGGGGGCCT-39 and hSLC41A2rev, 59-

TCCTGCTAGCCTGAATGGCCA -39; hSLC41A3fw, 59-CA-

CAAAGATAGTCGGTATCTGACG-39and hSLC41A3rev, 59-

GACCATGGCCAGGATGATT-39. Total RNA isolation, the

determination of its integrity, purity, and quantity, cDNA

synthesis, and q-RT-PCR were performed as described by Kolisek

and colleagues [20]. Data were evaluated with software applica-

tion FK-Wolf-01, developed by Katharina Wolf (FU Berlin).

Statistical evaluation was performed with data sets acquired from

three biological preparations for each condition loaded in

triplicate.

Protein detection in tet-inducible HEK293 cell lines
HEK293 cells, over-expressing flag- or HA-strep-tagged wt or

p.A350V, and the respective uninduced controls were lysed with

RIPA buffer for 30 min. Centrifugation was performed to pellet

unsolubilized material (14000 rpm, 30 min, 4uC). The total

protein concentration was determined with the Bradford protein

assay (Biorad). For the flag-tagged wt variant, samples containing

10 mg total protein and, for the HA-strep-tagged wild-type variant

and the p.A350V mutant, 30 mg total protein were run on a 10%

SDS-polyacrylamide gel and transferred to a polyvinylidene

difluoride (PVDF) membrane. Immunoblotting was performed in

TBS-TWEEN plus 2.5% dry milk with antibodies against the flag-

tag (HRP-conjugated anti-flag M2, Sigma-Aldrich) and the strep-

tag (Qiagen). Anti-mouse IgG linked to horseradish peroxidase

(HRP; Cell Signaling Technology) was used as the secondary

antibody for the anti-strep antibody. The antibody against RPL19

(Abnova), together with the anti-mouse secondary antibody stated

above, was used to detect the loading control. Proteins were

visualized by use of the SuperSignalTM West Dura system (Pierce).

Image J software (http://rsb.info.nih.gov/ij/) was used for the

densitometric analyses.

Membrane protein enrichment
The ProteoExtractTM native membrane protein extraction kit

(Calbiochem) was used to extract and enrich membrane proteins
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from HEK293 cell lines over-expressing wt or p.A350V according

to the manufacturer’s protocol. Proteins (25 mg) were separated on

a 10% SDS-polyacrylamide gel. Immunoblotting was performed

as previously described. The soluble protein RPL19 was used to

control the specificity of the separation between soluble and

membrane proteins.

Subcellular fractionation of proteins
For fractionation of proteins according to their subcellular

localization, we used the Qproteome cell compartment kit

(Qiagen). Wt or p.A350V cells were induced or left untreated.

Cells (46106) were processed according to the manufacturer’s

protocol. The obtained fractions (cytosolic, membrane, nuclear,

and cytoskeletal) were electroseparated on an 8.5% SDS-

polyacrylamide gel, and SLC41A1 variants were immuno-

detected as described previously. As a control for the specificity

of the fractionation, parallel blots were run and probed with

antibodies against RPL19 (cytosolic fraction), PMCA4 (membrane

fraction; Sigma-Aldrich), or Lamin A (nuclear fraction; Sigma-

Aldrich). Mouse secondary antibody conjugated to HRP (Cell

Signaling Technology) was used for RPL19 and PMCA4, and an

HRP-coupled rabbit antibody was used for Lamin A (Cell

Signaling Technology).

Determination of the phosphorylation status of wt and
p.A350V variant

The PhosphoProtein Purification Kit (Qiagen) was used

according to the manufacturer’s instructions. 1.56107 cells of

the stably transfected HEK293 cell lines expressing strep- or flag-

tagged wt or strep-tagged variant p.A350V (HA-Strep-tagged)

were used as starting material. 2.5 mg of total protein was used for

the affinity purification of phosphorylated proteins. Flow through

(unphosphorylated proteins) and elution fractions (phosphorylated

proteins) were precipitated with 8% (weight/volume) trichloroa-

cetic acid and washed once with acetone. The pellets were

dissolved in 0.1 M Tris.HCl buffer containing 2 M urea. Proteins

were separated on a 10% SDS-polyacrylamide gel, transferred to a

PVDF membrane and immunostained with a primary anti-strep

antibody and a secondary HRP-coupled mouse antibody. For the

flag-tagged cell line M2 antibody was used. To detect the

phosphorylated form of Akt, the phospho-akt (Ser473) primary

antibody (Cell Signaling Technology) and the secondary mouse

antibody were used. Images were acquired with the BioRad

ChemiDocTM MP System (BioRad).

Blue native electrophoresis and Western blot analysis of
SLC41A1- and SLC41A1 p.A350V-protein complexes

Samples containing 10 and 20 mg of strep-affinity purified

proteins (IBA & Qiagen) were loaded onto a native 5–18%

polyacrylamide gradient gel, and blue native electrophoresis was

performed according to Schägger and Jagow [33]. Electrosepa-

rated proteins were transferred to a PVDF membrane. Wt and

p.A350V protein complexes were immuno-detected as described

previously. NativeMarkTM unstained protein standard (Invitrogen)

was used as size marker.

Confocal Microscopy
Specimens were prepared according to Kolisek and coworkers

[27] except that, for fixation and permeabilization, we used

methanol-acetone, and blocking was performed with 10% goat

serum. For detection of strep-tagged wt and p.A350V, we used a

primary anti-strep antibody (diluted 1:500; Qiagen). The Alexa

Fluor-647-conjugated WGA (Invitrogen) was used as a cell

membrane marker. Processed samples were mounted with

Fluoroshield-DAPI (abcam). Confocal images were taken with a

Confocal Laser Scanning Microscope LSM 510 META (Carl

Zeiss) equipped with a 63x oil-immersion objective. For the

excitation of Alexa-488, Alexa-647, and DAPI, an argon-ion laser

(488 nm), helium-neon laser (647 nm), and blue diode laser

(405 nm) were used respectively. Image J software (http://rsb.info.

nih.gov/ij/) was used for the image merging and correction, as

well as to quantify the percentage of co-localization.

Determination of free intracellular Mg2+ by mag-fura 2
FF-Spectrofluorometry

The -tet and +tet wt and p.A350V cells were rinsed twice with

ice-cold, completely divalent-free, Dulbecco’s phosphate-buffered

saline (DPBS), detached by HyQtase, centrifuged, washed twice in

completely Ca2+- and Mg2+-free Hank’s balanced solution (CMF-

HBS) supplemented with 10 mM HEPES and 1.36 mM L-

glutamine (CMF-HBS+), and finally resuspended in the same

solution. Then, the cells were loaded with 7.5 mM mag-fura 2-AM

(30 min, 37uC) in the presence of the loading-facilitator Pluronic

F-127 (both from Life Technologies/Molecular Probes). After

being washed in CMF-HBS+, cells were incubated for a further

30 min at 37uC to allow for the complete de-esterification of the

fluorescence probe, washed twice in CMF-HBS+ to remove

extracellular mag-fura 2 and stored in CMF-HBS supplemented

with 10 mM HEPES, 5 mM glucose, and 0.4 mM Mg2+ until the

start of the experiments. Directly before measurements, all cells

were Mg2+-loaded by a 20-min pre-incubation in CMF-HBS+
supplemented with 10 mM Mg2+ (influx conditions; [Mg2+]e ..

[Mg2+]i). Then, after the remaining extracellular Mg2+ had been

washed out by rinses in CMF-HBS+, the [Mg2+]i of cells was

continuously determined for 10 min in CMF-HBS+ (efflux

conditions in which [Mg2+]i .. [Mg2+]e = 0 mM; [Na+]i ,,

[Na+]e = 145 mM); CMF-HBS+ supplemented with 5 mM Mg2+;

or CMF-HBS+ supplemented with 10 mM Mg2+. Differentiation

of NME from other transport components was performed by

means of the NME inhibitor imipramine (250 mM) [20] or the

NME stimulator dB-cAMP (100 mM) [20,34].

Measurements were performed at 37uC in 3 ml cuvettes

containing 2 ml cell suspension (cytocrit: 10%) while being stirred

in a spectrofluorometer LS50-B (PerkinElmer) [20,27]. [Mg2+]i

values were calculated from the 340 to 380 nm ratio according to

the formula of Grynkiewicz et al. [35] and as described in Kolisek

et al. [20,27]. SLC41A1-dependent Mg2+ extrusion from induced

SLC41A1 (wt) and p.A350V cells was determined from the

[Mg2+]i changes observed in Mg2+-loaded cells during recovery in

CMF-HBS+ solution and calculated by subtracting the respective

values of uninduced cells.

If not otherwise stated, data are presented as means 6 SE. All

statistical calculations were performed with Sigma-Stat (Jandel

Scientific). Significance was determined by Student’s t-test or

Mann-Whitney rank sum test as appropriate; P#0.05 was

considered to be significant.

Impedance-based measurement of cell adhesion and
proliferation

The xCELLigence system (RTCA-SP, ACEA Biosciences Inc.)

was used according to the manufacturer’s instructions for the

continuous real-time monitoring of cell adhesion and proliferation

by cell-electrode impedance [36] displayed as the dimensionless

Cell Index (CI). By using the RTCA Analyser, electrical

impedance changes were measured across interdigitated micro-

electrodes integrated on the bottom of a specialised 96-well plate

SLC41A1 p.A350V Is a Gain-of-Function Mutation
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(E-Plate 96) and sent to the RTCA Control Subunit. The latter

used the RTCA Software (version 2.0) for CI calculation from the

frequency-dependent electrode resistances and real-time display of

data.

Background impedance of E-Plate 96 wells was determined with

50 ml culture medium only or culture medium containing

respective concentrations of tetracycline, imipramine, or dB-

cAMP. Subsequently, per well, 56105 wt or p.A350V cells were

plated in a final volume of 100 ml culture medium and half of the

samples were induced with tetracycline. Then, localized on the

RTCA SP Station the E-Plate 96 was placed into the CO2-

incubator, and the CI was monitored every 15 minutes over a

period of 48 hours. After about 24 h in culture, cells were either

treated with medium or with compounds known to inhibit

(imipramine, 250 mM) or activate (dB-cAMP, 100 mM)

SLC41A1-dependent Mg2+ efflux.

Results

Characterization of tet-induced over-expression of
SLC41A1 wt and p.A350V variants in HEK293 cells

Functional examination of both variants was performed in the

newly generated HEK293 cell lines with tet-regulated expression

of stably transfected HA-strep-SLC41A1 (HEK293-(HA-strep-

SLC41A1); referred to further only as wt cells) and HA-strep-

SLC41A1-p.A350V (HEK293-(HA-strep-SLC41A1-p.A350V);

referred to further only as p.A350V cells). Thus, the basic

characteristics of each cell line were acquired before the

physiological characterization of the potentially PD-associated

variant of SLC41A1, p.A350V, was performed.

Previously, we had observed that longer tet-induction (20–

24 hours) of flag-SLC41A1 in HEK293 cells (clone 17) led to

increased death rates of the cells [20]. Therefore, we examined

whether a 24-h over-expression of SLC41A1 wt (further only wt)

and SLC41A1 p.A350V (further only p.A350V) variants would be

tolerated, or whether it would also result in increased death rates.

After tet-induction (+tet), we determined 93% to 100% viability of

the cells over-expressing either wt or p.A350V. Viability of

uninduced (-tet) wt or -tet p.A350V cells ranged after 24 h

between 95% and 100%, and therefore, we concluded that a 24-h

tet-induced over-expression of the wt or p.A350V variant had no

significant effect on cell viability. Weaker expression of wt and

p.A350V was also demonstrated by the finding that we had to load

a 3-fold greater amount of the protein onto the gel to be able to

obtain a SLC41A1 signal equally strong as that in clone 17

(Fig. 1C) [20].

Next, we quantified the transcriptional activity of both

transgenic SLC41A1 variants after 24 h of tet-induction and in -

tet cells. A significantly higher amount of ,11.25-fold (+tet wt

ddCt mean 123.7267.42/-tet wt ddCt mean 11.060.48; P = .89e-

09) of the wt SLC41A1 transcript and a significantly higher amount

of ,14.25 fold (+tet c.1049C.T ddCt mean 144.9634.62/-tet

c.1049C.T ddCt mean 10.1760.79; P = 1.84e-08) of the

SLC41A1-c.1049C.T transcript was detected, when compared

with -tet cells (Fig. 1A and 1B). Therefore, we concluded that both

wt and p.A350V cells produced similar amounts of transcript after

24 h of tet-induction. We also wished to know whether the over-

expression of wt SLC41A1 or c.1049C.T mutant could influence

the expression of SLC41A2 and/or SLC41A3 in +tet and -tet wt

and p.A350V cells, respectively. Indeed, we did not detect any

significant influence of wt or p.A350V over-expression on the

expression of SLC41A2 and SLC41A3 (data not shown). This also

confirmed the specificity of the hSLC41A1fw and hSLC41A1rev

primers.

Leaky expression of the gene of interest can often complicate

functional studies [27,37]. Therefore, we tested whether wt and

p.A350V over-expressing cell lines exhibited considerable levels of

leaky expression of the wt and p.A350V variants. As a control, we

used clone 17 of HEK293-(flag-SLC41A1) cells as previously

characterized by Kolisek et al. [20,27]. Western blot analysis

revealed bands specific for the wt and p.A350V variants (both

,56 kDa) almost exclusively in +tet cells (Fig. 1C). These data

confirmed that both tested cell lines exhibited a negligible leaky

expression of the transgenic SLC41A1 variants and, therefore,

were suitable for downstream experimentation. Next, we deter-

mined whether wt and p.A350V cells expressed comparable

amounts of SLC41A1 protein. With densitometric analyses

performed on three blots with equal amounts of protein isolates

from wt and p.A350V cells, we calculated that the density of

p.A350V-specific bands was ,1% lower compared with that of

wt-specific bands. Therefore, we concluded that both wt and

p.A350V cells produced nearly identical amounts of the respective

SLC41A1 variants after 24 h of tet-induction. These data further

underlined the suitability of both cell lines for further functional

experimentation.

SLC41A1 p.A350V localizes within the cytoplasmic
membrane

Next, by performing Western blot analysis of the soluble

protein- and membrane-protein-enriched cellular fractions (SF,

MF) and of subcellular protein fractions (cytosolic, membrane,

nuclear, and cytoskeletal), we examined whether the potentially

PD-associated variant p.A350V of SLC41A1 was properly

targeted into the cytoplasmic membrane, as demonstrated for wt

SLC41A1 [20,27]. Figure 1D shows a Western blot analysis of MF

and SF isolated from -tet and +tet wt and p.A350V cells. The

,56 kDa bands corresponding to wt and p.A350V were

predominantly detected in the MF, with markedly lower

abundance in SF of +tet cells. Flag-hSLC41A1 was used as a

positive control [27]. Cytosolic protein RPL19 was used to control

the specificity of the membrane fraction enrichment and, as

expected, was detected only in the soluble protein fraction. We

also performed subcellular protein fractionation with HEK293

cells over-expressing wt or p.A350V (Fig. 1E). Probing of the

electroseparated fractions with an antibody against the strep-

epitope resulted in the almost exclusive detection of both the wt

and the p.A350V variants in the fraction enriched in plasma

membrane proteins. The specificity of the fractionation was

controlled by running and probing parallel blots with antibodies

against PMCA4 (membrane fraction; positive control; Fig. 1E),

against RPL19 (cytosolic fraction, data not shown), or against

Lamin A (nuclear fraction; data not shown). These results were in

accordance with our confocal microscopy data, which revealed

that both wt and p.A350V SLC41A1 variants were predominantly

localized in the plasma membrane. This was shown by co-

localization of the green fluorescent signal of immunolabeled

SLC41A1 variants (anti-strep:GAM-Alexa-488), with the red

fluorescent signal of wheat germ agglutinin conjugated to Alexa-

647 (Fig. 2). Colocalization correlation analysis between Alexa-

488- and Alexa-647-specific signals in wt and p.A350V variants

revealed a 94.561.8% (N = 6) and 9262.3% (N = 7) overlap of the

green and red pixels, respectively. In contrast, no wt- or p.A350V-

specific fluorescence was seen in -tet cells (Figure S1). Taken

together, these data demonstrated the plasma membrane locali-

zation of the potentially PD-related p.A350V variant of SLC41A1.

Thus, we conclude that the mutation p.A350V does not affect the

intracellular localization of SLC41A1.

SLC41A1 p.A350V Is a Gain-of-Function Mutation
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p.A350V exhibits identical complex-forming abilities as
SLC41A1 wt in HEK293 cells

SLC41A1 forms transient multimeric complexes in vivo [27].

Therefore, we wondered whether the mutation p.A350V could

affect the complex-forming characteristics of SLC41A1. Figure 3

shows Western blot analysis performed on strep-affinity purified

native protein isolations separated with blue native electrophoresis

[27,33]. Wt and p.A350V variants showed identical separation

patterns (Fig. 3), both forming two identical complexes with

molecular masses between 242 and 480 kDa. This leads us to the

assumption that the mutation p.A350V has no obvious effect on

the complex-forming abilities of the SLC41A1 protein.

Amino acid substitution p.A350V in human SLC41A1
induces increased Mg2+ efflux

As in our previous study [20], -tet and +tet wt and p.A350V

cells were Mg2+-loaded by a 20-min pre-incubation in solutions

containing 10 mM Mg2+, and subsequently, the [Mg2+]i was

measured over a 10–min period in completely Mg2+-free solutions

containing 145 mM Na+ (efflux conditions). [Mg2+]i values

determined at the end of each period are shown in Table 1.

Uninduced wt cells and p.A350V cells regulate their [Mg2+]i at

stable levels of 0.3660.01 mM. Compared with -tet controls, the

[Mg2+]i of +tet cells was increased by 25% (wt) and 33%

(p.A350V) when incubated in 10 mM Mg2+ solution. After

resuspension in absolutely Mg2+-free solutions, loaded +tet cells

normalized their [Mg2+]i to values no longer different from those

of -tet cells (Table 1).

The [Mg2+]i decrease observed in +tet cells was previously

shown to reflect the SLC41A1-dependent Mg2+ efflux [20]. The

results for +tet wt and +tet p.A350V cells are summarized in

figure 4 showing a significantly stronger Mg2+ extrusion of

81.264.7 mM/10 min (Np.A350V = 113) in p.A350V cells com-

pared with 48.267.0 mM/10 min (Nwt = 82) in the wt cells used

as control. These data clearly demonstrate an increased efflux

capacity of p.A350V cells.

However, if the measurements were performed in solutions

containing 5 or 10 mM Mg2+, thereby lowering the inside-out

Mg2+ gradient, no Mg2+ extrusion occurred from Mg2+-loaded

+tet wt and +tet p.A350V cells. Instead, as can be seen in

figure 4, the [Mg2+]i increased by 41.1615.0 mM/10 min and

83.5622.3 mM/10 min in wt cells (Nwt; [Mg
2+

]e (5 mM) = 14 &

Figure 1. (A) Quantitative real time PCR analysis of SLC41A1 (wt) expression in -tet and +tet cells. The ddCt values of three independent
+tet samples and three independent -tet samples are shown. Each biological sample was loaded in triplicate. IRC indicates inter-run control. (B)
Quantitative real time PCR analysis of SLC41A1-(c.1049C.T) expression in -tet and +tet cells. The ddCt values of three independent +tet samples and
three independent -tet samples are given. Each biological sample was loaded in triplicate. IRC indicates inter-run control. (C) Immunodetection of
recombinant HA-strep-SLC41A1(wt) and HA-strep-SLC41A1-p.A350V in total protein isolate from -tet and +tet (24 h) cells. Strep-tagged wt and
p.A350V were detected only in tet-induced cells. Positive control: flag-tagged SLC41A1 isolated from HEK293 cells, clone 17, which was extensively
characterized in [20,27]. Loading was controlled by immunodetection of RPL19 protein. (D) Immunodetection of recombinant HA-strep-SLC41A1(wt)
and HA-strep-SLC41A1-p.A350V in soluble and membrane-protein-enriched fractions isolated from -tet and +tet (24 h) cells. Strep-tagged wt and
p.A350V were detected almost exclusively in tet-induced cells and predominantly in membrane (M) protein fractions and in much lower quantities in
soluble (S) protein fractions. Positive control: flag-tagged SLC41A1 isolated from HEK293 cells (clone 17). Soluble RPL19 was used to control the
specificity of the separation between soluble and membrane proteins. (E) Immunodetection of recombinant HA-strep-SLC41A1(wt) and HA-strep-
SLC41A1-p.A350V in subcellular protein fractions isolated from +tet (24 h) cells. Wt and p.A350V were predominantly detected in membrane (M)
protein fractions with much lower quantities in cytosolic (C) protein fractions and also for p.A350V in traces in the nuclear (N) protein fraction.
Transgenic variants were not detected in cytoskeletal (S) fractions. Specificity of the fractionation was controlled on a parallel blot by
immunodetection of PMCA4 (M).
doi:10.1371/journal.pone.0071096.g001
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Nwt; [Mg
2+

]e (10 mM) = 14) and by 73.6616.4 mM/10 min and

103.2621.5 mM/10 min in p.A350V cells (Np.A350V; [Mg
2+

]e (5

mM) = 13 & Np.A350V; [Mg
2+

]e (10 mM) = 13) incubated in 5 or

10 mM Mg2+, respectively, during the measurements.

Effects of imipramine and of dB-cAMP on SLC41A1-
related Mg2+ efflux from +tet wt and p.A350V cells

In both wt- and p.A350V-over-expressing cells, the observed

[Mg2+]i decrease (260.569.2 mM/10 min, Nwt = 21; and

101.769.2 mM/10 min, Np.A350V = 26) was nearly completely

abolished (20.7613.5 mM/10 min, Nwt = 21; and 8.769.1 mM/

10 min, Np.A350V = 26) by the tricyclic antidepressant imipra-

mine (Fig. 5A) known to inhibit the NME function of SLC41A1

[20].

In our previous study [20], we have demonstrated that

phosphorylation, postulated to be a mechanism for the activation

of Mg2+ extrusion [20,34], regulates NME activity of SLC41A1

and that wt is being detectable in the phosphoprotein-specific

fraction (P). To this end we performed Western blot analysis on

fractionated protein lysates of induced +tet flag-wt, strep-wt, and

strep-p.A350V. Figure 6 demonstrates that the ,56 kDa bands

corresponding to wt and p.A350V were detected in the P

fractions. The specificity of the fractionation was controlled with

an antibody exclusively recognizing phosphorylated Akt.

We also tested whether the SLC41A1-dependent Mg2+ efflux

from +tet wt and p.A350V cells could be further stimulated by the

application of dibutyryl-cAMP (dB-cAMP), a membrane-perme-

ant cAMP analog that activates the holoenzyme complex of

protein kinase A (PKA) [20]. No additional effects on Mg2+

extrusion from p.A350V cells were observed after the application

of 100 mM dB-cAMP (Np.A350V = 15; Fig. 5B). However, as

shown in figure 5B, dB-cAMP increased Mg2+ release by 77620%

(Nwt = 15) in wt controls.

Figure 2. Confocal immunolocalization of HA-strep-SLC41A1 (wt) and HA-strep-SLC41A1-p.A350V in +tet (24 h) cells. Strep-tagged wt
and p.A350V were immunolabeled with primary mouse anti-strep and secondary GAM Alexa-488 antibodies (green signal). Plasma membranes were
fluorescently contrasted with wheat germ agglutinin (WGA) conjugated to Alexa-647 (red signal). Nuclei were stained with DAPI (blue signal). The
merged images show that both Alexa-488 and Alexa-647 signals co-localize in +tet cells. Scale bar indicates 10 mm.
doi:10.1371/journal.pone.0071096.g002

Figure 3. Gradient blue native PAG electroseparation (5–18%)
and Western blot analysis of SLC41A1(wt) and p.A350V (M)
complexes. Both wt and p.A350V variants form identical complexes
(two; labeled with arrows) with molecular masses between 242 and
480 kDa.
doi:10.1371/journal.pone.0071096.g003
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Amino acid substitution p.A350V in human SLC41A1
effects cell growth

The 48-h growth curves of +tet p.A350V cells and wt cells

obtained under control conditions and with imipramine or dB-

cAMP in the culture medium are displayed in figure 5C.

Compared with +tet wt cells, the normalized CI (nCI) of +tet

p.A350V cells was reduced (2.0360.03 vs. 2.2660.08; P,0.001)

after 48 h in culture (Fig. 5C). Application (24 h after seeding) of

imipramine and of dB-cAMP in parallel to its effects on NME

activity decreases and increases the 48-h nCI of +tet wt and

p.A350V cells compared with control values (Fig. 5C). After

imipramine application, the 48-h nCI amounted to 0.1860.17 in

wt and to 0.2660.40 in p.A350V cells, thus showing a strong

reduction in both groups. However, the dB-cAMP-induced

increase of the 48-h nCI was much stronger in +tet wt cells

compared with +tet p.A350V cells (2.8160.08 vs. 2.5560.08;

P,0.001).

Discussion

Most PD cases are sporadic with unclear multifactorial etiologies

(idiopathic PD). Only approximately 3% to 5% among all sporadic

PD cases are attributable to defects in seven PD-associated genes:

SNCA (autosomal dominant pattern of inheritance; (ADPI)), LRRK2

(ADPI), EIF4G1 (ADPI), VPS35 (ADPI), parkin/PARK2 (autosomal

recessive pattern of inheritance; (ARPI)), DJ-1/PARK7 (ARPI), and

PINK1 (ARPI) [38,39]. However, changes in several other genes

have been suggested as causes for recessive neurological/neurode-

generative disorders that may include PD: hereditary ataxias

(ATXN2/3, FMR1), frontotemporal dementia (e.g. MAPT) and

others (e.g. ATP13A2, PLA2G6, FBXO7) [39].

RAB7L1, and SLC41A1 have been identified within the newly

revealed PD-susceptibility locus PARK16 at chromosome 1q32

[21,22,23,24]. SLC41A1 has been shown by our group to be a

cell-membrane-localized Mg2+ carrier, conducting the exchange of

intracellular Mg2+ for extracellular Na+ (NME) [20,27]. NME has

been shown to be functionally active in nearly all investigated cells

and tissues including neurons [34,40,41,42,43]. It has also been

shown to be responsible for the maintenance of an optimal [Mg2+]i

for a variety of processes critical for the cell such as bioenergetics

[44], the regulation of cellular pH, volume, and the total ion

balance, [45,46], and cell proliferation and differentiation [47,48].

Recently, in one PD patient, Tucci and colleagues [23] have

found a coding variant of SLC41A1, carrying substitution

p.A350V. Here, we have investigated if this potentially PD-

associated mutation affects the molecular and/or functional

properties of SLC41A1. Our experiments have revealed no

changes regarding the cellular localization, phosphorylation status,

or complex-forming ability of the p.A350V variant when

compared with the wt protein. However, we have demonstrated

that +tet p.A350V cells are able to perform Mg2+-efflux more

efficiently than +tet wt cells. Under our experimental conditions,

short-term, 10-min Mg2+ release is increased by 69610%

(P,0.001) after the induction of p.A350V over-expression

compared with cells over-expressing wt. Moreover, as a conse-

quence of an enhanced NME activity, we found a reduced

proliferation rate in p.A350V compared to wt cells. As the growth

experiments were performed for long periods (48 h) and with cells

incubated in complete culture media containing 1.2 mM Mg2+,

the effects of the p.A350V mutation seem to be of relevance also

under physiological conditions.

In both cell lines, Mg2+ extrusion is blocked by .90% after

imipramine application, clearly showing that it results from

SLC41A1-mediated NME activity [42]. Imipramine, which

besides quinidine, is the current pharmacological choice for

NME inhibition [20,49], is known to act on the extracellular Na+-

binding site of the NME, and competition between these two

compounds slows Mg2+ efflux. In agreement with this, the

Table 1. [Mg2+]i (mM) of uninduced (-tet) and induced (+tet) HEK293-(HA-strep-SLC41A1), and HEK293-(HA-strep-SLC41A1-
p.A350V) cells.

[Mg2+]e mM HEK293-(HA-strep-SLC41A1) (control) HEK293-(HA-strep-SLC41A1p.A350V)

-tet (N=82) +tet (N=82) -tet (N=113 ) +tet (N=113)

10 0.3660.01 0.4560.01** 0.3660.01 0.4860.01**

0 0.3660.01 0.4060.01a 0.3760.01 0.4060.01a

[Mg2+]i values for cells successively incubated for 20 min in solutions containing 10 mM Mg2+ (loading conditions) and for 10 min in completely Mg-free media (efflux
conditions) are given. Data are presented as means 6 SE. N is being indicated. **P,0.001 vs. control (-tet cells); aP,0.001 vs. loaded +tet HEK293-(HA-strep-SLC41A1) or
HEK293-(HA-strep-SLC41A1-p.A350V) cells.
doi:10.1371/journal.pone.0071096.t001

Figure 4. SLC41A1-related Mg2+ efflux in p.A350V cells
compared with wt cells. Before measurements, cells were pre-
loaded with Mg2+ as described in Material and Methods ([Mg2+]e
= 10 mM). The [Mg2+]i change obtained after 10 min in media
containing 145 mM Na+ is given for the following conditions: (1)
completely Mg2+-free media (Np.A350V = 113 & Nwt = 82); (2) media
supplemented with 5 mM Mg2+ (Np.A350V = 13 & Nwt = 14); and (3)
media supplemented with 10 mM Mg2+ (Np.A350V = 13 & Nwt = 14).
Values have been corrected for [Mg2+]i changes in -tet cells and are
given as means 6 SE; **P,0.001.
doi:10.1371/journal.pone.0071096.g004
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inhibitory effect of imipramine is in the order of that of sodium

withdrawal, which amounts to 91% in our previous study with

SLC41A1-over-expressing HEK293 cells [20].

Another characteristic feature of NME is its activation by PKA-

dependent phosphorylation [20,34]. Elevation of the intracellular

cAMP concentration specifically stimulates Na+-dependent efflux

either directly via an increased affinity of the transporter for

intracellular Mg2+ [34,50] or by Mg2+ mobilization from

intracellular organelles, e.g. from mitochondria [51]. Interestingly,

the application of dB-cAMP (a cell-membrane-permeant cAMP-

analog) increased (77620%) Mg2+ efflux only in +tet wt cells,

whereas no effect has been seen in p.A350V cells. This insensitivity

of mutant NME to cAMP stimulation might be of pathophysio-

logical importance as under normal conditions various hormones

or mediators, e.g., adrenergic substances, prostaglandin E2, and

angiotensin II, use this pathway to induce a transient [Mg2+]i

decrease that directly or indirectly influences cellular transport

mechanisms and physiological functions [49,51,52]. For example,

in this study, the growth-promoting effect of dB-cAMP is reduced

in p.A350V-over-expressing cells compared with wt cells. The

inability further to increase p.A350V-related NME function via

cAMP also suggests maximum or near-maximum activation of the

transporter and is in accordance with the observation of enhanced

Mg2+ efflux in mutants compared with wt cells. The [Mg2+]i, a

main determinant of NME activity [53], is similar

(0.4460.01 mM) between wt and p.A350V cells. Therefore, one

can speculate that the p.A350V mutation augments the affinity of

the transport protein for intracellular Mg2+, changes the Mg2+-

carrier-complex formation, or dysregulates transporter gating to

facilitate the Mg2+ transport rate.

In the long-term, the increased activity of the NME might

contribute to the development of intracellular Mg2+ deficiency

[43], if not compensated for by Mg2+ influx. Mg deprivation,

whether by gene defects such as p.A350, toxins (rotenone, MPTP),

or restricted Mg intake, induces and/or exacerbates processes such

as oxidative stress accompanied by an increase in NO and free

Figure 5. Effect of imipramine and of cAMP-dependent PKA phosphorylation on SLC41A1-related [Mg2+]i changes, cell adhesion,
and cell proliferation in +tet p.A350V cells and wt cells. A: Summary of [Mg2+]i changes after resuspension of Mg2+-loaded +tet p.A350V cells
and wt cells in completely Mg2+-free Na+-containing solutions with or without (control) the Na+/Mg2+ exchanger inhibitor imipramine (250 mM).
Values have been corrected for [Mg2+]i changes in -tet cells and given as means 6 SE; Np.A350V = 26 & Nwt = 21 single experiments per condition;
*P = 0.03; **P,0.005. B: Summary of [Mg2+]i changes after resuspension of Mg2+-loaded +tet p.A350V cells and wt cells in completely Mg2+-free Na+-
containing media with or without (control) the Na+/Mg2+ exchanger activator dB-cAMP (100 mM). Values have been corrected for [Mg2+]i changes in -
tet cells and are means 6 SE; Np.A350V = 15 & Nwt = 15 single experiments per condition; **P = 0.01. C: Original growth curves of +tet p.A350V cells
and wt cells under control conditions and after application of 250 mM imipramine and of 100 mM dB-cAMP. Cells were seeded at a density of 106105

per well, induced with tetracycline, and allowed to attach and proliferate for 24 h prior to treatment with the compounds (indicated by the arrow).
The Cell Index, a dimensionless parameter reflecting cell adherence and number, was normalized (nCI) to the time just before modulator application.
Values are means 6 SD; N = 6 single experiments per condition; **P,0.001.
doi:10.1371/journal.pone.0071096.g005
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radicals [54,55], dysfunction of mitochondria and the endoplasmic

reticulum [56,57], impairment of Ca2+ homeostasis [58], iron

accumulation [59], alterations in the autophagy-lysosome path-

ways, protein mishandling, and inflammatory responses [58], all of

which are known to trigger neuronal damage in neurodegener-

ative diseases including PD [56,60,61]. In accordance, Oyanagi

and colleagues [14] have been able to induce the severe loss of

dopaminergic neurons in rats fed for one year with an Mg-

restricted diet containing only one-fifth of the normal Mg content.

Furthermore, a lower concentration of Mg in various brain regions

and in the cerebrospinal fluid of PD patients has been found

[16,62,63]. On the other hand, a high extracellular [Mg] of $1.2

mM has been demonstrated to protect dopaminergic neurons of

the substantia nigra from MPP+ toxicity [18] and, because of its

Ca2+-antagonizing effects, to reduce neuroinflammation [64].

Moreover, spontaneous and Fe2+-induced accelerated aggregation

of a-synuclein can be inhibited by 0.8 mM Mg2+ [65]. In this

study, by using an extracellular [Mg] of 5 and 10 mM, we have

been able to block SLC41A1-related Mg2+ efflux in both wt and

p.A350V cells. Increasing the extracellular Mg2+ concentration

will reduce the driving force for an electroneutral Mg2+ efflux and

suggests that the exchanger switches to the reverse mode, thereby

performing Mg2+ uptake [27,42]. Thus, Mg supplementation

might be useful for preventing a loss of intracellular Mg2+, a loss

that is detrimental to neurons.

Under physiological conditions, an adequate Mg intake should

be seen as an important positive environmental factor protecting

neurons against accelerated ageing caused by slowly acting

deleterious environmental factors (e.g. toxins) and/or genetic risk

factors. With regard to the latter, Mg2+ is an essential co-factor in

almost all enzymatic systems involved in DNA processing and in

nucleotide excision repair, base excision repair, and mismatch

repair [66]. Furthermore, PD-relevant genes with a recessive

pattern of inheritance (parkin/PARK2, PINK1, and DJ-1/PARK7)

are all related to mitochondria dysfunction and oxidative stress

making it possible that defects in these genes and disturbances of

IMH intervene in these pathways to induce nigral mitochondrial

cytopathy [67].

Conclusions

Magnesium deficiency (both systemic and intracellular) has long

been suspected to be involved in various human disease complexes

such as metabolic syndrome and neurodegeneration in general

including PD. An obvious molecular link between disturbed IMH

and PD is however missing. In this study, we have examined the

functional properties of a recently identified potentially PD-

associated coding variant of the NME SLC41A1, p.A350V. We

have demonstrated that p.A350V is able to perform Mg2+-

extrusion more efficiently than wt NME and shows insensitivity to

cAMP stimulation and have found a reduced proliferation rate in

p.A350V compared with wt cells. Our data therefore indicate that

the rare conservative substitution p.A350V is a gain-of-function

mutation leading to an increased Mg2+ efflux capacity with likely a

long-term consequence in systemic deterioration, particularly

under conditions of low extracellular Mg2+ concentration. By

extrapolation, our data are in agreement with the findings of

epidemiological and case-control studies and suggest that the

chronic loss of Mg2+ from brain tissue and, thus, latent

intracellular hypomagnesemia, contributes to neurodegeneration.

Na+/Mg2+ exchange in neurons and SLC41A1 per se might

therefore represent a PD-relevant therapeutic target, with Mg2+

supplementation of PD patients possibly being beneficial.

Supporting Information

Figure S1 Confocal immunolocalization of HA-strep-SLC41A1

(wt) and HA-strep-SLC41A1-p.A350V in -tet (24 h) cells. Strep-

tagged wt and p.A350V were immunolabeled with primary mouse

anti-strep and secondary GAM Alexa-488 antibodies (green

signal). Plasma membranes were fluorescently contrasted with

wheat germ agglutinin (WGA) conjugated to Alexa-647 (red

signal). Nuclei were stained with DAPI (blue signal). Scale bar

indicates 10 mm.
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