
Biochem. J. (2015) 469, 59–69 doi:10.1042/BJ20150099 59

Different inhibition of Gβγ -stimulated class IB phosphoinositide 3-kinase
(PI3K) variants by a monoclonal antibody. Specific function of p101 as a
Gβγ -dependent regulator of PI3Kγ enzymatic activity
Aliaksei Shymanets*, Prajwal*, Oscar Vadas†1, Cornelia Czupalla*, Jaclyn LoPiccolo‡, Michael Brenowitz§,
Alessandra Ghigo‖, Emilio Hirsch‖, Eberhard Krause¶, Reinhard Wetzker**, Roger L. Williams†, Christian Harteneck* and
Bernd Nürnberg*2

*Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, and
Interfaculty Centre of Pharmacogenomics and Pharmaceutical Research, University of Tübingen, 72074 Tübingen, Germany
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Class IB phosphoinositide 3-kinases γ (PI3Kγ ) are second-
messenger-generating enzymes downstream of signalling
cascades triggered by G-protein-coupled receptors (GPCRs).
PI3Kγ variants have one catalytic p110γ subunit that can
form two different heterodimers by binding to one of a pair
of non-catalytic subunits, p87 or p101. Growing experimental
data argue for a different regulation of p87–p110γ and p101–
p110γ allowing integration into distinct signalling pathways.
Pharmacological tools enabling distinct modulation of the two
variants are missing. The ability of an anti-p110γ monoclonal
antibody [mAb(A)p110γ ] to block PI3Kγ enzymatic activity
attracted us to characterize this tool in detail using purified
proteins. In order to get insight into the antibody–p110γ
interface, hydrogen–deuterium exchange coupled to MS (HDX-
MS) measurements were performed demonstrating binding of
the monoclonal antibody to the C2 domain in p110γ , which
was accompanied by conformational changes in the helical

domain harbouring the Gβγ -binding site. We then studied the
modulation of phospholipid vesicles association of PI3Kγ by
the antibody. p87–p110γ showed a significantly reduced Gβγ -
mediated phospholipid recruitment as compared with p101–
p110γ . Concomitantly, in the presence of mAb(A)p110γ , Gβγ did
not bind to p87–p110γ . These data correlated with the ability
of the antibody to block Gβγ -stimulated lipid kinase activity of
p87–p110γ 30-fold more potently than p101–p110γ . Our data
argue for differential regulatory functions of the non-catalytic
subunits and a specific Gβγ -dependent regulation of p101 in
PI3Kγ activation. In this scenario, we consider the antibody as a
valuable tool to dissect the distinct roles of the two PI3Kγ variants
downstream of GPCRs.

Key words: Gβγ , G-protein, p101, p87, phosphoinositide
3-kinase γ (PI3Kγ ), signal transduction.

INTRODUCTION

Class I phosphoinositide 3-kinases (PI3Ks) are lipid kinases
that transduce extracellular signals to trigger PtdIns(3,4,5)P3

synthesis, an essential second messenger at the plasma membrane.
PtdIns(3,4,5)P3, together with its metabolites, PtdIns(3,4)P2 and
PtdIns(3,5)P2, play fundamental roles in the regulation of basic
cellular processes, such as proliferation, differentiation, growth
and chemotaxis [1–8]. Class I PI3Ks are heterodimers composed
of a catalytic (p110) and a non-catalytic subunit of the p85- or
p101-type. Based on their interaction with non-catalytic subunits
and their specific modes of regulation, class I PI3Ks can be further
subdivided into class IA and class IB [2,3,9–12]. Class IA is
characterized by heterodimers consisting of a catalytic p110α,
p110β or p110δ subunit associated with a p85-type non-catalytic
subunit, which has dual roles acting as an adaptor and a regulator
[11,13–16]. Although the p85-type subunit is indispensable for

class IA PI3K stability and regulation, the p110 catalytic subunit
determines the signalling specificity [17–24].

The class IB PI3Ks are represented by two enzymes consisting
of one catalytic p110γ subunit associated with either a p101
or a p87 (also known as p87PIKAP or p84) non-catalytic subunit
[25–29]. Both PI3Kγ variants, i.e. p87–p110γ and p101–p110γ ,
are stimulated by Gβγ heterodimers released upon G-protein-
coupled receptor (GPCR) activation and by active Ras proteins
[25–39]. The former view of p87 and p101 being redundant
adapters in Gβγ -mediated recruitment of PI3Kγ variants to
the membrane compartment [27–29] has been challenged by
previous data showing a different contribution of Gβγ and
Ras on the two PI3Kγ variants [38]. In particular, distinct
Gβγ -binding affinities of the non-catalytic subunits for p110γ
are intriguing [38,40,41]. These findings support data showing
that PI3Kγ variants integrate into different and independent
signalling cascades [39,42–44]. We have previously reported
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specific features for p87 and p101, such as diverse spatial and
temporal distribution in human tissues and a different regulatory
impact on p110γ activity, which may contribute to the differential
regulation of the PI3Kγ variants [40,41]. These findings, in
combination with the fact that only a single class IB catalytic
subunit is present in cells, led us to postulate that p87 and
p101 serve as signal-discriminating regulatory subunits defining
specific functions for both p87–p110γ and p101–p110γ variants
[41]. However, the exact molecular mechanisms that maintain
the specificity and selectivity of the two PI3Kγ variants are still
unknown.

In the present study, we have identified and characterized
a functional monoclonal anti-p110γ antibody that specifically
inhibits the Gβγ -induced p87–p110γ enzymatic activity via
contacting the C2 domain of p110γ . Our results point to a
differential impact of the non-catalytic subunits thereby revealing
a specific Gβγ -dependent regulatory role of p101 in PI3Kγ
activation.

EXPERIMENTAL

Cell cultures and expression plasmids

Human embryonic kidney (HEK)-293 cells (German Resource
Centre for Biological Materials) were cultured and transfected
with expression plasmids encoding p101 and p110γ as described
previously [27,37,38]. For preparation of whole cell lysates, cells
were directly lysed by adding 1× Laemmli sample buffer [45].

Expression and purification of recombinant proteins

Sf9 cells (fall armyworm ovary; Invitrogen) were cultured and
infected as described previously [40]. Recombinant baculoviruses
for expression of Gβ1γ 2, PI3Kγ and PI3Kβ subunits as
well as their expression in Sf9 cells and purification of
(His)6-tagged recombinant Gβ1(His)6γ 2, (His)6p110γ , p87–
(His)6p110γ , p101–(His)6p110γ and p85–(His)6p110β have been
described elsewhere [38,40,41,46–48]. The pFastBacTM HTb
baculovirus transfer vector (Invitrogen) was used to generate
human full-length N-terminally (His)6-tagged H-Ras using
BamHI/XhoI cloning site. H-Ras was produced in Sf9 insect
cells and isolated using the Triton X-114 partition method as
described previously [48,49]. The post-translational processing
and lipidation of the protein was verified by MS analysis. Purified
proteins were quantified by Coomassie Brilliant Blue staining
after SDS/PAGE (10% acrylamide) with BSA as the standard.
The proteins were stored at − 80 ◦C.

Hydrogen–deuterium exchange coupled to MS measurements

Hydrogen–deuterium exchange coupled to MS (HDX-MS)
analyses of PI3Kγ in the presence and absence of an anti-p110γ
monoclonal antibody [mAb(A)p110γ ] were performed following
a similar protocol as described previously [21,48]. The rate of
exchange of full-length p110γ (His)6 alone and in the presence of
a 3-fold molar excess of mAb(A)p110γ were compared. Reactions
were initiated by mixing 10 μl of protein solution with 40 μl of
deuterated buffer containing 20 mM Hepes, pH 7.2, 50 mM NaCl
and 0.5 mM EGTA. Deuteration reactions were run for 3, 30,
300 and 3000 s of on-exchange at 23 ◦C, before being quenched
by addition of 20 μl of a 2 M guanidinium chloride and 1.2%
formic acid solution. The final deuterium concentration during
the reaction was 78%. Every time point and state was a unique
experiment and every HDX-MS experiment was repeated twice.

Samples were immediately frozen in liquid nitrogen and stored at
− 80 ◦C for less than 1 week.

Analysis of the p110γ deuteration level was done as described
previously [48], by sequentially digesting the protein with pepsin,
separating the fragments on a C18 column and measuring the
masses of peptides on a LTQ Orbitrap XL mass spectrometer.
Manually selected peptides were then examined for deuterium
incorporation by the HD-examiner software (Sierra Analytics).
Results are presented as relative levels of deuteration with no
correction for back exchange.

Gel electrophoresis, immunoblotting and antibodies

Generation and characterization of the anti-serum against the
Gβ1 subunit are detailed elsewhere [31,50]. Specific antibodies
against p87 and p101 were gifts from Michael Schaefer (Rudolf-
Boehm-Institut für Pharmakologie und Toxikologie, Leipzig,
Germany) and Len Stephens (Babraham Institute, Cambridge,
U.K.) respectively. mAb(A)p110γ and mAb(B)p110γ were raised
against full-length human p110γ using mouse hybridoma cells
and were characterized earlier [37]. Large-scale preparations
of mAb(A)p110γ were generated in co-operation with BioGenes.
mAb(B)p110γ was as described earlier [31,40,41]. Generation and
characterization of mAb(C)p110γ , raised against the N-terminal
210 amino acids of catalytic p110γ , was as detailed earlier [43].
Anti-Ras antibody was purchased from BD Biosciences. Anti-
p110β antibody was purchased from Cell Signaling Technology.
Proteins were fractionated by SDS/PAGE (10% acrylamide) and
transferred onto nitrocellulose membranes (HybondTM-C Extra,
GE Healthcare). Visualization of specific antisera was performed
using the ECL system (GE Healthcare) or the SuperSignal®

West Pico Chemiluminescent Substrate (Pierce) according to
the manufacturers’ instructions. Chemiluminescence signals were
estimated using the VersaDocTM 4000 MP imaging system
(Bio-Rad Laboratories).

Immunoprecipitation of PI3K

Purified recombinant p110γ , p87–p110γ and p101–p110γ and
p85α–p110β variants were subjected to immunoprecipitation
(IP) using mAb(A)p110γ , mAb(B)p110γ or mAb(C)p110γ . IP
experiments were performed as detailed previously [41] with
some modifications. In brief, Protein A–Sepharose CL-4B beads
(GE Healthcare) were pre-incubated with or without antibody,
washed, incubated overnight with cleared cell lysates or purified
proteins and washed again. Proteins bound to beads were either
tested for their lipid kinase activity or eluted by adding 1×
Laemmli sample buffer [45] and subjected to SDS/PAGE.

Analysis of PI3K enzymatic activity

The lipid kinase activity of PI3Kγ and analysis of Gβ1γ 2, H-
Ras and PI3Kγ association with phospholipid vesicles were
performed as described previously [32,34,40,41,46].

Analytical ultracentrifugation analyses

Molecular mass and complex stability of purified p87–p110γ
and p110–p110γ heterodimers were analysed by sedimentation
equilibrium analysis using a Beckman Optima XL-I centrifuge
using the AN-60Ti rotor with the absorption optics set to 280 nm.
Analyses were conducted in a buffer containing 20 mM Tris/HCl,
pH 8.0, 150 mM NaCl, 2 mM DTT and 0.033% deca(ethylene
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Figure 1 mAb(A)p110γ inhibits enzymatic activity of monomeric p110γ

(A) mAb(A)p110γ does not interact with denatured catalytic p110γ subunit in immunoblots.
Monomeric p110γ was expressed in and purified from Sf9 cells. Different amounts of the
protein were subjected to SDS/PAGE (10 % acrylamide) followed by IB using mAb(A)p110γ or,
mAb(B)p110γ . (B) mAb(A)p110γ binds intact p110γ . Purified recombinant p110γ was subjected
to IP using mAb(A)p110γ or p110γ -unspecific antibody as detailed in the Experimental section.
Duplicates of immunoprecipitates were separated by SDS/PAGE (10 % acrylamide) followed
by IB with mAb(A)p110γ or mAb(B)p110γ . (C) mAb(A)p110γ was tested for its ability to affect
Gβ1γ 2-induced lipid kinase activity of purified recombinant monomeric p110γ . The lipid
kinase activity of enzyme (1.5 nM) was measured in the presence of 300 nM Gβ1γ 2 (EC50

value) and in the absence or presence of increased concentrations of mAb(A)p110γ . The data
shown here are mean values +− S.E.M. (n=3).

glycol) dodecyl ether (C12E10) at 10 ◦C. Sample and buffer
(120 μl each) were loaded into six-channel cell assemblies.
Replicate scans were taken following a 24 h equilibration at
6000 rev/min and then following a second 24 h equilibration at
11 000 rev/min. Scans were also taken at 22 h at each speed so
that equilibration could be confirmed. The equilibrium protein
concentration distributions were globally analysed using the
program HeteroAnalysis version 1.1.58 [51,52]. Sednterp version
20120828 Beta (http://sednterp.unh.edu) was used to calculate
the partial specific volume of the proteins from their sequence
and the density of the buffer from its composition neglecting
the contribution of the detergent. The sedimentation parameters
were corrected to standard conditions (20, w) using these values.
The 280-nm molar absorption coefficients calculated from each
protein’s sequence were used to calculate the concentrations of
the protein complexes (http://web.expasy.org/protparam/).

Statistical analysis

Results (means+−S.E.M.) were analysed using Student’s t test
(*P � 0.05; **P � 0.01).

RESULTS

Inhibition of monomeric p110γ by mAb(A)p110γ

A monoclonal anti-p110γ antibody [mAb(A)p110γ ] raised against
full-length human catalytic p110γ subunit used in earlier
IP experiments [37] displayed interesting features attracting
our attention. mAb(A)p110γ failed to visualize p110γ in
immunoblots (Figure 1A); however, it was able to interact
with the intact protein in solution enabling IP experiments
(Figure 1B). The feature of recognizing native p110γ made it
worthwhile to test whether mAb(A)p110γ interferes with p110γ
activity. As shown in Figure 1(C), incubation with mAb(A)p110γ

led to a drastic reduction in p110γ lipid kinase activity
stimulated by Gβ1γ 2, defining mAb(A)p110γ as a putative PI3Kγ
inhibitor.

In order to test the selectivity of the mAb(A)p110γ antibody, we
measured its effect on the activity of the class IA PI3Kβ, another
Gβγ -sensitive PI3K. Recombinant and functionally active Gβγ -
sensitive p85α-p110β was purified following heterologous
expression in Sf9 cells (Figures 2A and 2B). IP experiments
(Figure 2C) as well as analysis of the immunoprecipitates
in the lipid kinase assays (Figure 2D) showed complete
lack of interaction between mAb(A)p110γ and p85α–p110β.
Correspondingly, mAb(A)p110γ did not inhibit lipid kinase activity
of purified p85α–p110β (Figure 2E).

Mapping of p110γ regions affected by interaction with mAb(A)p110γ

Since mAb(A)p110γ was generated by an immunization and
selection protocol using full-length human catalytic p110γ
subunit, the epitope of p110γ targeted by mAb(A)p110γ was
unknown. To determine the p110γ epitope recognized by
mAb(A)p110γ , we used HDX-MS. HDX-MS is a powerful
technique that can map protein–protein and protein–lipid
interactions, as well as provide useful information on the
dynamics of proteins [53,54]. The technique is based on the
differences in exchange rate of amide protons from a protein
with solvent, a reaction that is influenced by secondary structure
and solvent exposure.

To map the regions in p110γ that are affected by the
interaction with mAb(A)p110γ , we compared the HDX rates of
p110γ in solution and when in a complex with mAb(A)p110γ .
A large proportion of the C2 domain shows a reduced HDX
rate in the p110γ –mAb(A)p110γ complex, suggesting that the
antibody binds this region of p110γ (Figures 3A and 3B).
More precisely, the most solvent-exposed part of the C2 domain,
spanning residues 382–413, has a strongly reduced dynamics,
probably stabilizing the β-strand underneath (residues 414–428).
Interestingly, binding of mAb(A)p110γ seems to induce allosteric
changes in p110γ , as increased HDX rates are observed in
two distinct domains of p110γ : the helical and kinase domains
(Figure 3B). The increased dynamics in the p110γ helical domain
(551–607, 622–630, 636–650) overlaps with the previously
identified Gβγ -binding site (546–607) [48]. The two helices
within the kinase domain that show increased dynamics (1035–
1050) correspond to a region essential for inhibition of p110α
activity by its regulatory subunit [55].

In summary, HDX-MS experiments revealed that mAb(A)p110γ

associates with the C2 domain of p110γ and induces
conformational changes in the helical and kinase domains.
Since both domains are important for PI3Kγ regulation,
binding of mAb(A)p110γ to p110γ might affect kinase enzymatic
activity.

Effect of mAb(A)p110γ on p87–p110γ and p101–p110γ heterodimer
activity

Class IB PI3Kγ is present as two distinct functional p87–
p110γ and p101–p110γ heterodimers in vivo [26,38,41,42].
We tested how mAb(A)p110γ affects the enzymatic activities of
these two PI3Kγ variants stimulated by Gβ1γ 2. Two additional
monoclonal antibodies raised against full-length human catalytic
p110γ subunit [mAb(B)p110γ ] and N-terminal amino acids
1–210 of p110γ [mAb(C)p110γ ] were also included in order
to validate the specificity of interactions. As depicted in
Figure 4(A), significant differences in the ability of the antibodies
to affect lipid kinase activities of the two PI3Kγ variants
became apparent. Although incubation of p87–p110γ with
mAb(A)p110γ resulted in drastic reduction in Gβ1γ 2-stimulated
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Figure 2 mAb(A)p110γ does not interact with Gβγ -sensitive PI3Kβ

(A) Stimulation of recombinant class IA PI3Kβ (p85α–p110β) lipid kinase activity in response to increasing concentrations of Gβ1γ 2. The data shown here represent the average for three
independent experiments. (B) Different amounts of purified recombinant p85α–p110β were subjected to SDS/PAGE (10 % acrylamide) followed by IB using specific anti-p110β antibody. (C and
D) Purified p85α–p110β was immunoprecipitated using mAb(A)p110γ or p110β-unspecific antibody as described in the Experimental section. Obtained immunoprecipitates were analysed by IB
using specific anti-p110β antibody (C) and tested in the lipid kinase assay in the absence or presence of 120 nM Gβ1γ 2 (D). Shown here are one typical immunoblot and autoradiograph out of
three independent experiments. (E) mAb(A)p110γ was tested for its ability to affect Gβ1γ 2-induced lipid kinase activity of purified recombinant p85α–p110β . The lipid kinase activity of enzyme
(1.5 nM) was measured in the presence of 300 nM Gβ1γ 2 (EC50 value) and in the absence or presence of increased concentrations of mAb(A)p110γ . The data shown here are mean values +− S.E.M.
(n=3).

lipid kinase activity, inhibition of p101–p110γ activity by this
antibody, at the concentrations tested, was weak. In contrast,
mAb(B)p110γ and mAb(C)p110γ were ineffective in inhibiting
enzymatic activity of either PI3Kγ variant under the identical
experimental conditions (Figure 4A). The intriguing finding
of the differential mAb(A)p110γ -mediated effect on the two
PI3Kγ variants showing only weak inhibition of p101–p110γ
as compared with strong inhibition of p87–p110γ prompted
us to check whether mAb(A)p110γ was able to interact with
p110γ when associated with p101. Comparable to monomeric
p110γ (Figure 1A), immunoblotting (IB) analysis revealed that
mAb(A)p110γ does not recognize denatured p101–p110γ complex
(Figure 4B). In contrast, mAb(B)p110γ and mAb(C)p110γ recognize
p110γ in immunoblots (Figure 4B). Nonetheless, the capability
of mAb(A)p110γ to directly bind to p110γ when complexed with
p101 could be verified by IP (Figure 4C).

Taken together, mAb(A)p110γ inhibits Gβγ -stimulated lipid
kinase activity of p87–p110γ more potently than of p101–
p110γ .

Interaction of p87–p110γ or p101–p110γ heterodimers with
phospholipid vesicles

The HDX-MS data demonstrate binding of mAb(A)p110γ

to the C2 domain of p110γ (Figure 3B). The C2 domain
of p110γ , similarly to other C2 domains, is considered to
mediate protein–lipid interactions [56–58]. This encouraged us

to check whether mAb(A)p110γ interferes with Gβ1γ 2-mediated
association of p87–p110γ or p101–p110γ to phosholipid vesicles
in the absence and presence of another known PI3Kγ regulator,
i.e. H-Ras. Strikingly, mAb(A)p110γ differently affected Gβ1γ 2-
mediated phospholipid vesicle association of PI3Kγ variants.
Whereas mAb(A)p110γ strongly reduced Gβ1γ 2-mediated vesicle
association of p87-p110γ in a concentration-dependent manner,
association of p101–p110γ remained unchanged (Figure 5A).
mAb(A)p110γ did not change binding of p101–p110γ to
phospholipid vesicles upon exposure to both regulators, Gβ1γ 2

and H-Ras (Figure 5B). However, concomitant incubation with
Gβ1γ 2 and prenylated H-Ras partially rescued phospholipid
vesicle association of p87–p110γ in the presence of mAb(A)p110γ .
Nonetheless, membrane association was impaired by high
concentrations of mAb(A)p110γ (Figure 5B). It should be pointed
out that in these experiments p87, p101 and p110γ were found
in ratios corresponding the starting condition suggesting that
the stoichiometry of the PI3Kγ variants bound to phospholipid
vesicles was not affected by mAb(A)p110γ (Figure 5, grey or
white bars compared with black bars). Control experiments
excluded that the association of Gβγ or H-Ras to phospholipid
vesicles was significantly affected by mAb(A)p110γ (Table 1).
High complex stability was supported by equilibrium analytical
ultracentrifugation showing Kd values of �0.2 μM for p87–
p110γ and �0.1 μM for p101–p110γ (Figure 6).

The interference of mAb(A)p110γ with Gβγ -binding was tested
by co-IP of p87–p110γ or p101–p110γ with Gβ1γ 2 and H-Ras
(Figure 7). In the case of p87–p110γ , a reduction in Gβ1γ 2
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Figure 3 Binding mAb(A)p110γ to the C2 domain of p110γ promotes allosteric changes in distinct domains

(A) Global HDX in p110γ was analysed for the following states: p110γ alone and p110γ associated with mAb(A)p110γ . The HDX percentage for each p110γ peptide is shown at 3, 30, 300 and
3000 s. The beginning and ending residues for each peptide are illustrated along with the charge state (CS), number of amide deuterons (#D) and retention time (RT). Peptides in p110γ showing
reduced (blue) and increased (red) HDX rate after incubation with mAb(A)p110γ are indicated with brackets. (B) Mapping of the changes in deuteration levels between free p110γ and p110γ bound
to mAb(A)p110γ are visualized on p110γ crystal structure (top, PDB ID 1E8X) and on a schematic representation of p110γ sequence (bottom). Peptides with significant changes are identified on the
p110γ model according to the colour scheme shown (red and orange indicate increased exposure on binding and cyan and blue represent decreased exposure).
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Figure 4 Different impact of monoclonal anti-p110γ antibodies on enzymatic activity of heterodimeric PI3Kγ variants

(A) The monoclonal anti-p110γ antibodies, mAb(A)p110γ , mAb(B)p110γ and mAb(C)p110γ , were tested for their ability to affect Gβ1γ 2-induced lipid kinase activity of purified recombinant p87–p110γ
and p101–p110γ . PI3Kγ variants (1.5 nM) were stimulated by Gβ1γ 2 at EC50 values, i.e. 300 nM for p87–p110γ and 30 nM for p101–p110γ . The data shown here are mean values +−
S.E.M. (n=3). (B) mAb(A)p110γ does not interact with the catalytic p110γ subunit of denatured p101–p110γ in immunoblots. Heterodimeric enzyme was expressed in and purified from Sf9
cells. Different amounts of the recombinant protein were subjected to SDS/PAGE (10 % acrylamide) followed by IB using the monoclonal anti-p110γ antibodies mAb(A)p110γ , mAb(B)p110γ or
mAb(C)p110γ . (C) mAb(A)p110γ binds to the catalytic subunit of intact p101–p110γ . Purified recombinant p101–p110γ was subjected to IP using mAb(A)p110γ , mAb(B)p110γ , mAb(C)p110γ or
p110γ -unspecific antibody as described in the Experimental section. Duplicates of immunoprecipitates were separated by SDS/PAGE (10 % acrylamide) followed by IB with mAb(A)p110γ or
mAb(B)p110γ .

Table 1 mAb(A)p110γ does not change the association of Gβ1γ 2 and H-Ras
with phospholipid vesicles

Recombinant purified Gβ1γ 2 dimers (600 nM) and H-Ras (1000 nM) were mixed with 28 nM
p87–p110γ or p101–p110γ and incubated with phospholipid vesicles in the absence or
presence of 25 nM or 120 nM mAb(A)p110γ . Aliquots of sedimented phospholipid vesicles
and their supernatants were subjected to SDS/PAGE (10 % acrylamide) followed by IB using
antibodies specific for Gβ (1–4) and H-Ras proteins. Chemiluminescence signals were estimated
with a VersaDocTM 4000 MP imaging system (Bio-Rad Laboratories). For calculation of
phospholipid vesicle-associated proteins, signal intensities in the sedimented phospholipid
vesicles and their supernatants were added and considered as 100 %. Shown here are the mean
values +− S.E.M. for at least three separate experiments.

Association with lipid vesicles %

Incubation with PI3Kγ variants mAb(A)p110γ (nM) Gβ1γ 2 H-Ras

p87–p110γ 0 29.2 +− 5.3 35.2 +− 6.9
25 24.7 +− 5.2 34.1 +− 7.3
120 23.7 +− 4.5 34.8 +− 8.1

p101–p110γ 0 31.4 +− 4.8 32.2 +− 7.2
25 30.2 +− 7.9 28.2 +− 8.1
120 32.1 +− 7.9 29.3 +− 5.9

monitored by Gβ1-immunoreactivity was evident, whereas H-
Ras-levels remained unaffected (Figure 7). Taken together, the
data show a mAb(A)p110γ -dependent inhibition of Gβ1γ 2-induced
recruitment of p87–p110γ to the lipid compartment. Next, we
investigated the consequences for enzymatic activity.

Concentration-dependent inhibition of PI3Kγ variants by
mAb(A)p110γ

We studied concentration-dependent inhibition of variously
stimulated lipid kinase activities of p87–p110γ and p101–p110γ
in the presence of increasing concentrations either of the pan-
PI3K inhibitor wortmannin (Figures 8A–8D) or mAb(A)p110γ

(Figures 8E–8H). Wortmannin, which blocks all class I PI3Ks
by covalent binding to a lysine residue in the ATP-binding pocket
of p110 isoforms [59], inhibited both PI3Kγ variants at similar
IC50 concentrations under all conditions tested and failed to
differentiate between the two PI3Kγ variants.

In the presence of mAb(A)p110γ , basal lipid kinase activities
of the two PI3Kγ variants were inhibited in a concentration-
dependent manner with IC50 values of 7.2 +− 1.3 nM and
17.8 +− 5.2 nM for p87–p110γ and p101–p110γ respectively
(Figure 8E). Strikingly, the Gβ1γ 2-stimulated activity of p87–
p110γ was inhibited ∼30-fold more potently as compared with
the p101–p110γ counterpart (IC50 of 1.6 +− 0.5 nM compared with
46.5 +− 12.6 nM; Figure 8F). In contrast, mAb(A)p110γ inhibition
of H-Ras-stimulated variants was indistinguishable (Figure 8G).
When the enzymes were co-stimulated by Gβ1γ 2 and H-Ras, p87-
p110γ was 10-fold more potently inhibited as compared with
p101–p110γ by mAb(A)p110γ (IC50 of 4.3 +− 0.4 nM compared
with 49.5 +− 4.9 nM; Figure 8H). Thus, mAb(A)p110γ not only
represents a valuable experimental tool to understand the
different regulation of PI3Kγ variants but also serves to
selectively intervene into Gβγ -induced p87–p110γ lipid kinase
activity.
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Figure 5 Effect of mAb(A)p110γ on the association of PI3Kγ variants with
phospholipid vesicles

mAb(A)p110γ was tested for its ability to affect Gβ1γ 2-mediated association (600 nM Gβ1γ 2)
of purified recombinant PI3Kγ variants (28 nM) with phospholipid vesicles in the absence (A)
or presence of 1000 nM H-Ras (B). Aliquots of supernatants and sedimented phospholipid
vesicles were subjected to SDS/PAGE (10 % acrylamide). Association of each PI3Kγ subunits
with phospholipid vesicles was analysed by IB using mAb(A)p110γ and antibodies specific
against p87 or p101. Chemiluminescence signals were estimated with a VersaDocTM 4000
MP imaging system (Bio-Rad Laboratories). For calculation of phospholipid vesicle-associated
subunits of PI3Kγ variants, signal intensities in the sedimented phospholipid vesicles and their
supernatants were added and considered as 100 %. Shown here are the mean values +− S.E.M.
for at least three separate experiments.

DISCUSSION

We recently described p87–p110γ as a constitutively and
ubiquitously expressed class IB PI3Kγ variant [41]. In contrast,
p101–p110γ appeared as an inducible counterpart which is up-
regulated upon activation and expressed in various tissues side-by-
side with p87–p110γ . In line with this view, growing experimental
evidence indicates a divergent function and regulation of the
two class IB PI3Kγ variants [38,39,42–44]. Unfortunately,
pharmacological tools discriminating between the two variants are
not available [60]. In the present study, we identified a monoclonal
antibody mAb(A)p110γ as a potent inhibitor of PI3Kγ isoforms
acting at low nanomolar concentrations. mAb(A)p110γ blocked
basal lipid kinase activities of either p87–p110γ or p101–p110γ
with potencies comparable to that of wortmannin, an inhibitor
acting at the ATP-binding site. Interestingly, enzymatic activities
were differentially inhibited with a significant preference for
p87–p110γ following stimulation by Gβγ . This preferential
inhibition of p87–p110γ activity by mAb(A)p110γ persisted even in
experiments stimulating the PI3Kγ variants simultaneously with
Ras and Gβγ .

The mAb(A)p110γ was generated using full-length human p110γ
protein for immunization and selection procedure and, therefore,
the exact antibody–p110γ interaction site was unknown [37,61].
HDX-MS, an approach that has provided insight into PI3K

Figure 6 Comparable complex stability of p87–p110γ and p101–p110γ
measured by analytical sedimentation equilibrium

Three concentrations (0.5, 2.0 and 4.0 μM) of p87–p110γ (A) and p101–p110γ (B) were
centrifuged and analysed to yield the equilibrium concentration distributions of the protein
complexes (measured by their absorption at 280 nm) as a function of the radial distance from
the centre of the rotor at 6000 (�) and 11000 (�) rev/min for each of the three sample channels.
The unbroken lines depict the best non-linear least squares fit of the hetero-association model
to each complex. The residuals of the fits are shown at the bottom of each channel along the
dotted line at 0.0. Sedimentation equilibrium analysis yielded weight-average molecular masses
(196.8 +− 7.8 kDa for p87–p110γ and 206.6 +− 10.2 kDa for p101–p110γ ) which were slightly
less than the values calculated from the sequences of the proteins (210.7 kDa for p87–p110γ
and 223.8 kDa for p101–p110γ ), assuming a 1:1 stoichiometry for the complexes. The K d

values determined from these data are presented in the Results section.

regulation at the membrane and by regulatory partners [21,48,62],
identified dynamic changes within three domains of p110γ
upon association with mAb(A)p110γ . Residues 382–428 in the C2
domain of p110γ were protected from HDX, most probably due
to binding of the antibody to this region. In addition, antibody–
p110γ interaction induced increased dynamics in both the helical
and the kinase domain of p110γ , probably as a result of allosteric
modifications.

Generally, C2 domains have been associated with membrane
interactions. The C2 domain of p110γ was also proposed
to be involved in the interaction of p110γ with the plasma
membrane [58]. However, recent data looking at lipid-binding
sites of class I PI3Ks have identified the C-terminal helix of
the kinase domain rather than the C2 domain to be involved in
binding to lipids [21,48,63]. Our data obtained in phospholipid
pull-down assays are in agreement with these recent data. The
necessity of the C2 domain of p110γ to act as the membrane
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Figure 7 mAb(A)p110γ affects binding of Gβ1γ 2 to p87–p110γ

Purified recombinant p87–p110γ or p101–p110γ (0.375 μg of catalytic p110γ subunit) in
the absence or presence of Gβ1γ 2 (1.25 μg) and H-Ras (1.25 μg) were subjected to IP
using mAb(A)p110γ as described in the Experimental section. Duplicates of immunoprecipitates
were separated by SDS/PAGE (10 % acrylamide) followed by IB with mAb(B)p110γ .
Co-immunoprecipitated Gβ1γ 2 and H-Ras were visualized using specific anti-Gβ (1–4) and
anti-Ras antibodies. Weak unspecific chemiluminescence signals detected by anti-Ras antibody
in PI3Kγ immunoprecipitates in the absence of Gβ1γ 2 and H-Ras are caused by light chains
of mAb(A)p110γ .

interaction module in the regulation of PI3Kγ was not
hitherto experimentally validated. Although Kirsch et al. [64]
have shown that the phospholipid binding of a p110γ fragment
comprising amino acids 740–1068 was significantly lower than
the binding of full-length p110γ , this truncation construct lacked
more than just the C2 domain (comprising residues 357–522).
In addition to phospholipid binding, C2 domains have been
reported to exhibit additional functions. In p110α, the C2
domain seems to be crucial for the inhibitory function of p85
on p110, whereas the C2 domain of p110β harbours a nuclear
localization signal motif mediating translocation into the nucleus
[11,15,65].

Our data argue for a different effect of mAb(A)p110γ on Gβγ -
mediated stimulation of p87–p110γ and p101–p110γ . HDX-MS
analyses indicate that binding of mAb(A)p110γ to the p110γ C2
domain induces allosteric changes in the helical domain. Since the
helical domain is responsible for Gβγ binding [48], it is possible
that the conformational changes directly affect the affinity of
Gβγ for p110γ . Additionally, the different potencies by which
mAb(A)p110γ inhibits Gβγ stimulation of PI3Kγ variants may be a
consequence of a distinct effect of the two non-catalytic subunits,
i.e. p87 and p101, on PI3Kγ activity (Figure 9). Alternatively,
since the p110γ helical domain is stabilized by the associated
p87 or p101 regulatory subunits [48,66], one possibility of
discriminative inhibition of PI3Kγ variants is that p101 protects

Figure 8 Discriminative inhibition of heterodimeric PI3Kγ variants by mAb(A)p110γ

The activities of p87–p110γ or p101–p110γ either in the basal condition or in the presence of Gβ1γ 2, H-Ras and Gβ1γ 2 together with H-Ras were measured in the presence of increasing
concentrations of pan-PI3K inhibitor wortmannin (A–D) or mAb(A)p110γ (E–H). (A and E) The activities of PI3Kγ variants were measured under basal conditions with 7 nM (n=2) or 14 nM (n=1)
kinase in the assay. (B and F) The activities of PI3Kγ variants (1.5 nM) were measured in the presence of EC50 values of Gβ1γ 2 (300 nM for p87–p110γ and 30 nM for p101–p110γ ). (C and
G) The activities of PI3Kγ enzymes (7 nM) were measured in the presence of EC50 values of H-Ras (450 nM for p87–p110γ and 850 nM for p101–p110γ ). (D and H) The activities of PI3Kγ

variants (1.5 nM) were measured in the presence of EC50 values of H-Ras (450 nM for p87–p110γ and 850 nM for p101–p110γ ) and EC50 values of Gβ1γ 2 (300 nM for p87–p110γ and 30 nM
for p101–p110γ ). The data shown in graphs and in tables are the mean values +− S.E.M. for at least three separate experiments.
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Figure 9 Schematic representation of putative molecular mechanisms induced by mAb(A)p110γ resulting in discriminative inhibition of the PI3Kγ variants

(A) Effect of mAb(A)p110γ on the basal states of the PI3Kγ variants. Binding of mAb(A)p110γ to the C2 domain mediates allosteric modulation of residues 551–650 in the helical domain and residues
1035–1050 located in helices kα9 and kα10 of the C-terminal lobe of the kinase domain. These helices play an important role in allosteric activation of p110γ , as was shown in the case of
Ras stimulation [35]. mAb(A)p110γ -induced structural change of the kinase domain may interfere and reduce the basal lipid kinase activities of p87–p110γ and p101–p110γ . Slight protection of
p101–p110γ basal lipid kinase activity from the inhibitory effect of mAb(A)p110γ is in line with the previous data showing stimulatory modulation of p110γ by p101 independently of its Gβγ

adaptor function [41]. (B) Effect of mAb(A)p110γ on the PI3Kγ variants stimulated by Gβ1γ 2. Binding of mAb(A)p110γ to the C2 domain of p110γ causes allosteric exposure of a region (residues
551–650) in the helical domain which also includes crucial amino acids involved in interaction with Gβγ , Arg552 and Lys553 [48]. This results in allosteric interference of mAb(A)p110γ with Gβγ

binding to p110γ . p101 was shown to be also involved in interaction with Gβγ via putative Gβγ -binding domain (Gβγ BD) located in the C-terminal region of p101 [48]. In contrast with p101,
p87 contributed much lesser (if at all) to Gβγ interaction [28,38,41,48]. In the scenario of discriminative inhibition, mAb(A)p110γ disrupts p110γ –Gβγ interaction in a similar way for each PI3Kγ

variant, whereas unaltered Gβγ binding capacity of p101 still allows effective translocation of p101–p110γ and regulatory activity. In contrast, p87–p110γ showed a reduced capability to interact
with Gβγ in the presence of mAb(A)p110γ resulting in drastic reduction in enzymatic activity. Indicated are PtdIns(4,5)P2, PtdIns(3,4,5)P3, the Ras-binding domain (RBD, residues 220–311), the C2
domain (residues 357–522), the helical domain (residues 545–725), the kinase domain (residues 726–1092) of p110γ [58] and putative Gβγ BD of p101 [48].

from allosteric changes induced by mAb(A)p110γ more than p87
does. This would explain the reduced inhibitory effect of the
antibody for the p101–p110γ heterodimer compared with p87–
p110γ and to p110γ .

Ample evidence suggests that p101 acts as a Gβγ adaptor
[26,32,37,38]. Since p101 is able to rescue the stimulatory
effect of Gβ1 mutants deficient in stimulating p110γ [40] and
enhance Gβγ -induced stimulation of lipid-associated p110γ
[41], we characterize p101 as a Gβγ -dependent regulator of
PI3Kγ enzymatic activity. HDX-MS analysis on the p101–p110γ
complex has identified two regions within the C-terminal part
of p101 to mediate PI3Kγ activation by Gβγ [48]. In contrast,
whether p87 functionally interacts with Gβγ remains an open
question. Although p87 exhibits a significant degree of homology
with p101 at the C-terminal region [27–29], up to now we could
not find any evidence that it displays a Gβγ -adapter function
or serves as a Gβγ -dependent regulator [38,40,41]. Therefore,
we suppose that in the presence of Gβγ , mAb(A)p110γ induces
structural alterations in the helical domain that result in more
drastic consequences for p87–p110γ than for p101–p110γ on
phospholipid vesicle recruitment and enzymatic activation.

Taken together, we have characterized the inhibitory action
of the monoclonal anti-p110γ antibody mAb(A)p110γ , mapped
the antibody–p110γ interface and present new structure–function

insights into PI3Kγ activity. Specific features of mAb(A)p110γ

to differentially block Gβγ -mediated association of p87–p110γ
and p101–p110γ , and hence their enzymatic activities, provide
the basis for a selective inhibition of Gβγ -initiated hormonal
pathways of PI3Kγ variants and argues for a specific Gβγ -
dependent regulatory role for p101 in PI3Kγ activation. This
supports the idea of a differential regulatory impact of p87 and
p101 on PI3Kγ activation.
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