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Abstract 44 

European large rivers are exposed to multiple human pressures and maintained as waterways for 45 

inland navigation. However, little is known on the dominance and interactions of multiple pressures 46 

in large rivers and in particular inland navigation has been ignored in multi-pressure analyzes so far. 47 

We determined the response of ten fish population metrics (FPM, related to densities of diagnostic 48 

guilds and biodiversity) to 11 prevailing pressures including navigation intensity at 76 sites in eight 49 

European large rivers. Thereby, we aimed to derive indicative FPM for the most influential pressures 50 

that can serve for fish-based assessments. Pressures’ influences, impacts and interactions were 51 

determined for each FPM using bootstrapped regression tree models. Increased flow velocity, 52 

navigation intensity and the loss of floodplains had the highest influences on guild densities and 53 

biodiversity. Interactions between navigation intensity and loss of floodplains and between 54 

navigation intensity and increased flow velocity were most frequent, each affecting 80% of the FPM. 55 

Further, increased sedimentation, channelization, organic siltation, the presence of artificial 56 

embankments and the presence of barriers had strong influences on at least one FPM. Thereby, each 57 

FPM was influenced by up to five pressures. However, some diagnostic FPM could be derived: 58 

Species richness, Shannon and Simpson Indices, the Fish Region Index and lithophilic and 59 

psammophilic guilds specifically indicate rhithralisation of the potamal region of large rivers. 60 

Lithophilic, phytophilic and psammophilic guilds indicate disturbance of shoreline habitats through 61 

both (i) wave action induced by passing vessels and (ii) hydromorphological degradation of the river 62 

channel that comes along with inland navigation. In European large rivers, inland navigation 63 

constitutes a highly influential pressure that adds on top of the prevailing hydromorphological 64 

degradation. Therefore, river management has to consider river hydromorphology and inland 65 

navigation to efficiently rehabilitate the potamal region of large rives. 66 

67 
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1. Introduction 68 

Large rivers are the most severely impacted ecosystems on earth due their manifold exploitations 69 

and modifications to serve multiple human demands (Malmqvist and Rundle, 2002; Nõges et al., 70 

2015). Up to the late 1980s, river assessments focused primarily on water quality, in particular 71 

eutrophication and pollution by chemicals and heavy metals (reviewed by Meybeck and Helmer, 72 

1989). Meanwhile, the focus has shifted to ecological quality as alterations of hydrology, 73 

morphology, habitat availability and connectivity have been recognized as key pressures on surface 74 

water bodies (EEA, 2012; Melcher et al., 2007). 75 

More recently, the importance of impacts by multiple pressures and their interactions became 76 

increasingly acknowledged and addressed by research (Hering et al., 2015; Jackson et al., 2016; 77 

Milošević et al., 2018; Radinger et al., 2016; Segner et al., 2014), as single pressures could barely 78 

account for the vast amount of observed ecosystem changes (Vaughan et al., 2009). For example, 79 

90% of lowland rivers in 14 European countries are affected by a combination of four pressure 80 

groups referring to alterations of water quality, hydrology, morphology and connectivity (Schinegger 81 

et al., 2012). Disentangling the effects of these pressure groups and their interactions on fish 82 

assemblages were broadly explored since then (Schinegger et al., 2016, 2013; Trautwein et al., 2013). 83 

However, pressure groups subsume common types of degradation which might neglect intensity and 84 

direction of the underlying single pressures (Schinegger et al., 2012). Further, local-scale pressure 85 

variables can have a high influence on fish communities (Sagouis et al., 2017). Therefore, knowledge 86 

on the effects of single pressures is required to provide management advice and enhance restoration 87 

success (e.g., Friberg et al., 2016). Moreover, previous studies primarily focused on small and 88 

medium sized rivers, while large rivers were rather underrepresented (Schinegger et al., 2013). Since 89 

large rivers constitute complex hydrological, ecological, economic, political and social systems 90 

(Campbell, 2016), they receive multiple impacts both from the upstream catchment and at the reach 91 

scale (Wolter et al., 2016). Therefore, in large rivers, the lack of knowledge on dominance, 92 

interactions and impacts of human pressures constitutes a particular research gap. 93 
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Assessing the impact of multiple pressures across large rivers is challenging, because sampling 94 

methods are extremely resource-demanding and not standardized and data availability is limited 95 

(Milošević et al., 2018; Nõges et al., 2015; Oliver and Morecroft, 2014).Not surprisingly, large rivers 96 

are significantly under-researched. Hence, extraordinarily little is known about impacts and 97 

interactions of multiple pressures in large rivers (Hering et al., 2015). 98 

A common approach to assess effects of pressures is the comparison of impacted sites with 99 

reference sites resembling unimpaired conditions (e.g., Pont et al., 2006). This approach works well 100 

in small rivers and streams, where less disturbed or near natural reference reaches still exist. In 101 

contrast, almost all large rivers are so heavily degraded (e.g., Malmqvist and Rundle, 2002) that near 102 

natural reference channel reaches do not exist anymore (Birk et al., 2012). For instance, in Europe 103 

nearly all large rivers are rectified, channelized and regulated, and hence substantially modified in 104 

hydromorphology (e.g., Petts et al., 1989). Channelization invokes artificial embankment and 105 

steepening of shorelines, thus a loss of important shallow nursery areas for fish. Further, 106 

channelization concomitantly increases flow velocity as a result of the straightened and deepened 107 

river channel. Together with meander cut-offs and levee constructions these changes result in the 108 

wide-spread loss of periodically inundated floodplains (e.g., Strayer and Findlay, 2010). As a 109 

consequence of the high overall degradation of large rivers, a comparative assessment approach was 110 

chosen along a gradient of more or lesser disturbed river reaches to identify single pressure impacts 111 

on fish assemblages (e.g., Clapcott et al., 2012). 112 

Large rivers are commonly maintained as waterways for commercial navigation. Navigation-induced 113 

physical forces are well-known to impact on various riverine taxa mainly in shallow areas along the 114 

banks (Gabel et al., 2017; Söhngen et al., 2008) that often represent suitable habitats for 115 

reproduction (Wolter et al., 2004). Impacts of navigation-induced forces have in particular been 116 

shown for aquatic plants (Ali et al., 1999; Asplund and Cook, 1997; Murphy and Eaton, 1983), benthic 117 

invertebrates (e.g., Gabel et al., 2012), and juvenile fish (e.g., Arlinghaus et al., 2002; Huckstorf et al., 118 

2011; Wolter and Arlinghaus, 2003). Hydraulic forces causing drawdown (Liedermann et al., 2014), 119 
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shear stress and dewatering (Wolter and Arlinghaus, 2003) affect important shallow nursery areas of 120 

fish larvae and juveniles along the banks (Huckstorf et al., 2011). Vessel-induced return currents 121 

commonly exceed the critical swimming speed of young fish resulting in dislocation (Wolter and 122 

Arlinghaus, 2003), stranding (reviewed by Nagrodski et al., 2012) and direct mortality (Adams et al., 123 

1999; Pearson and Skalski, 2011). Accordingly, inland navigation constitutes a key limiting factor for 124 

littoral fish recruitment in waterways (Wolter and Arlinghaus, 2003). Therefore, navigation intensity 125 

provides a significant pressure on fish assemblages of large rivers, which moreover interacts with the 126 

hydromorphological degradation of the river channel. Surprisingly, inland navigation has not been 127 

considered in analyzes of multiple pressures so far, except the study by Leclere et al. (2012). The 128 

authors modeled occurrence of fish species based on environmental parameters. They reported that 129 

inland navigation and physico-chemical disturbances both negatively influence the occurrence of 130 

juveniles of selected fish species (Leclere et al., 2012).  131 

Most studies on the impacts of “multiple” pressures considered pairwise interactions of two 132 

pressures based on predefined hypotheses (reviewed in Crain et al., 2008; Darling and Côté, 2008; 133 

Jackson et al., 2016). Further, such studies often aimed to untangle the direction of the expected 134 

interaction (e.g., antagonistic, synergistic, additive; reviewed in Piggott et al., 2015). In contrast, this 135 

study aimed to identify dominant pressures and their potential interactions in large rivers, rather 136 

than addressing specific interactions and their directions. To our knowledge this is the first study, 137 

which explicitly considered potential additional effects of inland navigation on fish assemblages in 138 

relation to the other prevailing pressures on European large rivers.  139 

We analyzed the effects of 11 ranked pressure variables on ten fish population metrics (FPM) 140 

referring to biodiversity (e.g., species richness, Simpson Index), river type specific species 141 

composition (Fish Region Index, FRI), and densities of sensitive life history traits (e.g., rheophils, 142 

lithophils). Thereby, we expected to identify indicative FPM for specific types of degradation, serving 143 

as valuable ecological tools for the fish-based assessment of large rivers. Both pressure variables and 144 

FPM (fish samplings were conducted 250 times in total) were available for 76 sites in eight European 145 



7 
 

large rivers. It was hypothesized: i) that inland navigation intensity appears as a significant pressure 146 

on fish assemblages in large rivers and ii) that impacts of vessel operation positively correlate with 147 

hydromorphological degradation of the river channel. The expected impacts of inland navigation 148 

comprise decreasing densities of habitat-sensitive guilds that require shoreline areas for 149 

reproduction. Hence, it was expected that Inland navigation appears as a very specific pressure, 150 

which accordingly offers potential for targeted rehabilitation of large rivers and the recovery of the 151 

inherent fish communities. 152 

153 
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2. Methods 154 

2.1 The large river database 155 

The large river database (LRDB) has been compiled within the EU project “Improvement and Spatial 156 

Extension of the European Fish Index” (EFI+, EC 044096) and further completed since. It compiles 157 

2693 fish samplings conducted at 358 sampling sites in 16 European large rivers, i.e., rivers with a 158 

catchment size >10,000 km² (Berg et al., 2004). Samplings were carried out using different sampling 159 

methods, in different seasons and during both day and night. From this vast and unique dataset of 160 

fish samplings across European large rivers, a representative subset of comparable sites and 161 

samplings was extracted as follows: We selected fish samplings that (i) were obtained by boat 162 

electrofishing along the banks during daytime, which was found well representing the fish 163 

assemblages of large rivers (Zajicek and Wolter, 2018), (ii) originated from large rivers draining into 164 

the North Sea and Baltic Sea to ensure generally comparable fish species inventories (e.g., 165 

Sommerwerk et al., 2017), (iii) conducted under low flow conditions in autumn to avoid seasonal bias 166 

(Schmutz et al., 2007), (iv) had covered a minimum fished length of 100 m and (v) captured at least 167 

100 fish (Flotemersch et al., 2011). The resulting dataset used for analyzes consisted of 250 fish 168 

samplings assembled at 76 sites in eight large rivers between 1996 and 2008 (Fig. 1). The average 169 

length fished per site was 1659 ± 100 m (mean ± standard error). The area fished varied according to 170 

the size of the anode used and was on average 5287 ± 456 m² per site. Therefore, all samplings have 171 

been standardized as fish densities per 100 m² prior analyses. Fifty percent of the sites were sampled 172 

only once, 93% less than 10 times, and 7% between 10 and 26 times. The vast majority (96%) of the 173 

sampling sites was at least 1 km apart of each other and the distance between sampling sites by far 174 

exceed 1 km in most cases (compare x-axis in Fig. 2). All sites were situated in comparable river 175 

reaches allowing for representative fish based-assessments (Wolter et al., 2016). 176 

Each sampling site was characterized by a set of 26 pressure variables ranked on a scale from 1 to 5 177 

associated with little (class 1), intermediate (class 3) and severe (class 5) alteration of the natural 178 

state, respectively. Pressure ranks were assigned by the local water authorities in accordance with 179 
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national survey standards and the requirements of the European Water Framework Directive 180 

(2000/60/EC, WFD) and provided with the fish data. Pressure variables with insufficient gradient 181 

among sites, i.e., with >95% of the observations in the same class, have been excluded prior analyses. 182 

Ten pressure variables remained (Table 1 and Fig. 2). In addition, for each site the intensity of inland 183 

navigation was determined based on counts of annually passing cargo vessels at the nearest ship 184 

lock. Vessel counts at ship locks were provided by the Water and Navigation Authority (wsv.de) in 185 

Germany and by the Ministry of Infrastructure and the Environment (rijkswaterstaat.nl) in The 186 

Netherlands. Navigation intensity has been classified in accordance to the other pressures as 1= 0 –187 

 3000 passing vessels per year, 3= 3.001 – 33.000 and 5= 33.001-133.000. 188 

2.2 Data analyzes 189 

For each sampling, we determined ten diagnostic fish population metrics (FPM) for the ecological 190 

status of river systems (Noble et al., 2007; Welcomme et al., 2006; Wolter et al., 2013): Densities of 191 

eurytopic (EURY), rheophilic (RH), lithophilic (LITH), phytophilic (PHYT) and psammophilic (PSAM) fish 192 

as well as species richness (SPR), Shannon Index (SHA), Evenness (EVE), Simpson Index (SIM), and the 193 

Fish Region Index (FRI). All FPM were calculated based on standardized fish densities (fish per 100 m² 194 

sampled area, referred to as Ind. / 100 m²). The assignment of fish species to guilds and to the 195 

species-specific Fish Region Index followed the classification provided by Scharf et al. (2011). For 196 

species not listed there we used Dußling et al. (2004) and EFI+ Consortium (2009) (compare 197 

appendix, Table A.1). 198 

Five FPM refer to habitat preferences for flow velocities (rheophilic and eurytopic fish) and for 199 

spawning substrates (lithophilic, phytophilic and psammophilic fish). Rheophilic fish prefer flowing 200 

river reaches and are thus considered sensitive to the impairment of fluvial dynamics and habitats. In 201 

contrast, eurytopic fish show no flow preferences and are further tolerant to low oxygen saturation. 202 

Therefore, high densities of eurytopic fish are commonly considered as indicators for the degradation 203 

of natural river dynamics (Dußling et al., 2004b; Wolter and Vilcinskas, 1997). However, in large 204 

rivers, low densities of eurytopic fish could as well indicate degradation through rhithralisation of 205 
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typically slow flowing potamal river reaches. Lithophilic fish are gravel spawners with benthic larvae. 206 

They are considered most sensitive to the impairment of hydromorphological processes, especially of 207 

sediment sorting and the provision of coarse gravel (Wolter et al., 2016). Psammophilic (sand 208 

spawning) and phytophilic (plant spawning) fish also form guilds with obligatory spawning substrate 209 

requirements. Both guilds are sensitive to habitat degradation, especially to losses of shallow littoral 210 

areas with low flow conditions and submerged and emerged macrophytes. Plant spawners further 211 

suffer from the loss of periodically inundated floodplain habitats. Guild densities were calculated for 212 

each sample as the number of fish with the respective flow or habitat preferences per 100 m². 213 

The other five FPM refer to measures of alpha diversity, dominance structure and river type specific 214 

species composition: Species richness, the Shannon Index and the Evenness according to Spellerberg 215 

(2008), the Simpson Index (Somerfield et al., 2008) and the whole-sample Fish Region Index (Dußling 216 

et al., 2004). The FRI is a species-specific metric, which characterizes the preferred longitudinal 217 

distribution of a species within a river course, from the trout region in the headwaters to the ruffe-218 

flounder region close to the estuary. It serves to characterize river reach specific fish communities 219 

(e.g., Schmutz et al., 2000). Species-specific FRI values have been derived from empirical occurrence 220 

data for all common European fish species (Dußling et al., 2004; Wolter et al., 2013, appendix Table 221 

A.1). The whole-sample or total FRI was calculated according to Dußling et al. (2004) based on the 222 

species-specific FRI and abundance of each species captured at a sampling site. It describes the 223 

correspondence of the entire fish assemblage of a sampling site to the respective river region. The 224 

total FRI is a generic index, which can be applied in different biogeographic regions. In large rivers, 225 

the total FRI (referred to as FRI in our study) is especially valuable for fish-based assessments as it 226 

indicates both rhithralisation and potamalisation, i.e., bi-directional hydromorphological changes 227 

(Schmutz et al., 2000; Wolter et al., 2013). 228 

The metrics were calculated for each sample as follows: 229 

Species richness (SPR) = number of species 230 



11 
 

 231 

 232 

 233 

 234 

where ni = n individuals of species i; N = all individuals per sample; FRIi = FRI of species i; S²FRI = 235 

variance of the FRI of species i (Wolter et al., 2013). 236 

2.3 Statistics 237 

Boosted regression tree (BRT) models were applied to identify most influential pressures and their 238 

interactions on the fish population metrics (FPM). BRTs determine the relative influence of 239 

explanatory variables on a response variable as the contribution of each explanatory variable in 240 

reducing the overall model deviance (Lewin et al., 2014). Major advantages of BRTs are their ability 241 

to handle collinearity, nonlinearity, outliers and to automatically identify interactions between 242 

explanatory variables (Elith et al., 2008). BRTs therefore constitute a powerful tool to investigate 243 

relationships between the environment and ecological responses (Dahm and Hering, 2016; Pilière et 244 

al., 2014; Segurado et al., 2016) and hence to identify the impact of multiple pressures in aquatic 245 

environments (Feld et al., 2016; Lewin et al., 2014). To model the continuous response variables (the 246 

FPM), a BRT model with a Gaussian distribution was selected as loss function for minimizing squared 247 

errors. To improve homogeneities of variances, all guild densities were log(x+1) transformed, EVE 248 

was arcsine-, SHA was exponential-, and SIM was arcsine-exponential- transformed. To obtain robust 249 

estimates, we followed recommendations of Feld et al. (2016) and Elith et al. (2008) and set bag-250 
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fraction to 0.7, tree complexity to 5 and learning rate to 0.001 so that at least 1000 trees contributed 251 

to the final model. All BRTs were modeled with the default 10-fold cross-validation. The 11 pressure 252 

variables (Fig. 2) were included as ordered factors. The relative importance (%) of each pressure 253 

variable in each BRT was quantified based on the number of times each of the variables was used for 254 

splitting, weighted by the squared improvement at each split and averaged over all trees (Elith et al., 255 

2008). We calculated 500 parametric bootstrap simulations of each BRT model to obtain confidence 256 

intervals (95%-CI, percentile method, Carpenter and Bithell, 2000) of the relative importance of each 257 

explanatory variable and its effects on the response variable. Model quality (Mac Nally et al., 2017) 258 

of each BRT model was determined as goodness-of-fit (R2
COR) based on the linear correlation 259 

between fitted and observed values (Cameron and Windmeijer, 1996). 260 

Data were analyzed in R 3.3.1 (R Development Core Team, 2016) using the R packages ‘gbm’ (version 261 

2.1.1; Ridgeway, 2016) and ‘dismo’ (version 1.1-4; Hijmans et al., 2016) to calculate the BRTs, and the 262 

R package ‘boot’ (version 1.3-19, Canty and Ripley, 2017) to calculate bootstrap simulations. Figure 1 263 

was drawn using ArcMap, version 10.5.1. 264 

265 
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3. Results 266 

3.1 Catch composition 267 

The 250 samplings at 76 sites in 8 large rivers yielded 148,964 fish belonging to 55 species (including 268 

three lamprey species referred to as fish in the following). The most abundant species were roach 269 

Rutilus rutilus, bleak Alburnus alburnus and perch Perca fluviatilis, which contributed 26%, 14% and 270 

13% to the total catch, respectively (appendix, Table A.2). The most frequently occurring species 271 

were roach, perch and ide Leuciscus idus captured in 99.6%, 98.8% and 94.4% of all samplings, 272 

respectively (see appendix, Table A.2 for detailed catch statistics). 273 

Eurytopic fish dominated the total catch with 67% of all fish. The habitat sensitive ecological guilds of 274 

rheophils, lithophils, phytophils and psammophils comprised 32%, 11%, 5% and 8% of the total catch, 275 

respectively. Eurytopic and rheophilic fish were captured in all samplings and at all sampling sites. 276 

Lithophilic, phytophilic and psammophilic fish were captured in 92% 87% and 59% of all samplings, 277 

and at 95%, 88% and 75% of all sites, respectively (see appendix, Table A.3 for detailed guild 278 

composition). 279 

Rivers Rhine, Lek and Meuse had the lowest average densities of fish in all of the guilds studied 280 

(compare Fig. 3 for the between-river variation of guild densities and appendix, Fig. A1 for a site-281 

specific overview). Rivers Havel and Spree had the lowest densities of fish in the sensitive guilds of 282 

rheophils (average: <= 1.71 Ind. / 100 m²) and lithophils (<= 0.25 Ind. / 100 m²), low densities of 283 

psammophils (<= 0.06 Ind. / 100 m²) and higher densities of eurytops (>= 24.84 Ind. / 100 m²). The 284 

rivers Rhine and Meuse had the lowest densities of psammophils (<= 0.02 Ind. / 100 m²). Thus, these 285 

five rivers, Rhine, Lek, Meuse, Havel and Spree experienced the highest overall degradation indicated 286 

by the guild composition. Rivers Elbe and Oder had higher densities of fish in most sensitive guilds 287 

(rheophils: >=7.79 Ind. / 100 m², lithophils: >= 1.98 Ind. / 100 m², psammophils >= 1.87 Ind. / 100 m²) 288 

than the aforementioned rivers. Phytophilic fish were more abundant in the rivers Elbe, Ems, Havel, 289 

Spree and Oder (>= 1.66 Ind. / 100 m²) than in the rivers Rhine, Lek and Meuse (<= 0.25 290 
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Ind. / 100 m²). Highest densities of rheophils (23.45 Ind. / 100 m²), lithophils (12.91 Ind. / 100 m²) 291 

and psammophils (9.36 Ind./100 m²) were estimated in the River Ems. However, in the River Ems, the 292 

average Fish Region Index was below 6.5 indicating a more rhithral fish assemblage corresponding to 293 

the so-called barbel river region. All other river systems had comparable mean Fish Region Indices 294 

(>6.5) indicating similar fish assemblages corresponding to the common bream river region. 295 

Biodiversity metrics indicated degradation trends widely similar to the guild composition (e.g., lower 296 

species richness, Shannon Index, Evenness and Simpson Index and a higher Fish Region Index in the 297 

rivers Rhine, Meuse, Havel and Spree compared to the rivers Ems, Elbe and Oder) but the between-298 

river variability was much less pronounced (Fig. 4). The River Lek had the highest Evenness of all 299 

rivers and a higher Simpson Index than the rivers Rhine, Meuse, Havel, Spree and Oder. 300 

3.2 Modeled pressure influences 301 

Variation between classes of single pressures was as expected rather low (Fig. 2). Across all 11 302 

pressures considered, pressure class 1, 3 and 5 indicating little, intermediate and high alteration 303 

occurred on average at 31 ± 11% (mean ± SE), 36 ± 10% and 41 ± 14%) of the sampled sites, 304 

respectively (Table 1). Goodness-of-fit (R²COR) of 500 bootstraps of each regression tree model ranged 305 

between 0.54 and 0.88 and was highest for models fitting Evenness and the eurytopic and 306 

phytophilic guilds (means: 0.88, 0.84, 0.83, respectively) and lowest for the Fish Region Index, species 307 

richness and the psammophilic guild (0.54, 0.60, 0.64, respectively; compare Table 2). 308 

Increased flow velocity, navigation intensity and loss of floodplains had the strongest mean relative 309 

influence (39%, 16% and 11% respectively) on all ten fish population metrics (FPM). Thereby, mean 310 

influence of increased flow velocity was higher on the five biodiversity metrics (55%) than on the five 311 

guild densities (23%) and vice versa for the influence of navigation intensity (23% on guild densities 312 

and 10% on biodiversity metrics). These three pressures as well as increased sedimentation, 313 

channelization, organic siltation, the presence of artificial embankments and the presence of barriers 314 

downstream and within a 5 km upstream segment had a relative influence >10% on at least one FPM. 315 

Thereby, each FPM was strongly influenced by one to five pressures (Table 2). 316 
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Shannon and Simpson indices were strongly influenced (68% and 62%, respectively) by one 317 

dominating pressure only: increased velocity. Species richness and the Fish Region Index were 318 

likewise dominated by the influence of increased velocity (54% and 70%), but navigation intensity 319 

had also a strong influence (19%) on species richness, and the loss of floodplains had also a strong 320 

influence on the Fish Region Index (16%). The influence of increased velocity dominated on lithophilic 321 

(40%) and psammophilic fish (49%) but these FPM were also both strongly influenced by navigation 322 

intensity (20% and 25%) and by the loss of floodplains (16% and 10%). Densities of phytophilic fish 323 

were strongly influenced by navigation intensity (34%) and organic siltation (33%). The influence of 324 

inland navigation dominated on densities of rheophilic fish (24%) but was followed by equally strong 325 

influences of barriers downstream (15%), channelization (13%), loss of floodplains (12%) and by the 326 

presence of barriers within a 5 km upstream segment (11%). The Evenness and densities of eurytopic 327 

fish were each comparably strongly influenced by five pressures (Table 2). 328 

Six pairwise interactions between pressures affected each fish population metric (FPM, Table 3). The 329 

most frequent pairwise interactions occurred between navigation intensity and loss of floodplains 330 

and between navigation intensity and increased velocity, both affecting 80% of all FPM. Further, the 331 

60 interactions identified in total were dominated by the pressures increased velocity (involved in 332 

47% of the interactions), navigation intensity (38%) and loss of floodplains (35%). 333 

Pressure impacts were both positive and negative, depending on the fish population metric affected. 334 

Fig. 5 and Fig. 6 illustrate the impacts on the guild compositions and on biodiversity metrics, 335 

respectively. For example, increased flow velocity was associated with significantly higher 336 

biodiversity, higher densities of psammophils and lithophils, a lower Fish Region Index and lower 337 

densities of eurytops, all indicating rhithralisation. Inland navigation was associated with a significant 338 

decline in densities of lithophils and phytophils already at intensities of >3000 vessels per year, 339 

corresponding to an average of >8 cargo vessels per day. Rheophils, psammophils, eurytops and 340 

biodiversity (species richness, Shannon Index, Simpson Index) significantly declined at high navigation 341 

intensities, i.e. at >33,000 vessels per year or an average of >90 vessels per day. A partial loss of 342 
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floodplains was associated to significantly lower densities of rheophilic and phytophilic fish and to a 343 

higher Evenness. A total loss of floodplains was associated with significantly lower densities of 344 

eurytopic fish and higher densities of lithophilic fish. Densities of rheophilic fish significantly declined 345 

in response to the presence of barriers (both upstream and downstream). 346 

347 
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4. Discussion 348 

This study aimed to identify key pressures and their interactions that contribute to lower densities of 349 

fish in diagnostic guilds and to lower biodiversity in European large rivers while explicitly accounting 350 

for inland navigation. It further aimed to derive diagnostic fish population metrics (FPM) for key 351 

pressures in large rivers. Increased velocities, navigation intensity and loss of floodplains had the 352 

highest influences on FPM. Increased flow velocities resulting from shortening and straightening 353 

rivers accompanied by faster discharging runoff downstream appeared as the most dominating 354 

pressure, strongly fostering higher biodiversity and higher densities of fish relying on sediment 355 

sorting for spawning (lithophils, psammophils). Navigation intensity of more than eight vessels per 356 

day resulted in density declines of lithophilic and phytophilic fish. This finding corresponds 357 

surprisingly well with results obtained by Holland (1987) using experimental air exposure to study 358 

dewatering effects on walleye (Stizostedion vitreum) and pike (Esox lucius) larvae: A significant 359 

mortality due to dewatering events was observed at a dewatering frequency of 3 h, corresponding to 360 

the simulated passage of eight commercial tows per day (Holland, 1987). Floodplain degradation 361 

resulted in lower densities of eurytops, rheophils and phytophils. Moreover, the high influence of 362 

these three pressures was resembled in the most frequent interactions. Further important pressures 363 

identified like increased sedimentation, channelization, organic siltation, the presence of artificial 364 

embankments and migration barriers were well in line with the findings of Schinegger et al. (2012), 365 

with the latter becoming significantly improved by adding the impact of inland navigation to the 366 

pressures on large rivers. Among others, the strictly comparative analytical design as well as the 367 

special consideration of navigation intensity allowed identifying FPM that were diagnostic for certain 368 

types of human alterations in large river systems. Hence, our study contributes to disentangle the 369 

effects of multiple pressures in large rivers, even if most of the significant pressures impacted more 370 

than one fish population metric and most fish population metrics significantly responded to more 371 

than one pressure. 372 
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4.1 Limitations of the study 373 

We acknowledge some limitations of our study in regard to the pressure variables analyzed. Several 374 

pressures had to be excluded, because their rank of severity did not vary within rivers and was also 375 

very low between rivers. In addition, the gradient of potential impacts was generally limited, because 376 

near natural and low disturbed sites were lacking in the large rivers studied. Accordingly, several 377 

pressures on river fishes reported from smaller rivers (e.g., Schinegger et al., 2012) could not be 378 

considered and analyzed here. Hence, their potential impact might have been underestimated. 379 

However, the overall rather severe degradation and little variation along river courses constitute a 380 

key character of the rather monotonous waterways. All European large rivers are highly degraded 381 

(e.g., Aarts et al., 2004), which was empirically confirmed here by very low densities of all sensitive 382 

reproduction guilds in all river systems studied. 383 

Secondly, the classification of pressure ranks was conducted by the local water authorities and 384 

delivered with the site descriptions. In Europe, there are more than 100 assessment methods for 385 

river hydromorphology in use (Belletti et al., 2015). We have neither information, which particular 386 

method has been used to assess the different sites, nor on how detailed single variables have been 387 

recorded. We still know that experts can reliably discern between suitable and unsuitable habitat 388 

conditions, while they are less precise in addressing differences at finer scales (Radinger et al., 2017). 389 

Therefore, we cannot exclude that other experts would have classified a certain pressure state 390 

differently. However, at this spatial scale and reporting level on pressures, our data set still remains 391 

the best available data set for European large rivers. 392 

4.2 Between-river variation of fish population metrics 393 

All sampled sites, except those located in the river Ems, belonged to the same longitudinal river 394 

region (mean Fish Region Index >6.5) and therefore indicate comparable fish assemblage 395 

compositions. Hence, the observed between-river variation of the fish population metrics indicates a 396 

higher degradation of hydromorphology in the rivers Rhine, Lek, Meuse, Havel and Spree than in the 397 
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rivers Elbe and Oder. Despite representing another river region, the hydromorphological degradation 398 

of the river Ems seemingly corresponds to the rivers Elbe and Oder. However, the River Ems provided 399 

the majority of sites that are not affected by commercial navigation, a rather unique situation in 400 

large rivers.  401 

The rivers Lek, Rhine and Meuse had all the lowest densities of all sensitive reproduction guilds and 402 

comparable species richness. However, the river Lek had a higher Evenness and Simpson Index than 403 

rivers Rhine and Meuse, resembling a comparable number of species with lower densities of fish in 404 

the river Lek than in rivers Rhine and Meuse. 405 

4.3 Highly influential pressures 406 

The potamal region of large rivers is typically dominated by generalist species (Aarts and Nienhuis, 407 

2003), which are well adapted to higher temperatures, nutrient loads and lower oxygen content and 408 

thus, are also successful in disturbed ecosystems (Pool et al., 2010). Nevertheless, our study 409 

indicated higher biodiversity with higher flow velocities in large rivers. High velocities can exceed the 410 

critical swimming speed of juvenile fish, with rheophilic species tolerating higher flow velocities than 411 

eurytopic species (Del Signore et al., 2014), resulting in a proportional increase of rheophils. 412 

Accordingly, increased velocities contributed to decreased density of eurytopic fish and particularly 413 

strongly to a decreased FRI which indicates rhithralisation (Wolter et al., 2013), i.e., a change from 414 

naturally slow to faster flowing conditions. Hence, increased velocities provide favorable habitat 415 

conditions for rheophilic fish species which contribute to higher diversity. Similarly, in reconnected 416 

meanders of a large river, Lorenz et al. (2016) observed increased diversity of rheophilic 417 

macroinvertebrates due to higher flow velocities therein. In our study, increased velocities were 418 

found having considerably higher influences on biodiversity metrics than on guild densities. However, 419 

lithophilic and psammophilic fish were also both strongly positively influenced by increased 420 

velocities. Hence, both lithophilic and psammophilic fish constitute indicative functional metrics for 421 

the inherent sediment sorting caused by high flow velocities. Consequently, biodiversity in large 422 

rivers (species richness, the Shannon Index, the Simpson Index) and the Fish Region Index constitute 423 
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the most sensitive fish population metrics and densities of lithophils and psammophils constitute the 424 

most sensitive functional metrics for rhithralisation as a consequence of the hydrological degradation 425 

of the rather stagnant potamal region of large rivers. 426 

The Navigation-induced Habitat Bottleneck Hypothesis (NBH, Wolter and Arlinghaus, 2003) states 427 

that littoral fish recruitment is limited in waterways due to navigation-induced hydrodynamic forces 428 

along the banks. Correspondingly, densities of all guilds requiring shallow structured habitats for 429 

reproduction most strongly declined in response to navigation intensity. Our study further refined 430 

the NBH by indicating that limited recruitment of juvenile fish along shoreline habitats propagates to 431 

lower densities of habitat-sensitive fish in the adult stages. Exemplified by the River Rhine with its 432 

prevalent floodplain loss, channelization and artificial embankments, it was further indicated that 433 

commercial navigation inevitably co-occurs with these pressures mentioned and that inland 434 

navigation impacts on top of the degradation of river hydromorphology. Concomitantly, navigation 435 

intensity was part of all most frequent interactions, affecting 80% of fish population metrics in 436 

combination with increased velocity and also affecting 80% of fish population metrics in combination 437 

with the loss of floodplains. Therefore, inland navigation is a highly influential and river-type specific 438 

pressure in large rivers which moreover interacts with the degradations of river hydromorphology. 439 

Further, densities of the sensitive reproduction guilds of lithophils and phytophils were strongly 440 

influenced by commercial navigation and declined already at intensities >8 vessels per day. Densities 441 

of psammophils were also very low in all navigated rivers, indicating that psammophilic fish were 442 

similarly affected by vessel-induced hydrodynamic forces. Therefore, low densities of lithophils, 443 

phytophils and psammophils constitute most indicative metrics for the disturbance of shoreline 444 

spawning areas through both (i) wave action induced by passing vessels and (ii) hydromorphological 445 

degradation of the river channel that comes along with inland navigation. However, the influence of 446 

the solely vessel-induced wave action was shown to be strongest on phytophilic fish.  447 

Recently, the presence of natural floodplain areas has been associated with an overall higher 448 

ecological status of European rivers (Grizzetti et al., 2017). Floodplains are less disturbed by hydraulic 449 
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forces caused by inland navigation and they support the exchange of terrestrial and aquatic 450 

resources. Therefore, floodplains serve as an expansion of the littoral shoreline (Strayer and Findlay, 451 

2010) providing additional spawning and nursery habitats that increase abundances of adult and 452 

juvenile fishes (Lorenz et al., 2013). Moreover, floodplains increase the diversity of fish larvae after 453 

flood events (Silva et al., 2017) and offer favorable conditions for macrohabitat generalists (Galat and 454 

Zweimüller, 2001; Schomaker and Wolter, 2011). High flow intensities and frequencies that result in 455 

extensive flooding of adjacent floodplains are related to higher species richness (Poff et al., 1997). 456 

Floodplains are however often degraded in large rivers and detached from the rivers’ main channels 457 

by levees. Correspondingly, the loss of floodplains was associated with lower densities of eurytops, 458 

rheophils and phytophils in this study. Densities of lithophilic fish appeared to increase when 459 

floodplains were heavily degraded. This is plausible as shorelines are often stabilized with hard 460 

substrate, e.g, rip-rap structures (stones/boulders) that might at least partially serve for the 461 

reproduction of lithophilic species (Erős et al., 2008). The loss of floodplains further contributed to a 462 

decreased Fish Region Index indicating rhithralisation, mainly because levees commonly co-occur 463 

with straightened river courses, which in turn increase flow velocity, but primarily reduce habitat 464 

complexity and the availability of shelter along the banks.  465 

Densities of eurytopic and rheophilic fish were comparably strongly influenced by five and four 466 

pressures, respectively. Eurytopic fish decreased in response to artificial embankment, increased 467 

velocity, loss of floodplains and navigation intensity. This finding firstly suggests that densities of 468 

eurytopic fish are also prone to decline if multiple pressures including inland navigation affect the 469 

potamal region of large rivers. Secondly, high densities of generalist species constitute less suitable 470 

fish population metrics to indicate the impacts of one dominating pressure. Instead, high densities of 471 

eurytops rather indicate the prevalence of multiple pressures and thus, the overall 472 

hydromorphological degradation of large rivers. However, lowered densities of eurytopic fish in the 473 

naturally slow flowing potamal river region can also indicate rhithralisation (as was indicated by a 474 

decline in densities of eurytopic fish in response to increased velocity). Rheophilic fish were 475 
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comparably strongly influenced by navigation intensity, loss of floodplains, channelization and by 476 

upstream and downstream barriers. Barriers constitute a strong pressure preventing migration of 477 

rheophilic fish (e.g., Branco et al., 2017), but in their impoundments especially change the 478 

hydromorphological conditions towards lower flow velocities, sedimentation of fines, and loss of 479 

coarser spawning substrates.  480 

4.4 Conclusions 481 

Inland navigation constitutes a hitherto commonly neglected but highly influential pressure in 482 

European large rivers. In large rivers, inland navigation has an influence on fish assemblages 483 

comparable to hydromorphological alterations. Vessel operation contributes to declines of fish 484 

densities and biodiversity in addition to the hydromorphological degradation of the river channel and 485 

further interacts with the prevailing hydromorphological alterations. Reproduction guilds (densities 486 

of lithophilic and phytophilic fish) were most sensitive to navigation impacts but psammophils, 487 

rheophils, eurytops and biodiversity were also affected. The loss of floodplains has integral 488 

consequences for the ecological integrity of large rivers due to vanishing habitat complexity 489 

providing shelter, nursing and spawning habitats. Increased velocity as a consequence of 490 

channelization and bank stabilization results in rhithralisation of the potamal region of large rivers. 491 

Increased biodiversity (species richness, Shannon Index, Simpson Index), a decreased Fish Region 492 

Index and increased densities of lithophilic and psammophilic guilds are indicative fish population 493 

metrics for rhithralisation of the potamal region of large rivers. Declines in lithophilic, phytophilic and 494 

psammophilic guilds indicate disturbance of shoreline habitats through both (i) wave action induced 495 

by passing vessels and (ii) hydromorphological degradation of the river channel that comes along 496 

with inland navigation. High densities of the eurytopic guild indicate the influence of multiple 497 

pressures, but in large rives, eurytops can also decline as a consequence of rhithralisation. Inland 498 

navigation requires particular attention in river rehabilitation and management. Therefore, a holistic 499 

river management has to consider both river hydromorphology and inland navigation to achieve a 500 

more efficient rehabilitation of the potamal region of large rives. 501 
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Table 1. Pressure variables: classification and description 782 

Pressure Abbreviation Classes Labels Sites [%] Description 

Barriers catchment down BCD 1 / 3 / 5 No / Partial / Yes 18 / 82 / 0 Barriers within the catchment downstream 

Barriers segment up  BSU 1 / 3 / 5 No / Partial / Yes 93 / 0 / 7 Barriers within 5km upstream 

Channelization  CHA 1 / 3 / 5 No / Intermediate / Straightened 7 / 5 / 88 Alteration, straightening of natural river plan form 

Cross section  CRS 1 / 3 / 5 No / Intermediate / U-profile 0 / 5 / 95 Alteration, enlargement of cross-section 

Embankment  EMB 1 / 3 / 5 No or local / Permeable / Impermeable 0 / 22 / 78 Artificial embankment 

Loss of Floodplains FLO 1 / 3 / 5 Little / Severe / Extinct 12 / 21 / 67 Floodplain degradation 

Inland navigation NAV 1 / 3 / 5 Low / Intermediate / High 14 / 59 / 26 1: 0 - 3000; 3: 3.001 – 33.000; 5: 33.001-133.000 cargo vessels / year 

Organic siltation ORS 1 / 3 / -- No / Yes / -- 12 / 88 / -- Presence of organic siltation 

Riparian vegetation RIV 1 / 3 / 5 High / Intermediate / Rare 88 / 12 / 0 Cover of riparian vegetation 

Sedimentation  SED 1 / 3 / 5 No / Weak + Medium / High 76 / 20 / 4 Increased sedimentation 

Velocity increase  VEL 1 / 3 / -- No / Yes / -- 20 / 80 / -- Artificially increased velocity, Rhithralisation 
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Table 2. Relative influence [%] of each pressure on fish population metrics. Each column represents one boosted regression tree (BRT) model with the fish metric as response variable (EURY = 783 
eurytopic fish, RH=rheophilic, LITH = lithophilic, PHYT = phytophilic, SPR = species richness, SHA = Shannon Index, EVE = Evenness, SIM = Simpson Index, FRI = Fish Region Index). The last row 784 
provides goodness-of-fit measures (R

2
COR) for each BRT model. Values in parenthesis provide the upper and lower limit of the 95% confidence interval of each parameter based on 500 bootstrap 785 

simulations of the respective BRT model. Bold font highlights pressures with the strongest relative influence (>10%) on the fish population metrics. 786 

Pressures EURY RH LITH PHYT PSAM SPR SHA EVE SIM FRI 

Barriers catchment down  4.0 (3.6-4.6) 15.1 (14.3-18.4) 2.8 (2.0-3.2) 4.1 (3.8-4.4) 2.1 (1.3-2.2) 3.6 (3.6-4.1) 4.1 (4.2-4.8) 16.7 (15.8-18.5) 6.6 (5.7-6.6) 3.6 (3.5-3.7) 

Barriers segment up 1.3 (0.8-1.6) 11.1 (10.6-14.3) 1.8 (1.6-1.8) 0.6 (0.5-0.8) 0.3 (0.2-0.3) 2.7 (2.4-2.9) 0.7 (0.7-1.3) 2.2 (1.4-2.5) 1.0 (0.9-1.6) 0.4 (0.2-0.5) 

Channelisation  9.4 (9.1-9.8) 12.5 (9.7-13.0) 6.1 (2.8-6.6) 3.8 (3.7-4.3) 3.7 (0.7-4.1) 8.8 (8.9-10.2) 2.3 (2.3-3.0) 16.4 (15.6-16.7) 5.0 (4.7-5.5) 0.5 (0.3-0.6) 

Cross-section  0.2 (0.2-0.3) 0.9 (0.5-1.0) 0.7 (0.6-0.8) 0.1 (0.1-0.1) 0.1 (0.0-0.1) 0.3 (0.3-0.4) 0.2 (0.2-0.3) 0.7 (0.7-1.1) 0.3 (0.2-0.4) 0.1 (0.1-0.2) 

Embankment  16.5 (15.9-18.7) 6.4 (4.9-6.6) 4.7 (2.6-5.3) 0.9 (0.7-1.2) 2.7 (0.5-3.1) 0.9 (0.9-1.3) 1.0 (0.8-1.4) 0.6 (0.4-1.5) 0.8 (0.7-1.3) 0.3 (0.2-0.5) 

Loss of floodplains 14.0 (13.3-14.8) 11.5 (10.1-12.4) 16.4 (15.9-17.2) 8.6 (8.2-10.1) 9.5 (4.7-11.0) 5.9 (5.8-6.4) 5.5 (5.3-6.2) 13.3 (11.5-13.3) 4.4 (4.0-5.3) 16.3 (15.9-17.0) 

Inland navigation 10.7 (10.3-11.0) 23.6 (23.0-26.9) 20.1 (19.6-20.8) 33.8 (33.2-34.6) 25.4 (25.1-26.7) 18.6 (18.2-18.8) 8.5 (8.6-9.6) 7.4 (6.5-8.9) 8.1 (7.7-9.1) 5.7 (5.0-6.0) 

Organic siltation 0.1 (0.0-0.2) 0.4 (0.2-0.5) 0.1 (0.0-0.2) 32.9 (30.8-33.6) 0.2 (0.1-0.3) 0.5 (0.3-0.8) 0.2 (0.1-0.3) 1.2 (0.7-1.3) 0.7 (0.5-1.3) 0.0 (0.0-0.1) 

Riparian vegetation 2.1 (1.5-2.4) 4.0 (3.6-4.2) 2.6 (1.3-3.3) 8.7 (7.8-9.2) 3.5 (1.6-4.1) 1.6 (1.4-1.7) 2.8 (2.5-3.0) 6.8 (6.4-7.8) 3.9 (3.8-4.5) 0.5 (0.4-0.6) 

Sedimentation  23.3 (22.6-24.3) 7.2 (4.8-7.7) 4.9 (3.1-5.6) 5.8 (5.4-6.2) 3.8 (1.8-4.4) 2.9 (2.8-3.5) 6.7 (6.7-7.9) 15.9 (15.3-16.7) 7.3 (6.6-8.3) 2.5 (2.1-2.7) 

Velocity increase  18.4 (16.6-18.8) 7.1 (6.5-7.3) 40.0 (36.0-49.8) 0.7 (0.6-1.2) 48.8 (45.2-62.1) 54.1 (51.0-54.1) 68.0 (63.1-67.7) 18.7 (17.3-20.5) 61.9 (57.4-63.8) 70.0 (68.7-71.7) 

Model fit (R2
COR) 0.84 (0.84-0.85) 0.74 (0.73-0.77) 0.73 (0.73-0.76) 0.83 (0.83-0.83) 0.64 (0.63-0.67) 0.6 (0.6-0.61) 0.72 (0.71-0.72) 0.88 (0.87-0.89) 0.79 (0.78-0.79) 0.54 (0.54-0.54) 

 787 
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Table 3. Pressure-interactions and their effect sizes on each fish population metric (FPM). Each column represents the results of one boosted regression tree model. BCD = barriers catchment 788 
downs; BSU = barriers segment up; CHA = channelization; EMB = artificial embankment; FLO = loss of floodplains; NAV = navigation intensity; ORS = organic siltation; RIV = cover of riparian 789 
vegetation; SED = increase of sedimentation; VEL = increase of flow velocity). Note: effect sizes are not comparable across different FPM. 790 

Eurytopic fish Rheophilic fish Lithophilic fish Phytophilic fish Psammophilic fish Species richness Shannon Index Evenness Simpson Index Fish Region Index 

Interaction Size Interaction Size Interaction Size Interaction Size Interaction Size Interaction Size Interaction Size Interaction Size Interaction Size Interaction Size 

CHA * SED 2.02 EMB * CHA 11.43 NAV * FLO 7.94 NAV * ORS 7.71 NAV * VEL 18.02 NAV * VEL 316.7 NAV * VEL 10.52 CHA * VEL 0.11 CHA * VEL 0.35 FLO * VEL 1.11 

NAV * VEL 1.35 NAV * BSU 9.07 FLO * VEL 6.53 ORS * SED 1.4 FLO * SED 5.33 NAV * FLO 170.98 FLO * VEL 8.72 SED * BCD 0.04 RIV * VEL 0.23 NAV * FLO 0.42 

NAV * FLO 1.29 CHA * VEL 8.93 EMB * CHA 3.49 NAV * FLO 1 EMB * CHA 3.46 FLO * VEL 109.17 NAV * FLO 7.67 RIV * VEL 0.03 NAV * VEL 0.17 FLO * BCD 0.11 

NAV * EMB 1.16 VEL * BSU 5.15 NAV * VEL 2.22 NAV * SED 0.63 NAV * FLO 3.11 VEL * BSU 78.79 VEL * BCD 5.74 FLO * SED 0.02 VEL * BCD 0.12 VEL * BCD 0.08 

FLO * SED 1.1 NAV * ORS 4.56 FLO * SED 0.62 ORS * RIV 0.39 FLO * EMB 0.64 CHA * VEL 22.39 RIV * VEL 4.05 NAV * FLO 0.01 NAV * SED 0.09 FLO * SED 0.02 

NAV * BCD 0.81 NAV * VEL 4.36 VEL * BCD 0.46 ORS * CHA 0.23 SED * BCD 0.45 FLO * RIV 16.69 CHA * VEL 2.88 NAV * VEL 0.01 FLO * VEL 0.09 SED * VEL 0.01 
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 792 

 793 

Figure 1. Location of sampling sites. 794 

 795 
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 797 

798 
Figure 2. River-specific classification of sampling sites by pressures. L = Lek; Hav.  = Havel. VEL = increase of flow velocity; 799 
NAV = navigation intensity; FLO = loss of floodplains; SED = increase of sedimentation; CHA = channelization; EMB = artificial 800 
embankment; BCD = barriers catchment down; BSU = barriers segment up; ORS = organic siltation; RIV = cover of riparian 801 
vegetation; CRS = cross-section. Alteration of the natural state increases from one to five (different symbols are used for 802 
better visualization: 1 = square: low or no alteration; 3 = circle: intermediate alteration; 5 = triangle: high alteration, 803 
compare Table 1). The x-axis labels show the distance of each sampling site to the Ocean in kilometers. 804 

805 
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 806 

 807 
Figure 3. River-specific estimates of guild densities. R: Rhine (number of samplings: 41); L: Lek (5); M: Meuse (62); El: Elbe 808 
(100); Em: Ems (7); H: Havel (4); S: Spree (8); O: Oder (23). Means +/- standard errors are shown. Note: Figure A.01 in the 809 
appendix provides a site-specific overview. 810 

811 
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 812 
Figure 4. River-specific estimates of biodiversity metrics. R: Rhine (number of samplings: 41); L: Lek (5); M: Meuse (62); El: 813 
Elbe (100); Em: Ems (7); H: Havel (4); S: Spree (8); O: Oder (23). Note: Figure A.01 in the appendix provides a site-specific 814 
overview. 815 

816 
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  817 
Figure 5. Response plots of the five most important pressure variables affecting densities of fish in diagnostic guilds. Each 818 
row represents one boosted regression tree (BRT) model with a given fish metric as response. Solid lines represent results 819 
obtained from the original BRT model; dashed lines and grey areas show the 95% confidence interval based on 500 820 
bootstrap simulations of each BRT model. X-axes show ranked pressure classes (BCD = barriers catchment down; BSU = 821 
barriers segment up; CHA = channelization; EMB = artificial embankment; FLO = loss of floodplains; NAV = navigation 822 
intensity; ORS = organic siltation; RIV = cover of riparian vegetation; SED = increase of sedimentation; VEL = increase of flow 823 
velocity) with 1 = low or no alteration; 3 = intermediate alteration; 5 = high alteration. Percentages in parenthesis indicate 824 
the relative variable importance of each pressure in the respective BRT model. 825 

826 
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  827 
Figure 6. Response plots of the five most important pressure variables affecting biodiversity metrics. Each row represents 828 
one boosted regression tree (BRT) model with a given biodiversity metric as response. Solid line represents results obtained 829 
from the original BRT model; dashed lines and grey area show the 95% confidence interval based on 500 bootstrap 830 
simulations of each BRT model. X-axes of each plot show ranked pressure classes (BCD = barriers catchment down; CHA = 831 
channelization; FLO = loss of floodplains; NAV = navigation intensity; SED = increase of sedimentation; VEL = increase of 832 
flow velocity) with 1 = low or no alteration; 3 = intermediate alteration; 5 = high alteration. Percentages in parenthesis 833 
indicate the relative variable importance of each pressure in the respective BRT model. 834 
 835 


