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Abstract:  

Digital image analysis of histological datasets is a currently expanding field of research. 

With different stains, magnifications and types of tissues, histological images are 

inherently complex in nature and contain a wide variety of visual information. Several 

image analysis techniques are being explored in this direction. However, graph-based 

methods have recently gained immense popularity, as these methods can effectively 

describe tissue architecture and provide adequate numeric information for subsequent 

computer-based analysis. Graphs have the ability to represent spatial arrangements and 

neighborhood relationships of different tissue components, which are essential 

characteristics observed visually by pathologists during investigation of specimens. In 

this paper, we present a comprehensive review of the graph-based methods explored 

so far in digital histopathology. We also discuss the current limitations and suggest 

future directions in graph-based tissue image analysis.  
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1 Introduction 

 

Histological images are the magnified images of the tissues of an organism. They are a 

special kind of medical images, which contain various complex structures and 

information pertaining to different biological conditions of the organism. Pathology is 
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the branch of medicine dealing with causal study of diseases. The term ‘histopathology’ 

is derived from the combined field of histology and pathology. For humans, 

histopathological information is sought by medical specialists for determining the 

presence or extent of abnormal conditions, especially tumors and cancers. Generally, a 

pathological test is recommended after observing physiological symptoms of patients. 

There are diverse ways to acquire histopathological specimens from the body, such as 

biopsy and surgical resection [1]. The tissue specimens are mounted on glass slides and 

treated with detailed preparation procedures before becoming ready to be viewed by 

observers [2]. The specimens are stained with special chemicals following a staining 

process in order to improve contrast and visibility of specific tissue structures as 

required for observation. Some commonly used stains for this purpose are Haematoxylin 

and Eosin (H&E), Feulgen, Schiff, Wright, Ki-67 protein and Toluidine blue [3]. 

Conventional viewing and observation of tissues is performed using various microscopy 

techniques [4]. 

Digital pathology involves the use of digitized histological images for observation and 

analysis. Glass slides are scanned using sophisticated equipment like advanced 

microscopes with cameras or whole slide scanners to obtain high resolution digital 

images called whole slide images (WSI), which can be viewed on computer screens using 

image viewers, stored and archived into databases for future reference. Whole slide 

images usually provide a comprehensive view of the tissue appearance and can be used 

for determining underlying disease condition(s). Several benefits of digital pathology 

have been identified, some of the most apparent being better viewing and handling of 

slides, parallel viewing at distinct locations (telepathology), parallel viewing of different 

stains and positions, reduction in glass archives and glass transportation, and simplicity 

to handle annotations. These benefits are explained in detail in [5]. 

Computer-based analysis of histological images is a prospective challenge in the field of 

pathology and is being actively explored. Analysis techniques are being developed to 

automate the process of extracting useful information from tissue images in order to 

provide several benefits in clinical routine practice and research. Maximum work in this 

direction has been aimed towards developing diagnosis-related classification techniques 

in order to classify tissue regions into healthy or cancerous, benign or malignant or into 

several grades or types. But their popularity is limited mainly due to the error rates 

involved, so they are considered less reliable compared to pathologists’ verdicts. 

Pathologists’ experience has been acquired through a specialized long-term training 

process, and they expertly diagnose diverse cases on a day-to-day basis. Along with 

assessment of visual appearance of tissues, pathologists also consider additional clinical 

information and underlying causes like patient history and etiological agents, which 
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makes the decision-making process more complicated and difficult to formalize. Also, 

the image analysis software developed till date is specific to certain pathological 

disorders and doesn’t consider exceptional cases. So the extent of usability of image 

analysis applications for routine work still remains unclear. However, most visual 

observations are currently subjective and vary from person to person and time to time, 

causing inter- and intra-observer variability. Hence, there is a need for developing more 

reliable computer-aided retrieval and classification methods, which can act as assisting 

tools, saving time and efforts, and reducing subjectivity. Pathologists’ experience still 

remains most valuable and is required for development of such analysis software as well 

as for validation of obtained results. Some less critical applications can also be 

developed to improve the current state of technology in this field, for example, smart 

archiving and content-based image retrieval of interest regions from WSI specimens, 

bio-banking of large databases, providing second opinions to pathologists, marker 

quantification, assistance in detecting malignant changes over time and for educational 

purpose. 

Histological images have typical characteristics which set them apart from other images. 

These include high resolutions, complex appearances, diverse magnifications, specific 

stains and the corresponding differences in semantic interpretations. The acquisition 

process is not ideal in most cases, hence the quality of acquired digital images is also a 

current question of discussion among pathologists worldwide. Considering the 

complexity involved into evaluating such image data, different analysis methods have 

been developed. We believe that one of the most promising approaches for histological 

image analysis is the use of graph-based techniques. Graphs are effective and flexible 

representation tools and have lately been of major interest to the computer vision and 

image analysis fields due to their expressive ability to model topological and relational 

information between image components. Moreover, histological image data is visually 

observed and interpreted by pathologists by considering the morphological changes, 

neighborhood relationships and spatial arrangements between tissue structures, and 

graphs have proved to be able to quantitatively represent these visual information cues 

in histological images. Several authors have also used the term syntactic structure 

analysis for describing a subset of graph-theoretic methods to quantitatively analyze 

tissue architecture, some of which we describe later in the paper.  

The organization of the paper is as follows. Section 2 provides a mathematical overview 

of the graph-based techniques used in this field and most often used graph metrics. 

Section 3 describes the various graph-theoretic methods employed so far in the 

direction of histological image analysis. Section 4 concludes the paper and mentions 

future directions to be explored using graph-based methods in histology. 
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2  Overview of Graph-based Methods 

 

A graph is a data structure consisting of a finite set of points called vertices (or nodes) 

and a set of edges (or arcs) which link the vertices with each other based on predefined 

criteria. Mathematically, a graph is a tuple ),( EVG  containing the set of vertices V and 

edges VVE  . An edge in E  connects two vertices in V . A graph is planar if it can 

be embedded in the plane, in other words, it can be depicted on the plane such that its 

edges do not cross one another except only at their endpoints, otherwise it is a non-

planar graph. A graph is undirected if the edges have no orientation. A directed graph 

(digraph) is the one where each edge has a direction associated with it, connecting an 

ordered pair of vertices. Other definitions associated with graphs are explained in [6]. 

 

2.1  Voronoi Diagram, Delaunay Triangulation and Related Graphs 

 

The first formal definitions of Dirichlet tessellation and Voronoi diagram were proposed 

by Dirichlet [7] and Voronoi [8] respectively. Let }....,{= 21 nvvvV  be a set of n  points (or 

vertices) in a plane and d  denotes distance between two given points. It is assumed 

that any three points are non-collinear and any four points are not co-circular. We define 

the planar graph representations Voronoi diagram, Delaunay triangulation and related 

graphs using these definitions and assumptions. These graphs are included in the larger 

group called proximity graphs, also called neighborhood graphs, in which two vertices 

are linked by an edge if and only specific geometric requirements are satisfied by the 

vertices [9]. Proximity graphs are defined with reference to various metrics, however 

Euclidean metric is the most commonly used. 

 

2.1.1  Voronoi Diagram 

 

The Voronoi diagram has been described in detail in [10]. We summarize it as follows. 

Let two points (called sites) iv  and jv  be connected by the line segment jivv  and its 

perpendicular bisector ),( ji vvB  divides the plane between the two sites into two half 
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planes. The half plane of site iv  with respect to jv  is denoted by ),( ji vvH  and contains 

the set of points in the plane given by:  

 )},(<),(|{=),( xvdxvdxvvH jiji  (1) 

The Voronoi region (or Voronoi polygon) )( iP vV  for the site iv  is given by equation 2. 

)( iP vV  is a convex polygon which may be unbounded.  

 ),(=)( 1,= ji

n

ijjiP vvHvV   (2) 

Hence, )( iP vV  contains all such points in the plane closer to iv  than to any other site jv

. The Voronoi diagram of the set of V sites is obtained by using equation 3.  

 )(=)( 1= iP

n

i vVVVD   (3) 

Voronoi diagrams perform a nearest site proximity partitioning of the plane. This is 

illustrated in Figure 1. Using planarity and Euler’s formula, the Voronoi polygons always 

follow the conditions given in equations 4 [11].  

            npolygonsVoronoiofNumber =  

            63  nedgespolygonofNumber  

            52  nverticespolygonofNumber  (4) 

   

Figure 1: Voronoi Diagram of a set of random points 
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2.1.2  Delaunay Triangulation 

 

The Delaunay triangulation (also called Delaunay graph) was first defined by Delaunay 

in 1934 [12]. It is obtained by connecting pair of points iv  and jv  in the plane such that 

the triangle formed by joining three non-collinear points with one side as jivv  is a 

Delaunay triangle, which means it is enclosed within a circumcircle with no other point 

},{ jik vvVv   inside this circle. This property is also called “empty circle" property, 

and depicted in Figure 2. Delaunay triangulation is the dual of Voronoi diagram, as the 

centroids of Voronoi polygons correspond to the vertices in Delaunay triangulation. The 

duality property is also shown in Figure 2, and as a result of this property, the conditions 

in equation 4 are also satisfied by Delaunay triangulation with the following modification 

given in equation 5 [11]. Subgraphs of Delaunay triangulation can be generated from 

Delaunay graph and explained in next sections.  

 

           nverticesDelaunayofNumber =  

           63  nedgesDelaunayofNumber  

           52  ntrianglesDelaunayofNumber  (5) 

 

   

Figure 2: Delaunay Triangulation corresponding to the Voronoi diagram in Figure 1 

showing empty circle and duality properties 
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2.1.3  Gabriel Graph 

 

The Gabriel graph [13] is a subgraph of Delaunay graph and an edge exists between 

vertices iv  and jv  if they are ‘least square adjacent’ i.e. if for all other vertices 

},{ jik vvVv   the condition given in equation 6 is satisfied [14].  

 ),(),(<),( 222

kjkiji vvdvvdvvd   (6) 

 The Gabriel graph can be derived from Delaunay graph by retaining all the edges of the 

graph such that each edge is the diameter of a circle centered on the point halfway 

between its endpoints that has empty circle property. Formally, line segment jivv  is a 

Gabriel graph edge for all points },{ jik vvVv   if the circle with diameter jivv  does 

not contain kv . It is depicted in Figure 3.  

 

   

Figure 3: Gabriel graph corresponding to Delaunay graph in Figure 2 showing empty 

circle property 

 

2.1.4  Relative Neighborhood Graph 

 

The relative neighborhood graph (RNG) is a subgraph of the Delaunay graph and Gabriel 

graph. In this graph, two vertices are connected by an edge if there is no other vertex 

closer to both than they are to each other. This graph was proposed by Godfried 

Toussaint in [15]. An edge exists between vertices iv  and jv  if for all other vertices 

},{ jik vvVv   the condition in equation 7 is satisfied.  

 )},(),,({),( kjkiji vvdvvdmaxvvd   (7) 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2015-1:61
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In other words, jivv  is an RNG edge, if for all points },{ jik vvVv  , jivv  is not the 

longest edge of triangle ),,( kji vvv . It can be derived from Gabriel graph by retaining 

only those edges jivv  for which ),( ji vvlune  is empty, where ),( ji vvlune  is the 

intersection of two circles centered at iv  and jv , each with radius jivv  . RNG 

corresponding to the given set of points along with the empty lune property is 

represented in Figure 4.  

 

   

Figure 4: Relative neighborhood graph corresponding to Delaunay graph in Figure 2 

showing empty lune property 

  

2.1.5  Euclidean Minimum Spanning Tree 

 

A tree is a obtained from an undirected graph by eliminating cycles, such that any two 

vertices are connected by exactly one path. A spanning tree of a graph is a tree including 

all its vertices. A minimum spanning tree (MST) [16] is the spanning tree of the graph 

whose sum of edge weights is less than or equal to the sum of edge weights of every 

other spanning tree. It is called Euclidean minimum spanning tree (EMST) when each 

edge weight is the Euclidean distance between the two vertex-coordinates [17]. EMST 

can be derived from the relative neighborhood graph such that edge jivv  is retained 

which is not the longest edge of a cycle in the RNG. It is shown in Figure 5.  

 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2015-1:61
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Figure 5: Euclidean minimum spanning tree corresponding to Delaunay graph in Figure 

2 

 

2.1.6  Nearest Neighbor Graph 

 

The nearest neighbor graph [18] can be defined as a directed graph where jivv  is a 

directed edge from iv  to jv  if for all vertices },{ jik vvVv  , the condition in equation 

8 is satisfied. It is depicted in Figure 6 for the given set of points.  

 ),(),( kiji vvdvvd   (8) 

The nearest neighbor graph, when considered as an undirected graph is a subgraph of 

Delaunay triangulation and can be obtained from Euclidean minimum spanning tree by 

retaining the edges to the closest neighbors.  

 

   

Figure 6: Nearest neighbor graph corresponding to Delaunay graph in Figure 2 
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Several algorithms exist in literature for generation of Voronoi diagram, Delaunay 

triangulation and its subgraphs. A summary of the popular algorithms, with their 

associated complexities is given in Table 1, where a graph with n  vertices are 

considered. Many authors have also proposed time-efficient versions of the existing 

algorithms with improvement in complexities. 

 

Table 1: Summary of popular algorithms for constructing Voronoi diagram, Delaunay 

triangulation and its subgraphs 

  

 Graph type   Associated algorithms   Time complexity  

Voronoi diagram   Fortune’s sweepline algorithm [19]   ))(( nnlogO   

 Divide and conquer algorithm [20]   ))(( nnlogO   

 Incremental algorithm [21]   )( 2nO   

 Naïve algorithm [22]   ))(( 2 nlognO   

 Lloyd’s algorithm [23]   ))(( nnlogO   

Delaunay triangulation   Bowyer-Watson algorithm [24], [25]   )())(( 2nOtonnlogO  

 Lawson’s flip algorithm [26]   )( 2nO   

 Lifting or projection algorithm [27]   ))(( nnlogO   

Gabriel graph   From Delaunay graph [14]   )(nO   

Relative neighborhood graph   From Delaunay graph [28]   )(nO   

Euclidean minimum spanning tree   From Delaunay graph [29]   ))(( nnlogO   

Nearest neighbor graph   From Delaunay graph [30]   ))(( nnlogO   
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2.2   -Skeleton 

 

In [31], Kirkpatrick and Radke have defined a parameterized group of proximity graphs 

known as   skeletons,   being the parameter. We define the neighborhood of vertices 

iv  and jv  by )(, jiN  for a fixed  . The   skeleton is an undirected graph, where two 

vertices iv  and jv  are connected by an edge if and only if no other point is located in 

)(, jiN . We denote a sphere centered at point p  and radius r  as ),( rpS . For 

 <1  , there are two definitions for   skeletons:  

 

2.2.1  Lune-based   Skeleton 

 

Points iv  and jv  are lune-based  -neighbors if an only if the lune )(, jiN  defined by 

the intersection of the spheres in equation 9 contains no other point },{ jik vvVv  .  

 

)),(
2

,
2

)
2

((1)),(
2

,
2

)
2

((1=)(, jiijjijiji vvdvvSvvdvvSN


   (9) 

 

 

2.2.2  Circle-based   Skeleton 

 

Points iv  and jv  are circle-based  -neighbors if and only if the neighborhood defined 

by the union of the two spheres each of radius ),(
2

ji vvd


 passing through points iv  and 

jv  in their boundary, contains no point },{ jik vvVv  . 

For 1<<0  , vertices iv  and jv  are  -neighbors if and only if the neighborhood 

defined by the intersection of the two spheres each of radius )/2,( ji vvd  which pass 

through points iv  and jv  in their boundary, contains no point },{ jik vvVv  . In this 

case, the lune-based and circle-based neighborhoods are identical. 
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  neighborhoods with diverse values of   are shown in Figure 7. It can be seen that 

-skeletons contain both relative neighborhood graphs and Gabriel graphs as special 

cases. Gabriel graph can be defined as lune-based 1-skeleton ( 1= ) and the relative 

neighborhood graph as lune-based 2-skeleton ( 2= ) [32].  

 

    

(a)  (b)  (c)   (d) 
Figure 7:   neighborhoods (shaded regions) with different values of  . (a) Lune-

based and circle-based 0.5=  (b) Lune-based 1=  (c) Lune-based 2=  (d) Circle-

based 2=  

 

2.3  Johnson-Mehl Tessellation 

 

Visualization of growth models is essential in many technical processes, including 

histological changes. For representing such phenomena, spatial patterns obtained from 

simple growth processes can be used. The Johnson-Mehl model [33] is defined as a 

Poisson-Voronoi growth model showing growth of particle aggregates, where a Poisson 

point process is applied to generate nuclei asynchronously, and the nuclei grow at the 

same radial speed [34]. The thi  generator ),(= iii tpP  is defined by a planar position 

vector ip  and associated appearance time it . The Johnson-Mehl tessellation can be 

viewed as comparable to a dynamic version of an additively weighted Voronoi diagram 

[35], in which the weights indicate the associated appearance times of particles in 2R

[22]. In stochastic geometry, the Johnsons-Mehl model is constructed to measure 

arbitrarily distributed geometrical properties. 

The generation of Johnson-Mehl tessellation is explained in [34]. After appearance of a 

new nucleus the tessellation changes, as the incoming nucleus is inserted with a new 

Voronoi region and the neighboring Voronoi polygons are changed. The sizes of the 

associated spheres of nuclei are increased by the growth proportional to the time 

interval between the previous appearance and current one ( ji tt  ). This type of spatial 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2015-1:61
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growth uses a Poisson point process, defined according to two cases of radial speed in 

[34], namely, time homogeneous Poisson point process and time inhomogeneous 

Poisson point process. An example of Johnson-mehl tessellation for a random set of 

points at two time instants is shown in Figure 8.  

 

          

(a)     (b) 
Figure 8: Johnson-mehl tessellation for a set of random points (a) growth of particles at 

1= tt  (b) growth of particles at 50= 1 tt  

 

2.4  O’Callaghan Neighbourhood Graph 

 

An alternate definition of the neighborhood of a point given by O’Callaghan in [36] has 

been applied to histopathological images. For the histological context, O’Callaghan 

neighbourhood graphs have been discussed in detail in [37], where vertices are defined 

as “structures". Two types of constraints apply to the neighborhood, namely distance 

constraint and direction constraint. Two structures are neighbors if they are located 

within a certain distance (distance constraint), and not hidden behind other points 

classified as neighbors (direction constraint). It is shown in Figure 9, where 321 ,, vvv  are 

neighbors of iv , however 4v  is not a neighbor of iv . All distances 1id  to 3id  are below 

the upper distance threshold. Direction constraint is not fulfilled by 4v , as 4v  is hidden 

behind 2v . Also, 4v is not a neighbor of 1v  as distance constraint is not fulfilled because 

14d  is above the upper distance threshold. 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2015-1:61


  H. Sharma et. al. diagnostic pathology 2015, 1:61

  ISSN 2364-4893 

 DOI: http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2015-1:61 

 14 

   

Figure 9: O’Callaghan neighborhood graph 

 

2.5  Cell Graph 

 

As the name suggests, cell graphs are formed by considering cells or cell clusters as 

vertices, and relationships between them as edges using certain predefined linking rules. 

Cell graphs are non-planar graphs as crossing of edges are allowed. The authors 

introducing cell graphs initially define the linking probabilities using the Waxman model 

[38]. However, in subsequent works like [39], three different variations of cell graphs 

are defined. These are depicted in Figure 10. Figures 10a and Figure 10b are created 

with 400 times magnification, whereas Figure 10c with 100 times magnification for 

clarity. 

  

2.5.1  Simple Cell Graph 

In a simple cell graph, an edge exists between two given vertices iv  and jv  if and only if 

the Euclidean distance ed  between the vertices is less than a predefined threshold D , 

which is defined according to the characteristics of the tissue architecture.  

 Dvvd jie <),(  (10) 
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2.5.2  Probabilistic Cell Graph 

 

In a probabilistic cell graph, edges are assigned to vertices depending on the distance 

between vertices, by using a probability function which can be defined according to the 

tissue being analyzed. One such probability function used in literature is given by:  

 ),(=),( jieji vvdvvP  (11) 

 where iv  and jv  are two vertices and ed  denotes the Euclidean distance between 

them.   is an experimental parameter which determines the rate at which probability 

of a link decreases with the increase in distance between vertices, hence, controls the 

graph density. The edges are defined by a binary relation E  on V  for all pair of vertices 

iv  and jv , such that }>),(:),{(= rvvPvvE jiji , r  being a real number between 0 and 

1. With such a construction, the vertices closer to each other are more likely to be linked 

compared to vertices farther away, however it is not necessary that a link will be formed 

even if the distance between vertices is small, and will depend on the parameter  .  

 

2.5.3  Hierarchical Cell Graph 

 

A hierarchical graph is generated by connecting smaller subgraphs representing cell 

clusters together to form the larger graph on the image. Clusters are identified as cell 

groups exceeding a threshold of the number of cells in a given region (defined by placing 

a grid on top of the image). Hierarchical graphs are built using these clusters as vertices, 

where each vertex represents a simple cell graph on the cells included in the cluster. The 

linking rules applied are those used for probabilistic cell graphs.  

 

             

     (a)                           (b)                         (c) 
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Figure 10: Representative cell graphs for small regions of H&E stained images (a) 

Simple cell graph with a 200=D  for gastric tissue region (b) Probabilistic cell graph 

with 0.2=  for gastric tissue region (c) Hierarchical cell graph for breast tissue where 

each vertex represents a cell cluster with a corresponding simple cell graph built on the 

constituent cells (denoted by rectangle) 

 

2.6  Attributed Relational Graph 

 

A graph G  is an Attributed Relational Graph (ARG) when both the vertices and the edges 

contain associated attributes [40]. The vertex attributes for vertex iv  are denoted as a 

vector )1,2,3,...,=(],[= )( Kka k

iia , where K  is the number of vertex attributes in the 

vector ia , and the edge attributes (or weights) for edge je  by the vector denoted as 

)1,2,3,...,=(],[= )( Mmb m

jjb , where M  is the number of edge attributes in the vector 

jb  [41]. In Figure 11, ARG with vertex attribute vectors 1,2,3=,iia  and edge attribute 

vectors 1,2,3=, jjb  is shown. Vertex attributes represent object properties like size, 

position, shape and color whereas edge attributes define relationships between vertices 

like the distance, common boundary and dissimilarity between objects.  

 

   

Figure 11: Attributed Relational Graph 
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2.7  Global Graph Measures: Few Examples 

 

Once the graphs have been constructed using the above described methods or other 

approaches, the next step in image analysis is to extract appropriate quantities from 

these graphs. One way of achieving this is to define a set of global graph measures. There 

are many graph-based metrics which can be derived from graph representations. 

Definitions of these measures can be found in [42], some of the most commonly used 

measures in image analysis are briefly described below. 

 

2.7.1  Graph Size 

 

Graph size represents the span and extent of a graph, and can be measured by counting 

the total number of vertices, total number of edges and total number of trees in a graph. 

For Voronoi diagram, size can be measured in terms of total number of Voronoi 

polygons, their vertices or corresponding Delaunay triangles. 

 

2.7.2  Degree 

The degree of a vertex is defined as the number of neighbors of a vertex, or number of 

vertices linked to the given vertex by edges. Average degree avD  of graph G  with n  

vertices and degree iD  of the thi  vertex iv  is calculated as below, and suitable for 

representing the relative density or sparsity of the graph.  

 i

n

i

av D
n

D 
1=

1
=  (12) 

 

2.7.3  Clustering Coefficient 

 

Clustering coefficient is the measure of the extent to which vertices in a graph have a 

tendency to cluster together. For a given vertex iv , let the neighboring vertices be 

contained in the neighborhood set iN  defined as:  

 }),(,{= EvvvvVvN jiijji   (13) 
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 For an undirected graph, clustering coefficient iC  for vertex iv  is defined as:  

 EeNvv
DD

e
C jkikj

ii

jk

i 


;,:
1)(

||2
=  (14) 

 where, iD  is the degree of vertex iv  and || jke  is the total number of edges between 

the neighbors of iv . It can be noted that 10  iC  . The average clustering coefficient 

avC  for the graph can be calculated as:  

 i

n

i

av C
n

C 
1=

1
=  (15) 

 

2.7.4  Eccentricity 

 

The eccentricity i  of a graph vertex iv  is the maximum distance between iv  and any 

other vertex jv  in V . It can be considered as the measure of how far a vertex is from 

the vertex most distant from it in the graph. The vertices of a disconnected graph are 

said to have infinite eccentricity [43]. The minimum graph eccentricity is called the graph 

radius and the maximum eccentricity of graph is called the graph diameter. Average 

eccentricity of the graph can be calculated as:  

 i

n

i

av
n

 
1=

1
=  (16) 

 

2.7.5  Path Lengths 

 

A path in a graph or tree is a finite or infinite sequence of edges which connects a 

sequence of vertices. Edges can be part of a path only once. The minimum, average and 

maximum path lengths of the graph can be calculated. Let ),( ji vvd , where Vvv ji ,  

denote the shortest distance between iv  and jv , assuming that 0=),( ji vvd  if iv  cannot 

be reached from jv . Average path length avl  can be defined as:  

 ),(
1)(

2
= ji

ji

av vvd
nn

l 


 (17) 
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2.7.6  Cyclomatic Number 

 

A connected component of an undirected graph is a subgraph containing vertices 

connected to each other by paths, but it is not connected to any other additional vertex 

in the supergraph. A cycle is a path where the start vertex is also the end vertex. 

Cyclomatic number or circuit rank   of a graph is the minimum number of edges which 

must be removed in order to eliminate all cycles from the graph [44]. Considering a 

graph with n  vertices, m  edges and k  connected components,   is given by:  

 knm =  (18) 

 

2.7.7  Statistical Descriptors 

 

For Voronoi diagrams and Delaunay triangulations, there can be certain measures like 

area and perimeter associated with the individual Voronoi polygons and Delaunay 

triangles respectively. For ARGs, there can be several attributes associated with vertices 

and edges. Statistical descriptors can be used for globally describing these attributes of 

individual vertices and edges. These include mean, standard deviation, minimum to 

maximum ratio, disorder, skewness, kurtosis and higher-order descriptors. For these 

graphs, co-occurrence matrix can also be constructed and Haralick features [45] can also 

be extracted from them. These statistical descriptors are capable to represent several 

diverse properties of entire graphs and their variations quantitatively. 

 

2.7.8  Spectral Descriptors 

 

Spectral features include properties extracted from the matrices used to describe the 

graph, such as adjacency matrix and Laplacian matrix, and their study is called spectral 

graph theory [46]. Some of the frequently used features include eigenvalues, spectral 

radius, eigen exponent, Cheeger constant, eigenmode perimeter, eigenmode volume 

and so on [47], [48]. These spectral features have the ability to indicate various 

fundamental properties of the graph. 
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3  Graph-based Methods in Histopathological Image Analysis 

 

As stated before, graphs have been an interesting area of research for analysis of 

histological image data, due to their ability to efficiently represent topology of tissue 

structures in suitable ways. High level or structural feature extraction methods are 

increasingly used to characterize a tissue using spatial distribution and neighborhood 

properties of its components by constructing representative graphs and calculating a set 

of local and global features which provide quantitative information about tissues. 

Graph-based techniques have been applied successfully to model several biological 

phenomena. Biological structures, especially biological membranes have been 

represented using minimum spanning trees in [49] and using a variant of MST called 

angular diagram with angular properties in [50]. [14] shows that Gabriel graph can be 

efficiently used for modeling in the field of geographic variation research in biology. 

Protein structures are also explained using three dimensional Delaunay tessellation and 

residue contact networks in [51], concluding that such naturally formed networks can 

be modeled by graphs. Other graph theoretical algorithms have been developed to 

model and identify protein structures in [52] and [53]. Random cellular structures in 

materials like bones, wood, cork, foams, plants, food etc. are studied utilizing planar 

graph theory, and topological properties of groups of cells with trivalent vertices in the 

plane are analyzed in [54]. Coronary arteries in human body have also been represented 

by graph structures in [55], followed by graph matching to label the coronary segments 

in arteriograms. It has been shown in [56] that cellular metabolism of 43 organisms can 

be identified with a network architecture as metabolic networks are composed of many 

small, densely connected topological modules that combine in a hierarchical manner 

into larger, less cohesive units. Multicellular tumor spheroids have been simulated and 

studied in [57] by presenting a novel three-dimensional agent based Voronoi-Delaunay 

hybrid model. Molecules and their interactions inside cells have also been represented 

as networks with functional organizational characteristics, and techniques have been 

reviewed in [58]. Another review containing recent developments in the field of graph-

based methods to analyze complex cellular networks is given in [59]. In this paper, we 

focus on the graph-theoretic description used for representing histological architecture, 

as tissues are the main building blocks of organisms. 

Graph-based methods to analyze histological images were initially explored in the 

direction of syntactic analysis. Syntactic methods based on neighborhood conditions in 

pattern recognition were introduced by Fu [60]. Following this, a relatively new 

technique was introduced in diagnostic quantitative pathology called syntactic structure 
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analysis, which was believed to provide quantitative information on tissue architecture 

[61]. The earliest work in this direction is presented by Prewitt et al. [62] for 

characterizing epithelial tissues of urinary bladder mucosa, where measurements are 

performed using an interactive digital image processing and decision making system 

called PEEP/DECIDE/GRAPH [63] to automate diagnostic procedures. Features are 

extracted from haematoxylin stained cells representing intensity, texture, shape, 

differentiation and structure, and from tissue regions quantifying spatial distributions 

and tissue organization. Furthermore, graphs and grammars in histology are formally 

defined by Prewitt in [64]. She introduces a graph-theoretic model for tissues and 

syntactic pattern recognition concepts using two random spatial structures: Dirichlet 

tessellation and Delaunay tessellation defined as unique topological planar dual graph 

of the Dirichlet tessellation. These structures are used to obtain a unique, invertible, 

relational and attributed graph representation of histologic sections. She also suggests 

that Dirichlet’s domain can be extended to a more general Johnsons-Mehl domain. 

Another early application of the technique is found in [65] for analyzing muscle tissue 

patterns using a distance measure between graphs. In this paper we give an account of 

the various approaches using syntactic structure analysis in histology, however we 

emphasize that this approach though theoretically powerful, has limited usability in 

practical applications due to its extensive computational requirements, which was later 

also observed experimentally. Subsequently, with the development of digital pathology 

techniques, some more efficient graph-based methods were analyzed. 

The commonly used graph-theoretic methods in histopathology are Voronoi diagrams, 

Delaunay triangulations and related graphs, O’ Callaghan neighborhood graphs, cell 

graphs and attributed relational graphs. It has been stated in [66], and we are in 

agreement, that a total of approximately 150 spatial-relational features have been 

extracted from all graph structures for histological images. This section reviews the 

various graph-theoretic methods used in histopathological image analysis. 

 

3.1  Voronoi Diagram, Delaunay Triangulation and Related Graphs 

 

The general Johnsons-Mehl model was considered effective for representing tissue 

architecture, however the main drawback of this method is the computational time 

involved for its construction, as it requires working with individual pixels in the whole 

slide image. It was realized that Voronoi-based tessellations are computationally more 

manageable. In [37], the advantages of representing tissue structures using Voronoi 

tessellations are listed, that the construction of a complementary tessellation aids in 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2015-1:61


  H. Sharma et. al. diagnostic pathology 2015, 1:61

  ISSN 2364-4893 

 DOI: http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2015-1:61 

 22 

visualization of cell boundaries and introduces a metric system according to neighboring 

structures. Hence, the most abundantly applied graph-theoretic techniques for 

representation and analysis of histological images till date are the Voronoi diagram, 

Delaunay triangulation and related graphs. 

Voronoi diagrams and Dirichlet domains have been explored in [67] for growth 

assessment of degrees of differentiation in terms of cell population dynamics in Feulgen 

stained colorectal neoplastic cell colonies growing on histological slides, by studying the 

structure of clones in 11 different media. The authors in [68] describe a graph-based 

approach for analysis of H&E stained images of Cervical Intraepithelial Neoplasia (CIN), 

where Delaunay triangulation mesh is first computed on a region and 18 quantitative 

features of the triangulation are extracted. To determine which characteristics 

contribute to classification, Kruskal Wallis Test is used. Discriminant analysis is applied 

for classifying image regions into one of the classes normal, CIN1, CIN2 and CIN3. 

Another work using Delaunay graph representation for H&E stained colon tissue images 

is given in [69]. A Delaunay graph is constructed on tissue components and their edges 

are colored based on relationships between end vertices. Structural graph features like 

average degree, average clustering coefficient and diameter are extracted from these 

color graphs. SVM is used to classify images into normal, low-grade and high-grade 

cancer, and the performance of this approach is compared with intensity based features, 

texture based features and simpler graphs like colorless graphs and Delaunay 

triangualations. 

Neighborhood relationships between cells in germinal centers from lymph nodes are 

studied in [70] for H&E stained lymphoma biopsy images, by representing them with 

Gabriel graphs. Subgraphs are also formed for each cell type by assigning label to each 

node, where a node represents a cell. Two categories of graphs, namely binary and grey 

tone graphs are generated, and features are extracted from graphs using morphological 

operations like erosion, dilation, opening and closing. Additionally, distance transform 

is applied to these graphs. Tissue images of follicular hyperplasia and small cleaved cell 

follicular lymphoma are analyzed and compared using the extracted quantitative 

information. 

The minimum spanning tree has been used abundantly for quantitative representation 

of tissue architecture in syntactic structure analysis tasks. MST can be constructed using 

different neighborhood conditions, the most frequently used being Voronoi 

neighborhood. H&E stained tissue sections of colorectal adenomas are evaluated in [71] 

using MST features to differentiate between three grades of dysplasia. In [72], the 

authors analyze invasive breast cancer tissue images using 10 syntactic structure 
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features extracted from the corresponding MST of each H&E stained breast tissue 

region. They conclude that this technique can contribute towards improvement in 

prediction of prognosis for breast cancer patients and consider it a promising method to 

analyze tissue architecture in breast cancer. Syntactic structural analysis using 10 

features of the MST is carried out in [73] for studying H&E stained uveal melanoma 

specimens. A significant correlation between Callender cell type and certain MST 

parameters is reported, showing that features can be used for mathematically 

describing melanoma architecture across the spectrum of the Callender classes. 

Syntactic structure analysis using MST constructed on H&E stained low magnification 

gastric tissue images is performed in [74], where the authors observe how the 11 

extracted features vary with different grades of gastric atrophy. Kayser et al. [75] discuss 

three different information recognition algorithms that can be used for field of view 

detection in virtual microscopy to measure diagnosis-related information. One of the 

algorithms uses graph-based representations of tissues by construction of associated 

MST. Measurements based on MST and Voronoi neighborhood condition are used for 

selection of the slide areas containing the most significant information to derive 

associated diagnosis. They perform experiments on large sets of histological images 

comprising organs like colon, lung, pleura, stomach and thyroid. 

In several works, a combination employing more than one Delaunay related graph is 

used. For example, syntactic structure analysis of Feulgen-Schiff stained mesothelioma 

tissue sections of lungs is described in [76], where tissues are represented using Voronoi 

diagrams, Gabriel graphs and MST. A set of 48 global graph features are extracted and 

discriminative features are selected using sequential floating forward selection method. 

The performance of these graph-based parameters is evaluated with respect to 

differential diagnosis of lesions and grading of tumors using k-nearest neighbors (kNN) 

classification algorithm. Architectural features of bronchial intraepithelial neoplasia are 

evaluated in [77], in which around 30 features are derived from Voronoi diagram, 

Delaunay tessellation and MST constructed on nuclei within a predefined region of 

interest. A discriminant analysis is then performed to differentiate between normal lung 

biopsies and carcinoma in-situ (CIS). An architectural index is also calculated and 

analyzed for each of the bronchial biopsies interpreted as hyperplasia, metaplasia, mild, 

moderate or severe dysplasia by conventional histopathology criteria. In [78], H&E 

stained oral cancer epithelium images are first segmented using color deconvolution for 

haematoxylin. The cell profiles are then used for construction of Voronoi regions (V-

cells), and the corresponding Delaunay triangulation, Gabriel graph, relative 

neighborhood graph and MST. 29 architectural features including statistics of cell areas 

are extracted from graph representations. Discriminant analysis classify images into 

normal, dysplastic and neoplastic. The authors also assess that the graph features are 
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more discriminative between normal and malignant tissue, and less between normal 

and premalignant tissue and between premalignant and malignant tissue. In [79], the 

authors distinguish high grade breast cancer in H&E stained biopsy specimens based on 

the presence or absence of lymphocytic infiltration, which is determined by performing 

a lymphocyte segmentation followed by representation of images using Voronoi 

diagram, Delaunay triangulation and MST. Graph-based features along with nuclear 

features are used for training SVM classifiers. The authors compare their approach to 

the Varma-Zisserman texton approach, confirming higher classification performance. 

In some works, another structure called Ulam tree has been applied along with Voronoi 

diagram and related graphs, for tissue representation. To our knowledge, there is 

limited documentation available defining specific algorithms for generation of an Ulam 

tree, however, it can generally be described as a mathematical object growing in space 

and time according to certain recursive rules. It is based on the tessellation described in 

[80], where the plane is divided into regular structures by using some predefined 

generation rules that define growth of structures. Delaunay triangulation and Ulam tree 

have been used for describing Feulgen-Schiff stained oral squamous cell carcinoma 

images in [81]. Geometric centers of cell nuclei are marked as graph vertices, and two 

global graph features namely average Delaunay edge length and average homogeneity 

of Ulam tree are extracted from the graphs. Prognostic values are evaluated suggesting 

whether significant prognostic information is available or not, for invasive front, 

superficial part and putatively normal mucosa using the two features. In [82], authors 

perform graph-based study on H&E stained prostate cancer, cervical carcinoma, tongue 

cancer and normal oral mucosa images. Voronoi diagrams, Delaunay graphs, Gabriel 

graphs, MST and Ulam trees are computed for these images following a simple cell 

segmentation based on thresholding, and 27 structural features are obtained from these 

graphs. 10 discriminative features have been demonstrated to have a diagnostic or 

prognostic potential, showing the ability of Voronoi diagrams and related graphs in 

quantitative tissue architecture analysis. In [83], the authors present a continuation to 

this work, where they use H&E stained images of normal oral mucosa, carcinoma of 

lungs, larynx, prostate and cervix and the same methodology as in [82], for graph-based 

representation and feature extraction, followed by study of variation in graph 

parameters with number of cells. They study the stability in values of graph-based 

features as function of number of cells for different features in same tissue, for same 

feature in different tissues and for same feature in different cases of cervical carcinoma. 

They discuss the numerical requirements i.e. the number of objects needed to obtain 

acceptable degree of reproducibility for a given set of features. They find that coefficient 

of variation depends severely on the number of cells considered, and on increasing the 

number, the features obtain a higher prognostic value. In [84], the authors state that 
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graph-based methods in [81] and [82] for quantitative evaluation of tissue architecture 

can be a feasible approach for chemoprevention of oral cancer to monitor treatment 

effects. They suggest that by employing Voronoi diagrams, Delaunay graphs, MST, 

Gabriel graph and Ulam tree, structural manifestations of the interaction between cells 

in tissue can be quantified. 

 

3.2  O’Callaghan Neighborhood Graphs 

 

Some of the earliest works have explored non-oriented complete graphs, constructed 

using the neighborhood condition defined by O’Callaghan [36], as explained in Section 

2.4. Kayser stated in [37], that Voronoi neighborhood condition is useful for 

representing solid tissue structures, however, not suitable for adenomatous structures 

(tubular structures). The reasons are that firstly, Voronoi neighborhood is independent 

of the size of structures and cannot be influenced by additional external parameters, 

and secondly the empty space inside tubular structures is considered to belong to the 

basic metric space. Hence, some studies of syntactic structure analysis apply the 

O’Callaghan neighborhood conditions for graph construction for analysis of glandular 

structures in histopathological images. Some global features derived from the graphs 

include number of vertices, number of edges, cyclomatic number, mean distances and 

distribution of nearest neighbors, second nearest neighbors, third nearest neighbors 

etc. and frequency distribution of n-stars and n-closed paths. Feature calculation is 

followed by quantitative discriminant analysis showing which structural features are 

more representative than others to represent a specific disease condition. 

In [85], low magnification H&E stained colon tissue images of healthy mucosa, 

tubulovillous adenoma and highly to moderately differentiated adenocarcinoma are 

analyzed for measuring histomorphological structures. Images are represented using 

graphs based on O’Callaghan’s neighborhood, with glands as vertices and coherence of 

neighboring glands as edges. More study in this direction is shown in [86], performing 

measurements on H&E stained and immuno-stained colon tissue sections. The authors 

construct graphs with centers of interesting structures like glands, epithelial cells and 

positively immuno-stained cells as vertices and neighboring structures as edges using 

O’Callaghan’s definition. Similar approach for differentiating healthy mucosa and 

adenomatous structures of colon is also described in [87], analyzing networks formed 

by single cells and by tubulopapillary formations in adenomatous tissue. In [88], H&E 

sections of healthy lung parenchyma and four major types of bronchus carcinomas 

namely, epidermoid, adeno, small cell and large cell carcinomas are studied. Graphs are 
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formed by epithelial cells using O’Callaghan neighborhood condition, and features are 

extracted from the graphs. Discriminant analysis is performed to classify these sections. 

Reproducibility of graph theory approach in previous studies is tested and found high. 

Related work for small cell anaplastic lung carcinoma is presented in [89]. 

A study describing three dimensional morphometric analysis of epithelium sections is 

described in [90]. Histological sections are represented using three dimensional MST and 

O’Callaghan neighborhood trees. Features are extracted from the trees and are 

quantitatively analyzed for differentiating H&E stained tissue sections of normal 

squamous epithelium, dysplasia, CIS and carcinoma. It is reported that 3D morphometric 

analysis performs better and provides significant information compared to 2D analysis. 

 

3.3  Cell Graphs 

 

In the cell graph technique, the authors have used low magnification (80-100 times) 

tissue images of brain, breast, colon and bone tissues. As explained in detail in Section 

2.5, authors have constructed these graphs using cells or cell clusters as graph nodes 

and different linking conditions for edges. Global graph metrics like average degree, 

clustering coefficient, average eccentricity, eigenvalues of graph, average node weight, 

most frequent edge weight etc. are extracted from the cell graphs. Using these features, 

the images are classified with the help of ANN or SVM classification methods. 

The authors introducing cell graphs point out some advantages of the cell graph 

approach over Delaunay triangulation and its subgraphs in [91], specifically the 

relaxation of geometric constraints. They state that, since the Delaunay triangulation is 

planar and consists of edges only between adjacent vertices, it can capture spatial 

relationships between nuclei within a small vicinity, however, no evidence justifies such 

a restriction in architecture of tissues. In contrast, cell graphs are non-planar and can 

allow crossing of edges, overcoming this restriction. Secondly, unlike Delaunay graphs, 

cell graphs are not always a single connected component, hence, can also be used for 

representing sparse tissues. Thirdly, the length of shortest path in the cell graph is not 

always three as in Delaunay triangulation, and depends on spatial distribution in the 

tissue. Further, thresholds for linking vertices are not fixed in cell graphs as in the 

Delaunay graphs. These properties provide a greater flexibility to cell graphs for 

modeling diverse types of tissues based on the tissue topology. 

Cell graphs for brain cancer analysis have been introduced in the following studies. In 

[38], the authors first segment surgically removed tissue sample images of brain cancer 
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(glioma) using k-means clustering, followed by cell graph generation with linking 

between nodes defined according to Waxman model [92]. They extract global graph 

metrics and perform classification at cellular level into cancerous, healthy and unhealthy 

(inflamed) cells, and tissue level into cancerous, healthy and non-neoplastic inflamed 

tissue using ANN classification method. In [93], the technique for simple cell graphs is 

extended to develop augmented cell graphs (ACG) for H&E stained brain cancer (glioma) 

tissues. ACG are fully-connected graphs containing weights associated with nodes and 

edges. Node weight is defined as size of the cluster corresponding to a node, and edge 

weight is the Euclidean distance between end nodes. The authors evaluate the 

performance of the method and compare with that of simple cell graphs, reporting an 

improvement using ACG. In [94], H&E stained brain biopsy samples are studied by 

constructing cell graphs similar to [38] but using a modified probability function over 

Waxman model for link establishment, and extracting spectral features based on the 

eigenvalues of the adjacency matrix and normalized Laplacian. Hierarchical classifier is 

designed to classify samples as healthy or unhealthy in first layer, then as benign or 

malignant in the second layer of classifier. In [95], the authors construct probabilistic cell 

graphs for H&E stained brain biopsy samples, followed by extraction of a set of global 

graph metrics from the constructed graphs. Samples are classified into cancerous, 

healthy or inflamed tissue using multilayer perceptrons. They also perform a comparison 

of the graph-based method with spatial cell distribution and texture-based approaches, 

and establish better recognition rates for the graph-based method. In [96], H&E stained 

brain tissue photomicrograph samples are analyzed by generating probabilistic cell 

graphs. The graph evolution process is analyzed by identifying three phases that a graph 

passes through during its evolution, and strong relation between the malignancy of 

cancer and the phase of its graph is demonstrated. Connectivity is controlled using edge 

exponent, and a set of 11 graph features are quantitatively analyzed for each phase. It 

is observed that normal, low grade cancerous and high grade cancerous cell graphs 

evolve differently. Their approach is also compared with texture-based approach and 

leads to better results. They propose that their method opens up new possibilities for 

dynamic modeling of cancer, an ability that is not exhibited using the texture approach. 

In [39], the authors use cell graphs to model H&E stained breast tissues. Hierarchical cell 

graphs are introduced and generated for the images, and a set of global graph features 

are extracted from hierarchical graphs. SVM classification is applied to classify images 

into benign, invasive and in-situ. Performance accuracy is compared with intensity based 

features, Delaunay graphs, probabilistic graphs, simple cell graphs and hybrid approach 

combining all these features. Hierarchical cell graphs obtain the best learning ratio 

compared to the other techniques. 
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H&E stained histopathological images of bone tissue samples are analyzed using 

advanced version of cell graphs called ECM-aware cell graphs in [91]. The images are 

first segmented using eigenvalues of Hessian matrix and spatial coordinates of cell nuclei 

are calculated to obtain corresponding nodes of cell graphs. A color code is allotted to 

each node depending on composition of Extra-Cellular Matrix (ECM) around the node. 

An edge exists between nodes if they have same color code and if they are neighbors 

(i.e. have physical contact). Topological and spectral features calculated from these 

graphs, and SVM classification is applied to classify the images into healthy, fractured or 

cancerous. The approach can distinguish between different types of cells, and is 

compared with simple cell graphs and Delaunay triangulation methods, showing better 

performance than these methods. 

Three dimensional cell graphs for spatio-temporal analysis of tissues are explored in [97] 

and [98]. In the first study, the authors analyze 3D collagen-I cultures of human 

mesenchymal stem cells (hMSCs). Images are first acquired using fluorescence 

microscopy and SYTOX Green Dye for staining. Cell graphs are constructed on the images 

using three dimensional Euclidean space and features are extracted from these graphs. 

The features are quantitatively analyzed to track the underlying structural changes and 

biological events. The authors compare their cell graph approach to Voronoi diagrams 

and Delaunay graphs, and show that cell graphs outperform the other two graph-based 

methods. In the second study, 11 different cell types (non-cancerous, pre-cancerous and 

malignant states of different tissue origins) are discriminated in collagen-I hydrogel cell 

culture images using metrics extracted from 3D cell graphs. 20 cell graph features are 

initially extracted, following which a three-mode tensor analysis is applied to determine 

the most representative features. The authors conclude that five features are sufficient 

to easily distinguish between the cell types, as they provide important quantitative 

image information and can potentially improve accuracy of disease diagnosis and 

detection. 

A study based on the idea of cell map and cell web, similar to the cell graphs described 

above, also requires special mention in this section. In [99], the authors perform analysis 

of H&E stained histological sections of colon of the types normal mucosa, aspecific 

colitis, ulcerative colitis and Crohn’s disease. They first describe three separate 

algorithms for detection of objects, namely, cell nuclei, glands and epithelium, for their 

dataset. Cell nuclei are determined by a segmentation procedure involving a color-

thresholding algorithm, after which cell maps are generated where cells are represented 

by single spots. Cell webs are constructed on these cell maps where cells act as nodes 

and edges connect each cell to its 5- nearest neighbors. They employ cell webs and their 

properties for detecting glands and epithelium in images. This is followed by extraction 
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of 38 morphometric parameters from their objects, and 14 tissue cytometric parameters 

describing ratios of tissue compartments. These parameters are analyzed using 

discriminant analysis, and they conclude that their parameter set can classify images of 

normal mucosa, aspecific colitis and ulcerative colitis with reasonable accuracy, 

however, Crohn’s disease identification requires development of more advanced 

techniques. In [100], the authors use the technique described in [99] for classification of 

H&E stained gastric biopsies into normal mucosa, gastritis and adenocarcinoma. They 

conclude that tissue architecture and cytometric parameters are effective in the 

classification of gastric samples. 

Recently, a graph-based method similar to cell graph, namely, cell cluster graph (CCG) 

has been explored in [101] for investigating prostate cancer tissue microarray images. 

In this work, cell nuclei clusters at low magnification are first identified by using a 

method based on concavity detection [102]. Cell clusters are treated as nodes, and a 

probability function is defined for establishing links between nodes. Following the graph 

construction, local and global features are computed, capturing the morphology of 

tumor tissue. Support vector machine classification is used to determine biochemical 

recurrence. The authors also report a superior performance of CCG compared to 

Voronoi and Delaunay methods. They state the advantage of CCG method is that nuclei 

boundaries need not be located accurately, so the method can be applied at low 

magnifications. Further, this approach identifies exact nuclei clusters unlike the cell 

graph approach described earlier in this section. 

 

3.4  Attributed Relational Graphs 

 

Attributed relational graphs are emerging as a topic of interest for researchers in this 

field. Attributed minimum spanning trees are explored for representing Feulgen stained 

soft tissue tumors (malignant fibrous histiocytoma, fibrosarcoma, rhabdomyosarcoma, 

osteosarcoma and Askin tumor) in [103], where a basic graph is first constructed 

according to the neighborhood condition of O’Callaghan. Nuclear features related to 

morphometry and DNA-content are attributed to the vertices, and the differences or 

distances between features of connected vertices are attributed to the corresponding 

edges. Resulting MST is decomposed into clusters using a suitable decomposition 

function on the edges, and clusters of distinct nuclear orientation are detected. A cluster 

tree is constructed by defining the geometric center of a cluster as a new vertex and by 

computing the neighborhood of the cluster vertices. This generates an attributed MST 
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containing characteristic structural properties of the histological image which are 

analyzed for the mentioned tumor types. 

Another study employing ARG for content-based retrieval of H&E stained breast tumor 

tissue images is given in [41]. The authors have represented segmented tissue images 

using ARG, where nodes are centroids of tissue regions having attributes as a label from 

the segmentation and some associated morphological features of the associated 

segment. Edges connect neighboring segments and are characterized by edge attributes 

which are Euclidean distance and common boundary between connecting nodes. A* 

based graph matching algorithm is employed to retrieve the image regions most similar 

to a given query region. 

 

3.5  Other Graph-based Approaches 

 

Some authors have developed and/or applied other graph-based methods used less 

frequently, for representation and analysis of histological images. A novel graph-based 

approach is given in [104], where the authors define Zone of Influence (ZOI) tessellation 

for haematoxylin stained cervical tissue section images. Images are first segmented 

using a two-stage procedure, and ZOI tessellation is formed by the skeletonization or 

medial axis transformation of the background image. Skeletonization is performed using 

an algorithm for sequential application of hit or miss transformation widely used in 

mathematical morphology [105]. The authors emphasize on some advantages of 

generating neighborhood graphs by this method as compared to O’Callaghan graphs and 

the Voronoi diagrams. Firstly, in O’Callaghan’s method it is necessary to fix certain 

parameters like maximum possible distance and minimum angular separation of 

neighbors with respect to the node in question, which is not required in this method. 

Moreover, O’Callaghan graphs and Voronoi diagrams are based only on points and 

information about the cell shape is not considered in defining neighborhoods, however, 

shape information is considered in ZOI tessellation. After generating ZOI tessellations, 

they extract a set of global features using which they characterize tissue sections into 

normal and dysplastic. They also compare results of their approach with minimum 

spanning tree approach. 

A similar morphological approach is described in [106], where H&E stained tick 

epithelium and mammary gland adipose tissue from mice are differentiated using a 

graph-theoretic description called neighborhood graph built using morphological 

operators. A segmentation process using mathematical morphology is first applied to 
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the tissue images. Watershed algorithm defining neighborhoods between image objects 

is applied on the segmented image and neighborhood graphs are created according to 

the method explained in [107], where vertices are defined by the centroids of cells. 

Global measures are derived from the neighborhood graphs and regions, and individual 

measures are derived from cells. SVM classification is used and performance of classifier 

is evaluated, along with the discriminative ability of each measure in characterizing the 

two tissues. 

Another work in this category for classification of H&E stained prostate cancer images is 

found in [108]. Gland segmentation is performed and gland angle is calculated that 

reflects the dominant orientation of the gland. Following this, a subgraph is constructed 

to connect neighboring glands together and form a gland network. According to the 

authors, the resulting subgraphs are superior to Voronoi diagrams, Delaunay graphs and 

minimum spanning trees because they are able to characterize local gland arrangement. 

Co-occurrence gland angularity (CGA) matrix is computed to represent second-order 

statistics of gland orientations within each gland network and 39 CGA second order 

statistical features are extracted. A random forest classifier is used to classify images 

into benign or malignant and biochemical recurrence or non-biochemical recurrence. 

Comparative evaluation with other quantitative histomorphometric attributes namely 

gland morphology, Voronoi diagram, Delaunay triangulation, MST, gland density and 

texture-based approaches is also performed, and authors report better performance of 

the CGA approach compared to other approaches for the given problem. 

 

3.6  Hybrid Methods: Graph-based Features with Other Feature Types 

 

Besides graph-based methods, image analysis methods used abundantly in histology 

incorporate approaches for extracting information in the form of texture, intensity (or 

color), morphology (or shape) and frequency-based features from individual pixels or 

superpixels (sometimes predefined objects) in the image. One of the earliest works using 

these methods are explored by Hamilton et al. in [109], [110] and [111]. In [109], H&E 

stained colorectal epithelium images are analyzed using morphological features 

followed by discriminant analysis that classifies images as normal and malignant. In 

[110], cytometric features based on cell morphology are used for classifying fine needle 

aspiration cytology (FNAC) breast specimens into benign and malignant by constructing 

Bayesian belief networks. In [111], texture analysis is used to classify colorectal mucosa 

images into normal and adenomatous (dysplastic). More work using texture features for 

classification purpose is given in [112], [113], [114], [115], [116] and [117]. Color or 
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intensity-based features in histology have been explored in [118] using grey-level 

features in muscle tissues, and in [119] for analysis of stain components in skin tissues. 

Shape-based or morphological features have been extensively used in histological image 

analysis, for instance, in [120], [121] and [122]. Frequency-based features include the 

use of spectral bands, Fourier transforms and wavelets among others. Applications 

utilizing multiple spectral bands for analysis include [123] and [124]. Wavelets have also 

been proved as powerful features in [125], [126] and [127] for breast cancer, prostate 

cancer and meningioma classification respectively. 

A part of the developed techniques use a combination of the graph-based characteristics 

with other feature types. Visual information extracted using both approaches followed 

by data fusion, promise an improvement in results than individual approaches. One of 

the earliest studies in this direction is presented in [128], where the authors report 

analysis of Feulgen stained primary lung carcinoma tissue using geometrical and 

morphometric parameters of cell nuclei along with texture parameters based on MST, 

Johnson-Mehl diagram and Voronoi tessellation. They study the discriminating power of 

combined features derived from graph representations and nuclear morphometric 

features for classifying adenocarcinoma, epidermoid, small cell anaplastic and large cell 

anaplastic carcinoma. In [129], Feulgen stained histological sections of lung carcinoma 

are quantitatively described by MST-based and morphometric features of tumor cell 

nuclei, allowing analysis of growth centers and micro-environment conditions in human 

lung cancer in relation to tumor texture. Another study in [130] presents analysis to 

differentiate Feulgen stained primary and metastatic lung carcinoma in the 

intrapulmonary lymph nodes using a combination of nuclear features measured using 

integrated optical density (IOD) related to DNA content of nuclei and MST derived 

features. Similar work in [131] measuring IOD and MST-based features for Feulgen 

stained human non-small cell lung carcinoma sections shows significant differences in 

the biopsy specimens as compared to surgically excised carcinomas and intrapulmonary 

lymph nodes (lymph node metastases). Cytometric features based on DNA-content and 

morphometry and histometric features based on MST are used in [132] for analyzing 

prenatal development of lungs, and show discriminative values for different periods of 

gestation in Feulgen-stained fetal lung specimens. Related studies using fusion of MST 

based features and other features using syntactic structure analysis for lung carcinomas 

are also presented in [133], [134], [135] and [136]. In [137], authors present a study to 

analyze localized fibrous tumors (LFTs) of the lung pleura using quantitative imaging 

techniques and syntactic structure analysis. Quantitative assessment includes 

quantification of asbestos intoxication, assessment of immuno-, glyco-, and lectin 

histochemistry followed by staining assessment, and syntactic structure analysis 

involves calculation of several parameters derived from MST of cells. This is followed by 
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a statistical analysis of features and finding a correlation with clinical data, including 

habits (smoking), asbestos exposure, survival, and tumor recurrence in patients. A 

recent study involving a combination of texture analysis and syntactic structure analysis 

is presented in [138], where the authors use entropy calculations dependent on grey 

value thresholds along with MST representations to evaluate image content information 

in histopathological images stained using different staining techniques such as anti 

Her2_new and glycohistochemical staining. 

Feulgen stained tissue sections of malignant mesothelioma, hyperplastic mesothelium 

and pulmonary adenocarcinoma are analyzed in [139] where a total of 82 features 

including texture features, morphometric features, densitometry features and graph-

based features based on Voronoi diagram, Gabriel graph and MST are extracted from 

histological sections. kNN classification is performed and it is observed that texture and 

graph-based features outperform the densitometry and morphometry features. 

Another related study for determination of tumour prognosis in three types of tumors 

namely, invasive cervical carcinoma, colorectal carcinoma and malignant mesothelioma 

for immunostained tissue sections is given in [140]. In this study, spatial arrangement of 

blood vessels is represented using Voronoi diagram, Gabriel graph and minimum 

spanning tree. A set of features including vessel-derived features (density and 

morphometry), fractal features using fractal analysis and graph-based features using 

syntactic structural analysis are extracted and automated kNN classifier is used to find 

most discriminative feature combinations. They conclude that for all three types of 

cancers, prediction of prognosis based on syntactic structure analysis yields higher 

recognition scores compared to vessel density and fractal dimension features. 

In [141], the authors analyze H&E stained prostate cancer images for classification into 

different Gleason grades. They extract a hybrid set of 102 features including 57 texture 

features, 32 gland morphology and arrangement features and 13 nuclear arrangement 

features. Spatial arrangement of nuclei is studied by constructing Voronoi diagram, 

Delaunay graph and MST on nuclei, and spatial arrangement of glands is studied by 

constructing co-adjacency matrix, as a low number of glands per region does not yield 

informative graph representations. SVM is applied to discriminate between pairs of 

tissue types from Gleason grade 3 adenocarcinoma, Gleason grade 4 adenocarcinoma, 

benign epithelium and benign stroma and results are discussed. Another related work is 

[142], where H&E stained breast biopsy images are studied. A total of 3400 textural and 

architectural features are extracted. Texture features include gray level statistical 

features, Haralick features and Gabor features, and architectural features include 

Voronoi diagram, Delaunay graph and MST based features. Spectral clustering algorithm 

called graph embedding is used for dimensionality reduction followed by SVM 
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classification. This method facilitates classification of breast tissue images into 

cancerous or non-cancerous and low grade or high grade cancer. A study to discriminate 

between normal, abnormal and cofounder classes of H&E stained prostate biopsy 

samples is given in [143], where nuclei are first detected and segmented, after which 

features are extracted in the form of architectural features based on Voronoi diagram, 

Delaunay triangluation, MST and nuclear density, and texture features based on first-

order statistics, co-occurence features and steerable filters. A cascaded approach 

consisting of a set of binary classifiers is used to classify images into seven classes namely 

epithelium, stroma, atrophy, prostatic intraepithelial neoplasia, Gleason grades 3, 4 and 

5. Content-based image retrieval of prostate cancer images using hybrid features is 

described in [144]. It involves extraction of 576 features, including 483 texture features, 

44 morphological features, and 49 graph features based on Voronoi diagram, Delaunay 

triangulation and MST, followed by manifold learning. 

A method for quantification of extent of lymphocytic infiltration in H&E stained Her2-

positive (Her2+) breast carcinoma images is mentioned in [145] and also explained in 

detail in [146]. Firstly, automatic lymphocyte detection is performed to identify 

lymphocyte nuclei from surrounding stroma and cancer cell nuclei using a combination 

of region growing and Markov random field algorithms. Subsequently, Voronoi diagram, 

Delaunay triangulation and MST are constructed on these images. 50 architectural 

features are extracted from the images including 25 graph-based and 25 nuclear 

features. Nuclear features represent nuclear statistics, such as lymphocyte density, 

nearest neighbor and distribution statistics. Graph embedding is used for dimensionality 

reduction and SVM classification method is applied. Comparative evaluation is 

performed with texture-based features (Varma-Zisserman texton-based features and 

global texture features), showing superiority of architectural feature set over both 

texture feature sets. Related work is proposed in [147] for distinguishing modified 

Bloom-Richardson grades from H&E stained estrogen receptor-positive (ER+) whole 

slides of breast cancer. Extracted feature set includes 50 nuclear architecture features 

with 25 graph-based features from Voronoi diagram, Delaunay triangulation and MST 

and 25 nuclear statistic features, and 13 Haralick texture features. Feature selection is 

performed using a minimum redundancy maximum relevance method and a whole slide 

classifier is introduced to extract features from multiple fields of view of varying sizes, 

followed by classification of large images. Evaluation results show that the grading 

system is able to distinguish low versus high, low versus intermediate and intermediate 

versus high grade specimens with reasonable accuracy. 

In [148], Feulgen stained bladder carcinoma histological tissue sections are analyzed 

using object based, texture and graph based features. MST is generated from the 
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segmented image using Kruskal’s algorithm connecting the nuclei and geometric and 

densitometric features are derived from the trees. The combined features are used for 

performing image classification based on grading (grades 1, 2A, 2B and 3) using Linear 

discriminant analysis and multi-layer back-propagation neural networks (BPNN) 

methods and results are evaluated. 

H&E and Thionin-Feulgen stained cervical cancer biopsy specimens are analyzed in 

[149], where 103 nucleometric features from morphometry, photometry and texture, 

and 29 architectural features from graphs including Voronoi diagrams, Delaunay graphs 

and minimum spanning trees are extracted. Linear discriminant analysis is performed to 

classify nuclei into different types (negative, koilocytosis, CIN1, CIN2, CIN3) and to detect 

the presence of Human papillomavirus(HPV). 

Breast biopsy whole slide images are analyzed using high and low resolution algorithms 

embedded in a multi-scale framework in [150]. The human visual system is simulated 

where receptive fields are selected using first order color features and second order 

color features based on Gaussian distributions. These receptive fields are used for 

training GPU-based SVM for classifying regions into normal or invasive. Voronoi 

diagrams are constructed incrementally, which are used in nuclear pleomorphism 

detection to select the most informative samples in their multi-scale dynamic sampling 

algorithm. 

A system for interactive classification and retrieval of microscopic tissue images is 

proposed in [151] where the authors use low level features like color, texture and shape 

to describe regions and high level features like statistics and spatial relationships 

represented by fuzzy membership functions to define neighborhoods of regions. Their 

framework learns prototype regions in a collection of images with the help of model-

based clustering and density estimation. Then it performs retrieval of tissue regions 

similar to user query regions with optional relevance feedback. The authors also present 

a Bayesian framework for classification of images using their feature set and models. 

This method does not use graphs, but uses a combination of different feature types to 

represent tissue regions and their relationships. 

A hybrid approach using cell graphs already discussed in Section 3.3 is given in [39]. 
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3.7  Graph-Theoretic Frameworks 

 

In this section, we mention some of the commonly used and freely available frameworks 

and tools for developing graph-based applications. A standardized generic interface for 

graph traversal is provided by Boost Graph Library (BGL) to the C++ developers, which is 

open source and encourages the use of graph-based algorithms and data structures 

[152]. Quickgraph, an open source library based on BGL in C#, provides generic graph 

data structures and algorithms for the .NET platform [153]. OpenGM is another open 

source library in C++ for defining discrete graphical models and distributive operations 

on these models [154]. An additional open source graph template library in C++ is the 

Library for Efficient Modeling and Optimization in Networks (LEMON) for combinatorial 

optimization tasks, especially those involving graphs and networks [155]. An open 

source graph modeling and visualization framework written in Java is the Java Universal 

Network/ Graph Framework (JUNG) [156]. Computational Geometry utility in 

Mathematics feature [157], Bioinformatics Toolbox [158] and Symbolic Math Toolbox 

[159] in MATLAB also provide several functions used in graph theory, as a part of 

MATLAB proprietary software. 

Modern pathology information systems are often .NET applications, developed using C# 

programming. So far, most of the graph-theoretic analysis methods in histopathology 

are based on Voronoi diagram, Delaunay triangulation and their subgraphs, hence, we 

provide an overview of some past implementations and libraries for these methods with 

focus on C#. Fortune-voronoi [160] implementation follows Fortune’s sweepline 

algorithm for Voronoi diagram described in [19]. EmguCV [161] is a wrapper for .NET to 

access the OpenCV library [162] and the triangulation in OpenCV is formed iteratively 

[163]. OpenCV functions can be used for implementing Voronoi diagram, Delaunay 

triangulation and related graphs like relative neighborhood graph and nearest neighbor 

graph. NetTopologySuite [164] is a part of the JTS Topology Suite [165], [166] adapted 

to .NET or C#. JTS Topology Suite is an application program interface (API) in Java for 

two-dimensional linear geometry, and can be used for implementing Voronoi diagram, 

Delaunay triangulation and constrained Delaunay triangulation (CDT), based on the 

method described in [167] and modifications from [168]. Nielsen’s Bourke [169] is a .NET 

2.0 library created by Morton Nielsen based on a method by Paul Bourke [170], to 

triangulate point data incrementally i.e. to an existing triangulation more nodes are 

added and the triangulation is updated. Boost.Polygon Voronoi library [171], a part of 

the Boost framework [172], provides implementations of Voronoi diagram and Delaunay 

triangulation in C++ using Fortune’s algorithm. Poly2Tri [173] is a library for production 

of constrained Delaunay triangulation, and is available in C++ and Java. The triangulation 
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is carried out with a sweepline procedure described in [174]. Table 2 summarizes the 

various available implementations of Voronoi diagram, Delaunay triangulation and 

related graphs described above. 

 

4  Conclusion and Recommendations 

 

In the current practice of medicine, histopathological examination of tissue slides is the 

routinely used method for the diagnosis and prognosis of diseases, as the disease 

characteristics can be identified mainly from tissue appearance. Attempts have been 

made to automate the process of analyzing digital histopathological images using a wide 

range of analysis techniques. This paper presents a comprehensive account of the 

various architectural methods developed using graph-theoretic descriptions of 

histological images. We discuss the progress of exciting developments and applications  

Table 2: Often used implementations of Voronoi diagram, Delaunay triangulation and 

related graphs 

  

Framework  Associated 

graphs  

Base 

algorithms  

Programming 

language  

Provider  Open 

source  

License  

Fortune-voronoi  Voronoi diagram  Fortune’s 

sweepline 

algorithm  

C#  https://code.goog

le.com/p/fortune-

voronoi/  

Yes Mozilla Public 

License 1.1  

OpenCV planar 

subdivisions  

Voronoi diagram, 

Delaunay 

triangulation and 

subgraphs  

Delaunay’s 

algorithm  

C++,C# (EmguCV 

wrapper)  

http://docs.openc

v.org/modules/leg

acy/doc/planar_s

ubdivisions.html  

Yes BSD License 

(EmguCV: GNU 

GPL License v3)  

NetTopology 

Suite  

Voronoi diagram, 

Delaunay 

triangulation and 

Constrained 

Delaunay 

triangulation  

Guibas & Stolfi 

method and 

Dani Lischinki 

method  

C#  https://github.co

m/NetTopologySu

ite/NetTopologyS

uite  

Yes GNU Lesser 

General Public 

License  

JTS Topology 

Suite  

Voronoi diagram, 

Delaunay 

triangulation and 

Constrained 

Guibas & Stolfi 

method and 
Java

TM
  http://www.vivids

olutions.com/jts/J

TSHome.htm  

Yes GNU Lesser 

General Public 

License  
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Delaunay 

triangulation  

Dani Lischinki 

method  

Nielsen’s Bourke  Delaunay 

triangulation  

Paul Bourke’s 

method  

C#  http://paulbourke

.net/papers/triang

ulate/morten.htm

l  

Yes None  

Boost.Polygon 

Voronoi Library  

Voronoi diagram 

and Delaunay 

triangulation  

Fortune’s 

sweepline 

algorithm  

C++  http://www.boost

.org/doc/libs/1_5

4_0/libs/polygon/

doc/voronoi_main

.htm  

Yes Boost Software 

License, Version 

1.0  

Poly2Tri  Constrained 

Delaunay 

triangulation  

Sweepline 

algorithm for 

CDT  

C++, Java
TM

  https://code.goog

le.com/p/poly2tri

/  

Yes New BSD License  

  

of the graph-based techniques in histology, starting from the mathematically complex 

but less computationally efficient tessellations like Dirichlet and Johnson Mehl 

tessellations, followed by studies on proximity graphs, especially Delaunay graphs and 

their subgraphs. Subsequently, graphs based on alternative neighborhood conditions 

like O’Callaghan and zone of influence were explored, reporting their benefits over the 

Voronoi-based graphs. Meanwhile, there was also an increased interest in syntactic 

pattern recognition methods deriving quantitative information from graph 

representations, mostly utilizing minimum spanning trees. However, with further 

developments in virtual microscopy techniques, we note a paradigm shift from the 

‘constrained’ or geometric methods utilizing proximity graphs to more ‘relaxed’ or 

flexible application-specific graphs, for example cell graphs and attributed relational 

graphs applied on different types of tissues. Many authors have also used a combination 

of the graph-based methods with other familiar image analysis methods, and report 

superior performance of the hybrid methods over classical approaches. 

To the best of our knowledge, the graph-theoretic techniques explored for histological 

image analysis as mentioned in this paper, have been applied on standard sized 

individual regions of smaller dimensions and lower resolutions (usually previously 

selected regions of interest). With the rapid advancement in hardware and software 

equipment in the field of digital pathology in the past few years, slides are now available 

as high resolution whole slide images ready to be analyzed. The histopathological 

community has observed the need of developing analysis techniques applicable to the 

whole slide images and not only to some specific regions. The state-of-the art solutions 
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using graphs are too computationally expensive to be applied on large whole slide 

images. Another limitation of many of the current graph-based approaches is their semi-

automatic nature, as cells or other interesting objects have been mostly interactively 

marked with their boundaries before graph construction, which also makes the process 

time consuming. For some other graph-based methods, the corresponding tessellations 

provide cell boundaries which may not coincide with the actual cell boundaries. 

Sometimes simpler and more general segmentation algorithms like thresholding and k-

means algorithm have been applied, leading to blob-like appearance of cells and cell 

clusters which can clearly affect the accuracy of subsequent analysis. Hence, there is a 

need to develop tissue specific automatic segmentation algorithms for isolating the 

different tissue components in histological images. 

For future research in this direction, we suggest that the current graph-based algorithms 

should be modified for analysis of whole slide images, for instance, by using advanced 

parallel processing techniques. Attempts towards algorithm optimization in histological 

image analysis for complete slides can prove pivotal in shaping the future of digital 

pathology. An approach based on parallel processing frameworks for sharpness 

adjustment of WSIs using distributed computing mechanisms is proposed in [175], and 

this system can be further explored to process, analyze and parallelize analysis of WSIs. 

Moreover, segmentation and object detection methods in histological images should be 

completely automated and optimized for histological image datasets. One recently 

developed example of fully automatic nuclei segmentation strategy as a minimum 

model approach, for H&E stained images is given in [176]. Additionally, there is a need 

to consider the information at different magnifications of histological image in a multi-

resolution or hierarchical manner, in order to capture properties at both cellular and 

tissue levels. A multi-scale framework using parallel processing techniques is presented 

in [150], where sparse coding and GPU programming are explored and dynamic 

sampling techniques are used to rapidly identify fields of interest and analyze breast 

biopsy histopathological WSIs. The authors report their computational times on WSIs 

comparable to processing times of pathologists. Another recent multi-resolution 

approach to combine visually significant information at different magnifications to 

improve segmentation results in gastric cancer images is described in [177]. 

We can conclude that graph-based methods have proved their ability as potentially very 

powerful tools for describing and analyzing tissue architectures in digital histopathology, 

and need to be explored further. It can be stated that graph-based techniques comprise 

an important direction of study and research in the field of histopathogical image 

analysis, and can provide the basis for developing various automatic applications and 

tools to retrieve and classify tissue sections in a reliable way. 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2015-1:61


  H. Sharma et. al. diagnostic pathology 2015, 1:61

  ISSN 2364-4893 

 DOI: http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2015-1:61 

 40 

 

Acknowledgment 

This work is supported with funds from the German Academic Exchange Service (DAAD). 

Conflicts of interest 

The authors declare that there are no conflicts of interest. 

References  

[1] Weidner N, Cote RJ, Suster S, and Weiss LM. Modern Surgical Pathology: 2-Volume Set, 
Expert Consult-Online & Print. Elsevier Health Sciences, 2009. 

[2] Rolls G. An introduction to specimen preparation. http://www.leicabiosystems.com/ 
pathologyleaders/an-introduction-to-specimen-preparation/, May 2011. 

[3] Pawlina W and Ross M. Histology: A Text and Atlas. Lippincott Williams & Wilkins, 
Baltimore, MD, 2006. 

[4] Rochow TG and Tucker PA. Introduction to microscopy by means of light, electrons, X-rays, 
or acoustics. Springer Science & Business Media, 1994. 

[5] Sucaet Y and Waelput W. Digital Pathology. SpringerBriefs in Computer Science. 
Springer, 2014. 

[6] Trudeau RJ. Introduction to Graph Theory. Dover Publications, New York, 1993. 

[7] Lejeune Dirichlet G. Über die Reduction der positiven quadratischen Formen mit 
drei unbestimmten ganzen Zahlen. Journal für die reine und angewandte Mathematik, 
40:209–227, 1850. 

[8] Voronoi G. Nouvelles applications des paramètres continus á la thèorie des formes 
quadratiques. Journal für die reine und angewandte Mathematik (Crelle’s Journal), 
133:198-287, 1907.  

[9] Toussaint GT. Some unsolved problems on proximity graphs. In Dearholt D and Harary F, 
editors, Proceedings of the First Workshop on Proximity Graphs. Memoranda in Computer 
and Cognitive Science MCCS, pages 91–224. Citeseer, 1991. 

[10] Aurenhammer F and Klein R. Voronoi diagrams. Handbook of computational geometry, 
5:201– 290, 2000. 

[11] Rozenberg G and Salomaa A. Current trends in theoretical computer science: essays and 
tutorials, volume 40. World Scientific, 1993. 

[12] Delaunay B. Sur la sphère vide. A la mémoire de Georges Voronöı. Bulletin of 
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