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Abstract
Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have

identified common variant signals which explain 4.8% and 1.2% of trait variance, respec-

tively. It is hypothesized that low-frequency and rare variants could contribute substantially

to unexplained genetic variance. To test this, we analyzed exome-array data from up to

33,231 non-diabetic individuals of European ancestry. We found exome-wide significant

(P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS:

GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and

URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can

highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11
locus, we identified multiple coding variants inG6PC2 (p.Val219Leu, p.His177Tyr, and

p Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-

coding GWAS signal. In vitro assays demonstrate that these associated coding alleles

result in reduced protein abundance via proteasomal degradation, establishingG6PC2 as

an effector gene at this locus. Reconciliation of single-variant associations and functional ef-

fects was only possible when haplotype phase was considered. In contrast to earlier reports

suggesting that, paradoxically, glucose-raising alleles at this locus are protective against

type 2 diabetes (T2D), the p.Val219LeuG6PC2 variant displayed a modest but directionally

consistent association with T2D risk. Coding variant associations for glycemic traits in

GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These cod-

ing variant association signals do not have a major impact on the trait variance explained,

but they do provide valuable biological insights.

Author Summary

Understanding how FI and FG levels are regulated is important because their derangement
is a feature of T2D. Despite recent success from GWAS in identifying regions of the ge-
nome influencing glycemic traits, collectively these loci explain only a small proportion of
trait variance. Unlocking the biological mechanisms driving these associations has been
challenging because the vast majority of variants map to non-coding sequence, and the
genes through which they exert their impact are largely unknown. In the current study, we
sought to increase our understanding of the physiological pathways influencing both traits
using exome-array genotyping in up to 33,231 non-diabetic individuals to identify coding
variants and consequently genes associated with either FG or FI levels. We identified novel
association signals for both traits including the receptor for GLP-1 agonists which are a
widely used therapy for T2D. Furthermore, we identified coding variants at several GWAS
loci which point to the genes underlying these association signals. Importantly, we found
that multiple coding variants in G6PC2 result in a loss of protein function and lower fast-
ing glucose levels.

Introduction
Large-scale GWAS of non-diabetic individuals have successfully identified> 60 loci associated
with FG and FI levels, many of which are also implicated in susceptibility to T2D [1, 2, 3, 4].

FunctionalG6PC2 Variants Influencing Glycemic Traits

PLOS Genetics | DOI:10.1371/journal.pgen.1004876 January 27, 2015 3 / 25

of Finland (contract 124243), the Finnish Heart Foun-
dation, the Finnish Diabetes Foundation, Tekes (con-
tract 1510/31/06), and the Commission of the
European Community (HEALTH-F2-2007-201681),
and the US National Institutes of Health grants
DK093757, DK072193, DK062370, and 1Z01
HG000024. The FUSION study was supported by
DK093757, DK072193, DK062370, and 1Z01
HG000024. Genotyping of the METSIM and DPS
studies was conducted at the Genetic Resources
Core Facility (GRCF) at the Johns Hopkins Institute
of Genetic Medicine. VS is funded by the Finnish
Foundation for Cardiovascular Research and the
Academy of Finland (grant # 139635). The FIN-D2D
2007 study has been financially supported by the
hospital districts of Pirkanmaa, South Ostrobothnia,
and Central Finland, the Finnish National Public
Health Institute (current National Institute for Health
and Welfare), the Finnish Diabetes Association, the
Ministry of Social Affairs and Health in Finland, the
Academy of Finland (grant number 129293), Com-
mission of the European Communities, Directorate
C-Public Health (grant agreement no. 2004310) and
Finland’s Slottery Machine Association. The DPS has
been financially supported by grants from the Acade-
my of Finland (117844 and 40758, 211497, and
118590 (MU); The EVO funding of the Kuopio Univer-
sity Hospital from Ministry of Health and Social Affairs
(5254), Finnish Funding Agency for Technology and
Innovation (40058/07), Nordic Centre of Excellence
on ‘Systems biology in controlled dietary interven-
tions and cohort studies, SYSDIET (070014), The
Finnish Diabetes Research Foundation, Yrjö Jahns-
son Foundation (56358), Sigrid Juselius Foundation
and TEKES grants 70103/06 and 40058/07. The
DR's EXTRA Study was supported by grants to RR
by the Ministry of Education and Culture of Finland
(627;2004-2011), Academy of Finland (102318;
123885), Kuopio University Hospital, Finnish Diabe-
tes Association, Finnish Heart Association, Päivikki
and Sakari Sohlberg Foundation and by grants from
European Commission FP6 Integrated Project
(EXGENESIS); LSHM-CT-2004-005272, City of Kuo-
pio and Social Insurance Institution of Finland (4/26/
2010). The Broad Genomics Platform for genotyping
of the FIN-D2D 2007, FINRISK 2007, DR'sEXTRA,
FUSION, and PPP studies. The funders had no role
in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.



Despite these successes, lead SNPs at GWAS loci have modest effects and cumulatively explain
only a small proportion of the trait variance in non-diabetic individuals. By design, GWAS
have focused predominantly on the interrogation of common variants, defined here to have
MAF> 5%. Most of the identified variants are non-coding, complicating attempts to establish
the molecular consequences of these GWAS loci. We therefore chose to extend discovery
efforts to coding variants, particularly those of lower frequency that have not been well cap-
tured by GWAS genotyping and imputation. We aimed both to identify novel coding loci for
FG and FI, and to evaluate the role of coding variants at known GWAS loci, thereby expecting
to highlight causal transcripts and to facilitate characterization of the molecular mechanisms
influencing glycemic traits and T2D susceptibility.

Results
We analyzed 33,231 (FG) and 30,825 (FI) non-diabetic individuals from 14 studies of European
ancestry, all genotyped with the Illumina HumanExome BeadChip (see URLs). Characteristics
of the contributing studies and study participants are summarized in S1-S2 Tables. Body mass
index (BMI) adjustment has been shown to increase power to detect association with these gly-
cemic traits [4], and in our study samples, BMI accounted for 6.1% and 24.6% of phenotypic
variance of FG and FI, respectively. Consequently, within each study, we calculated residuals
for both traits after adjustment for BMI and other study-specific covariates (S1 Table). Study-
specific inverse-rank normalized residuals were tested for single-variant association using a lin-
ear mixed model to account for relatedness and fine-scale genetic population sub-structure [5].
We also repeated the analysis using the untransformed residuals to obtain allelic effect sizes.
We then combined the association summary statistics across studies using fixed-effect meta-
analysis. We restricted our single-variant analysis to 106,489 variants that pass quality-control
and are polymorphic in more than one study. We declared a single-variant trait association as
exome-wide significant at P< 5×10-7, corresponding to Bonferroni correction for the
~100,000 polymorphic variants. We also carried out gene-based meta-analysis [6, 7] by using
the sequence kernel association test (SKAT) [8] and a frequency-weighted burden test [9] ap-
plying four alternate variant masks which combine functional annotation and allele frequency
thresholds. Full details of the variant masks are provided in the Methods. Gene-based tests take
into account overall variant-load within a specified locus and therefore may have greater
power than single-variant tests to detect associations with multiple rare and low-frequency
causal alleles. We note that this advantage is likely to be less in exome-array analysis compared
with the more complete ascertainment of variants possible with exome sequencing [10].
We declared gene-based association as exome-wide significant at P< 2.5×10-6, corresponding
to Bonferroni correction for ~20,000 protein-coding genes in the genome.

Coding variants influencing FG levels
Through single-variant analysis, we identified 12 coding variants (all of which were non-
synonymous changes) associated with FG levels at exome-wide significance, two low-frequency
and ten common (S3 Table). These variants mapped to seven loci, six of them previously
implicated in FG regulation. The signals at known loci included previously-reported common
coding variants driving GWAS signals at GCKR (p.Pro446Leu, MAF = 36.9%, P = 5.3×10−18)
and SLC30A8 (p.Arg325Trp, MAF = 35.7%, P = 2.5×10−10) [2, 11]. Three additional common
coding variants associated with FG (in C2orf16, GPN1, and SLC5A6) were in moderate linkage
disequilibrium (LD; r2 = 0.2–0.4) with the p.Pro446Leu GCKR variant. Their associations were
eliminated after conditioning on p.Pro446Leu, the known functional GWAS variant in this re-
gion [12, 13], indicating no causal role for these additional variants on FG regulation (S3 Table).
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The sixth variant influencing FG levels at exome-wide significance was a low-frequency
non-synonymous change which did not map to any previously known FG-influencing locus:
p.Ala316Thr at GLP1R (MAF = 1.5%, P = 4.6×10−7; Table 1 and S1B Fig.). This variant showed
modest association (P = 1.3×10−4) in a previous GWAS meta-analysis of FG [3], which partial-
ly overlaps with the present study, but now achieves exome-wide significance. The alanine resi-
due at p.Ala316Thr is conserved across vertebrates, and the threonine substitution is predicted
to be “possibly damaging” by in silicomutation analysis (S4 Table). GLP-1R (glucagon-like
peptide 1 receptor) is the receptor for the incretin hormone glucagon-like peptide 1 (GLP1),
which is released from enteroendocrine cells after food ingestion and potentiates insulin secre-
tion. GLP1 receptor agonists are an established treatment for T2D [14].

The six remaining coding variants all map to known FG-associated GWAS loci, but have not
previously been implicated as playing a causal role. These include two variants in the islet-
specific glucose-6-phosphatase catalytic subunit (G6PC2) gene at the G6PC2/ABCB11 locus:
p.Val219Leu, a common variant (P = 6.0×10−9, MAF = 48.1%), and p.His177Tyr, a low-
frequency variant (P = 3.1×10−8, MAF = 0.8%; S2A Fig.). These variants remained significantly
associated (p.Val219Leu, Pconditional = 7.1×10−10 and p.His177Tyr, Pconditional = 1.3×10−11) with
FG after conditioning on the intronic lead GWAS SNP, rs560887 (Table 1 and S2B Fig.).
Conversely, conditioning on the coding variants did not completely abolish the association sig-
nal at the lead GWAS SNP (Punconditional = 6.4×10−78; Pconditional onHis177Tyr = 3.1×10−55, Pcondi-
tional onVal219Leu = 1.2×10−58, and Pconditional onHis177Tyr and Val219Leu = 2.1×10−83), confirming that
the effect of the coding variants were largely independent of the lead GWAS SNP. Furthermore,
the coding variants each remained associated with FG at exome-wide significance even after
conditioning on both the lead GWAS SNP and the other coding variant, providing clear evi-
dence of at least three association signals at this locus (Table 1 and S2C-S2D Fig.). These results
are consistent with a recent study in Finnish individuals that reported a FG association signal at
p.His177Tyr [15], but we extend that finding by demonstrating exome-wide significant associa-
tion of multiple coding variants after conditioning on other associated variants in the region.

G6PC2 was also the only one of the 14,465 genes with multiple exome-array variants to
demonstrate evidence of significant association with FG levels with any mask in gene-based
tests (Table 2). In fact, for this gene we observed significant association with FG levels for all
the masks encompassing multiple variants. These gene-based associations remained significant
even after Bonferroni correction for testing of four different variant masks. Step-wise condi-
tional analyses, adjusting for each variant included in the respective masks, revealed that the
gene-based signals were primarily driven by two variants: p.His177Tyr and p.Tyr207Ser
(S5 Table). The protein-truncating variant (PTV) p.Arg283�, which introduces a stop mutation
in the last exon of the gene, showed no association with FG levels in single-variant or gene-
based analyses. The most likely explanation is that this variant evades nonsense mediated
decay (as is usual for PTV in the last exon) and that the truncated protein (missing only the
terminal 72 amino acid residues) retains normal functional activity [16]. Due to its high allele
frequency, and annotation as benign across multiple annotation algorithms, p.Val219Leu was
not included in any of the gene-based variant masks (S6 Table). However, based on the single-
variant it also has independent effects, with the result that we have three coding variants in
G6PC2 (p.His177Tyr, p.Tyr207Ser, and p.Val219Leu) influencing FG levels. These three vari-
ants explain an additional 0.2% of the phenotypic variance in FG beyond that explained by the
GWAS variant rs560887, bringing the total variance explained by this locus to 1.1%. However,
we recognize that this estimate has been obtained in the discovery cohort and consequently
might be inflated.

Both G6PC2 and ABCB11 have been considered strong biological candidate genes for glu-
cose regulation, and advocated as potential effector transcripts at this GWAS locus [17, 18].
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However, none of the 21 coding variants in ABCB11 that passed quality control (twelve rare,
eight low-frequency, and one common) were significantly associated with FG levels, nor was
there an aggregate association signal (P>0.05). Together, our genetic data provide compelling
evidence that G6PC2 is an effector gene for FG regulation at this GWAS locus, with
p.His177Tyr, p.Tyr207Ser, and p.Val219Leu as likely causal coding variants.

Loss of G6PC2 function leads to a reduction in FG levels
The phenotypic impact of these coding variants might, we reasoned, be influenced by the ac-
tion of the non-coding GWAS variants on G6PC2 transcript regulation. Haplotype analysis of
the four variants (rs560887, p.His177Tyr, p.Tyr207Ser, and p.Val219Leu) in a subset of 4,442
individuals revealed that the C allele encoding Leu219 was carried exclusively in cis with the
glucose-raising allele at the GWAS SNP (Fig. 1). The estimated effect size of p.Val219Leu was

considerably smaller (b̂ =0.020� 0.004 mmol/L per allele) than rs560887 (b̂ =0.070� 0.004
mmol/L per allele). These observations together explain the reversal in direction of effect of the
Leu219 allele between conditional and unconditional analyses and indicate that, whilst Leu219

Table 1. Coding variants associated with FG and FI levels at exome-wide significance.

SNP Gene Chr Variant Minor/
Major
allelea

MAFb

(%)
N l2 Cochran’s

Q
P_het Unconditional Conditional

Pc
β̂ (SE) P β̂ (SE)

Fasting glucose

rs138726309 G6PC2 2 p.His177Tyr T/C 0.8 32,430 27.2 16.49 0.17 3.1×10-
8

-0.102
(0.020)

d 1.3×10−11 -0.125 (0.020)
e 3.5×10−10 -0.115 (0.020)

rs492594 G6PC2 2 p.Val219Leu C/G 48.1 33,231 0 6.68 0.92 6.0×10-
9

0.020
(0.004)

d 7.1×10−10 -0.034 (0.005)
f 6.5×10−13 -0.032 (0.005)

rs6234 PCSK1 5 p.Gln665Glu C/G 27.9 33,231 0 8.58 0.80 3.0×10-
8

-0.022
(0.004)

- -

rs6235 PCSK1 5 p.Ser690Thr G/C 27.9 33,231 0 8.65 0.80 4.1×10-
8

-0.022
(0.004)

- -

rs35742417 RREB1 6 p.Ser1554Tyr A/C 21.1 33,230 0 12.28 0.51 8.4×10-
9

-0.024
(0.004)

- -

rs10305492 GLP1R 6 p.Ala316Thr A/G 1.5 33,230 0 11.29 0.59 4.6×10-
7

-0.073
(0.015)

- -

rs17265513 ZHX3 20 p.Asn310Ser C/T 23.8 33,229 0 12.01 0.53 3.9×10-
7

0.022
(0.004)

- -

Fasting insulin

rs141203811 URB2 1 p.Glu594Val T/A 0.1 21,130 59.9 9.98 0.04 3.1×10-
7

0.282
(0.066)

- -

Chr: chromosome. MAF: minor allele frequency. N: number of samples analyzed. I2: heterogeneity measure in %. P_het: P-value for Cochran’s Q statistic.

β̂: regression coefficient estimates. SE: standard error.
aAlleles are aligned to the forward strand of NCBI Build 37.
bSample-size weighted average minor allele frequency percentage across all studies.
cSample-size Z-score weighted P values are obtained with derived inverse normalized residuals of mmol/L of fasting glucose and pmol/L of natural log-

transformed fasting insulin after adjustment for age, sex, and BMI.

Effect size estimates are reported for the minor allele in mmol/L of fasting glucose and pmol/L of natural log-transformed fasting insulin after adjustment for

age, sex, and BMI.
dAfter adjusting for the common lead non-coding GWAS SNP rs560887.
eAfter adjusting for the common lead non-coding GWAS SNP rs560887 and the common non-synonymous variant p.Val219Leu.
fAfter adjusting for the common lead non-coding GWAS SNP rs560887 and the low-frequency non-synonymous variant p.His177Tyr.

doi:10.1371/journal.pgen.1004876.t001
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appears to have a glucose-raising effect in single-variant analyses, the molecular consequence
of Leu219 is likely to be to lower glucose (Table 1). The minor alleles of the other two coding
variants (p.His177Tyr, p.Tyr207Ser) also displayed glucose-lowering effects in conditional
analyses. Given the role of G6PC2 in beta-cells we predicted that these would also be associated
with reduced G6PC2 function, a hypothesis that we set out to test with a series of in vitro
studies.

First, we generated recombinant FLAG-tagged G6PC2 constructs to investigate the impact
of these variants on protein expression and subsequent cellular localization. Transient transfec-
tion of all three constructs showed a marked reduction in G6PC2 protein levels. In HEK293

Table 2. G6PC2 gene-based association with FG levels using SKAT and BURDEN test

Mask Number of variants Average allele frequency (%) PSKAT PBURDEN

Mask 1: PTV-only 0 - - -

Mask 2: PTV + missense 15 0.10 1.8×10-13 4.1×10-16

Mask 3: PTV + NSstrict 4 0.28 3.6×10-12 5.1×10-13

Mask 4: PTV + NSbroad 12 0.12 2.0×10-13 1.2×10-17

PTV: protein-truncating variant; NS: non-synonymous variants; NSstrict: missense variant predicted to be deleterious by all five annotation algorithms

(Polyphen2-HumDiv, PolyPhen2-HumVar, LRT, MutationTaster, and SIFT); NSbroad: missense variant predicted to be deleterious by at least one of the

five annotation algorithms.

Mask 1: “PTV-only” encompassed only one variant.

Mask 2 consists of PTVs and all missense variants with MAF<1%; Mask 3 consists of PTVs and missense variants predicted to be deleterious by five

annotation algorithms without any upper MAF bounds; Mask 4 consists of variants in Mask 3 plus any missense variant with MAF<1% predicted to be

deleterious by at least one of the five annotation algorithms.

Allele counts of the 15 non-synonymous variants at G6PC2: p.Ser324Pro (56), p.Leu310Phe (42), p.Arg283* (71), pIle273Val (2), p.Phe256Leu (9), p.

Ile230Thr (14), p. Tyr207Ser (338), p.His177Tyr (502), p.Ile171Thr (81), p.Ile171Val (4), p.Ala119Val (23), p.Asn68Ile (2), p.Ile63Thr (6), p.Ile38Leu (1),

p.Ser30Phe (23).

doi:10.1371/journal.pgen.1004876.t002

Figure 1. Haplotypes of the lead non-coding GWAS SNP rs560887 and the three coding variants.
rs138726309 (p.His177Tyr), rs2232323 (p.Tyr207Ser), and rs492594 (p.Val219Leu), obtained from 4,442
unrelated individuals from the Oxford Biobank. (A) Percentage minor allele frequency (MAF) and effect size

estimates (β̂) of the four variants reported for the minor allele in mmol/L of FG after adjustment for age, sex,
and BMI. (B) Haplotypes of the four associated variants in G6PC2 revealed that the glucose-lowering Leu219
allele was carried exclusively in cis with the glucose-raising allele at the GWAS SNP.Wild-type, glucose-
raising alleles are circled in blue and the mutant, glucose-lowering alleles are circled in red. Diameter of the
circle is proportional to the effect size estimates. Haplotype association was performed with FG derived
residuals (after adjustment for age, sex, and BMI) using the most frequent haplotype as baseline.

doi:10.1371/journal.pgen.1004876.g001
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cells, protein levels were decreased by 99% (p.His177Tyr), 100% (p.Tyr207Ser), and 49%
(p.Val219Leu), when compared to wild type (defined for this study as the major allele for each
of these variants) G6PC2 (Fig. 2A). Reduced protein expression was also confirmed in the rat
pancreatic b-cell line INS-1E (76%, 97%, and 49% reduction, respectively; Fig. 2B). The func-
tional impact of the variant proteins mirrored our genetic observations; the variant protein
with the p.Val219Leu substitution, which has only a modest effect on FG, was present at higher
levels in both HEK293 and INS-1E cells than the p.His177Tyr and p.Tyr207Ser proteins, both
of which have larger impacts on FG levels.

Our functional results for p.His177Tyr and p.Tyr207Ser are concordant with data from the
in silicomutation assessment tools SIFT and PolyPhen-2, which predicted these variants as del-
eterious (S4 Table). In contrast, the common p.Val219Leu variant was predicted to be benign,
whereas in vitro characterization clearly shows a significant reduction in protein expression,
demonstrating the importance of experimentally evaluating coding variants for functional con-
sequences. The observed decrease in G6PC2 protein levels caused by the FG-associated vari-
ants is also directionally consistent with the evidence indicating that the non-coding GWAS
SNP rs560887 may have effects on pre-mRNA splicing [19].

Next, we used specific inhibitors of the proteasomal and lysosomal pathways (MG-132 and
chloroquine, respectively) to demonstrate that the three G6PC2 variant proteins with p.His177-
Tyr, p.Tyr207Ser, and p.Val219Leu substitutions were predominantly degraded through the
ubiquitin-proteasome pathway, an important cellular mechanism for clearing misfolded pro-
teins. Protein expression could be rescued in the presence of MG-132 but not chloroquine
(Fig. 2C). We also evaluated the impact of the variants on cellular localization of G6PC2 to the
endoplasmic reticulum (ER) using calnexin as an ERmarker. The variant proteins displayed sim-
ilar localization patterns to wild type G6PC2 (Fig. 2D). Our finding that loss of G6PC2 function
leads to a reduction in FG levels in humans is consistent with rodent data, which show that
G6pc2 knockout mice have a ~15% decrease in FG levels [20]. Hence, our data, linking genetic
associations with reduced protein function, indicate that normal G6PC2 function is critical for
glucose homeostasis and that these variants most likely impact FG levels through altered intracel-
lular catalysis of glucose-6-phosphate to glucose and inorganic phosphate in pancreatic b-cells.

Impact of the functionalG6PC2 variants on other related quantitative
traits and disease outcomes
We evaluated the impact of these functionalG6PC2 variants on other related quantitative traits
and disease outcomes to gain further insights into the metabolic processes involved (S7 Table).
None of the variants showed any evidence of association with FI levels (P>0.1) in 30,825 non-
diabetic individuals analyzed in the present study. No association of the lead G6PC2GWAS vari-
ant with T2D risk has previously been shown in Europeans [2, 21, 22]. However, in a meta-
analysis of exome-array data from 28,344 T2D cases and 51,801 controls of European ancestry
(including the 33,231 controls used in the present meta-analyses), the common coding variant,
p.Val219Leu, showed modest association with T2D risk (P = 0.0011; odds ratio = 1.05, 95% con-
fidence interval 1.02–1.06). The G allele encoding Val219, which displayed a glucose-raising ef-
fect, conferred an increased risk of disease. In contrast to the observations in FG single-variant
analysis, the direction of effect on T2D at this variant was unchanged, even after conditioning on
the GWAS variant. This is consistent with a small case-control study in 3,676 individuals of Chi-
nese ancestry where a nominal association (P = 0.0062) with T2D risk was reported [23]. Our
finding provides evidence that G6PC2 is critical not only for controlling FG levels in the physio-
logical range, but that impairment of its function contributes to T2D pathogenesis. The effect on
T2D risk is modest given the impact of the p.Val219Leu variant on FG levels but the effect size is
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Figure 2. Functional characterization of wild type and variant G6PC2 proteins. (A) Expression levels in HEK293 and (B) INS-1E cells were determined
by western blot and densitometry analysis. The multiple bands on the western blot are likely to represent glycosylated G6PC2 protein products. Data are
presented as mean� standard error of the mean for at least three independent experiments. Significant differences are indicated as ** P<0.01; ***
P<0.001; **** P<0.0001. EV, empty vector; WT, wild type. (C) Expression levels in HEK293 and INS-1E cells in the presence of proteasomal inhibitor
MG-132 or lysosomal inhibitor chloroquine were determined by western blot. (D) Cellular localization in HEK293 cells was assessed by immunofluorescence
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similar to that reported for the common non-coding variant GWAS signal at GCK [2]. GCK en-
codes the glycolytic enzyme glucokinase which catalyzes the reverse reaction to G6PC2. These
observations are consistent with defects in glucose sensing rather than b-cell function.

Likely effector transcripts at established FG GWAS loci
Of the 12 coding variants significantly influencing FG levels, we have discussed eight above.
The four remaining signals mapped to three additional established FG-associated GWAS re-
gions and support the candidacy of particular effector transcripts at these loci. Two map to
PCSK1 (p.Gln665Glu, MAF = 27.9%, P = 3.0×10−8; p.Ser690Thr, MAF = 27.9%, P = 4.1×10−8),
and have previously been proposed as likely causal variants at this GWAS locus because of
strong LD with the lead non-coding GWAS SNP (rs4869272) in Europeans (r2 = 0.81) [3].
These two variants are in complete LD with each other (r2 = 1) and both have residual associa-
tion signals after adjusting for the lead GWAS SNP (p.Gln665Glu, Pconditional = 8.1×10−3;
p.Ser690Thr, Pconditional = 0.01) (Table 1 and S3 Table). Conversely, conditioning on the
coding variants completely abolished the association signal at the GWAS SNP (Punconditional =
7.2×10−7; Pconditional onGln665Glu = 0.24, Pconditional onSer690Thr = 0.25, and Pconditional onGln665Glu and

Ser690Thr = 0.34). Although we were unable to statistically distinguish between these two coding
variants, there is suggestive in vitro evidence that the p.Gln665Glu variant may decrease
PCSK1 activity whilst p.Ser690Thr behaved as wild-type [24], supporting the former as the
most likely causal variant at the PCSK1 locus. PCSK1 encodes prohormone convertase 1/3
(PC1/3), a calcium-dependent serine endoprotease, which is essential for the conversion of a
variety of prohormones, including proinsulin and proglucagon, to their bioactive forms.

The penultimate variant was in ZHX3 (p.Asn310Ser, MAF = 23.8%, P = 3.9×10−7) which
maps to the TOP1 GWAS locus influencing FG levels [4]. Adjustment for p.Asn310Ser in a
conditional analysis eliminated the association signal at the non-coding GWAS lead SNP
rs6072275 (Punconditional = 2.5×10−5 and Pconditional = 0.33), supporting ZHX3 as the plausible
causal gene at this locus (Table 1 and S3 Table). ZHX3 (zinc fingers and homeoboxes 3)
encodes a transcriptional repressor which belongs to a protein family known to regulate gene
expression in the kidney podocytes and plays roles in both lipoprotein metabolism and triglyc-
eride regulation in mice [25, 26].

The final variant was in RREB1 (p.Ser1554Tyr, MAF = 21.1%, P = 8.4×10−9) which resides
in the RREB1/SSR1 GWAS locus influencing FG levels [4] and T2D risk [27] (Table 1). We
were unable to explore the relationship between this association signal and the lead FG
(rs17762454) or T2D (rs9502570) GWAS SNPs at this locus as neither the variants themselves,
nor a close proxy (r2>0.80), was present on the exome-array. Based on European haplotypes
from the 1000 Genomes Project, the coding variant was more strongly correlated (r2 = 0.59)
with rs9502570 as compared to rs17762454 (r2 = 0.08), which might indicate multiple FG asso-
ciation signals in this region. These data point to a likely functional role for RREB1 at this
locus, although further studies are needed to confirm this hypothesis.

Coding variants influencing FI levels
Turning to the analysis of FI, we identified six non-synonymous variants associated at exome-
wide significance (one rare and five common). These mapped to four loci, three of them
previously implicated in FI regulation (S3 Table). The single novel FI- influencing locus was

microscopy. Cells were double immunostained for FLAG tag (green) and calnexin (red), and merged images with a DNA stain (blue) are shown. Images were
taken with laser settings that were optimized separately for each sample. Scale bar, 10µm.

doi:10.1371/journal.pgen.1004876.g002
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represented by a rare variant in URB2 (p.Glu594Val, MAF = 0.1%, P = 3.1×10−7; Table 1 and
S1 Fig.). The variant allele was observed in individuals across Europe, including UK, Denmark,
Finland, and Sweden, and genotype calls across all cohorts passed visual inspection for cluster-
ing accuracy. Heterozygous genotypes (n = 6) were 100% concordant for 3,999 individuals gen-
otyped on the array that had also been exome sequenced (S8 Table). This variant has a
relatively large effect, with each copy of the minor allele increasing FI level by 32%. URB2 en-
codes ribosome biogenesis 2 homolog, which interacts with nuclear lamins [28]. The precise
mechanistic role of URB2 is still poorly understood, but conditions caused by defects in lamin
genes (laminopathies), including familial partial lipodystrophy, can cause loss of adipose tissue,
insulin resistance, and metabolic syndrome [29, 30].

The remaining five coding variants implicated in the FI analysis, included three previously-
reported FI-associated common variants in GCKR (p.Pro446Leu, P = 8.1×10−11), PPARG
(p.Pro12Ala, MAF = 14.7%, P = 1.3×10−7), and COBLL1 (p.Asn939Asp, MAF = 11.3%,
P = 6.7×10−8) [3, 4]. The final two variants (in C2orf16 and GPN1) also mapped within the
GCKR FG/FI-associated GWAS locus, and their associations were eliminated after condition-
ing on the GCKR p.Pro446Leu variant as seen in FG analysis (S3 Table).

Discussion
In the current study, we have examined the contribution of coding variants in influencing
glycemic trait levels and identified significant associations at ten loci, highlighting multiple
functional genes.

We have established a functional role for G6PC2 in FG homeostasis and have identified two
novel loci associated with glycemic traits: GLP1R and URB2. In three additional GWAS regions
for FG, we have identified potentially causal coding variants, highlighting likely effector tran-
scripts (PCSK1, RREB1, and ZHX3). In line with earlier observations, very few of the FG- and
FI-associated loci identified impact T2D risk [4]. The exception in this study is the p.Val219Leu
G6PC2 variant, which showed a modest but directionally consistent association with T2D risk,
in contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this
GWAS locus are protective against T2D [2].

Our results have a number of important implications for the design, analysis, and interpreta-
tion of association studies of coding variation. First, we have demonstrated that an appreciation
of regional haplotypes is fundamental to understanding the relationship between genetic varia-
tion and gene function, phenotype, and disease. In this study, haplotype analysis was essential
in resolving the apparent discrepancy between the observed phenotypic effect driven by the
G6PC2 C allele at the variant encoding Leu219 and our in vitro data. From a clinical genomics
perspective, this example illustrates how interpretation of single-variant analyses can be mis-
leading and that the explicit phase relationships of variants are important for the correct inter-
pretation of allelic effects. Furthermore, they highlight the importance of considering the
possible interactions between regulatory and coding variants on protein levels [31]. The haplo-
type analysis also allows us to define specific regional diploid haplotypes that differ markedly in
glucose levels. This is particularly relevant to efforts to follow up these variants in human data,
whether for in vivo physiology, or for cellular studies on biopsies or patient derived stem cells.

Second, we have highlighted some limitations of widely used in silico prediction programs
in accurately evaluating the impact of genomic variation on protein function. Earlier studies
have shown that filtering functional variants based on in vitro data can substantially improve
the power to detect causal genes [32, 33]. When such data are not available, in silico predictions
can be used to help identify variants of functional significance [10, 34]. However, as we have
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demonstrated with the G6PC2 p.Val219Leu variant, current in silico predictions are not always
accurate and should be validated with in vitro functional analysis wherever possible.

We find little support for a widespread impact of rare or low-frequency coding variants in
accounting for known common SNP FG- and FI-associated GWAS signals. However, given
that exome-array genotyping does not capture the complete repertoire of coding variation
throughout the genome, exome sequencing is still required to achieve a complete assessment of
their impact on glycemic traits at all associated loci. It is also likely that analysis of non-coding
regulatory variation will be necessary to elucidate the causal genes and functional roles of asso-
ciation signals observed in prior GWAS. However, our study provides clear examples of how
the analysis of coding variation can aid interpretation of GWAS findings where biology was
previously unclear, and highlights the promise of this approach to provide insights into the
pathophysiology of common complex disease.

Data availability
Summary statistics of single-variant and gene-based analyses are available at http://www.
diagram-consortium.org/Mahajan_2014_ExomeChip/

Materials and Methods

Ethics statement
All human research was approved by the relevant institutional review boards, and conducted
according to the Declaration of Helsinki and all patients provided written informed consent.
FIN-D2D 2007, DPS, DR’s EXTRA, FINRISK 2007, FUSION, and METSIM were approved by
the University of Michigan Health Sciences and Behavioral Sciences Institutional Review
Board (ID: H03-00001613-R2). The Danish studies (Health 2006, Inter99, and Vejle Biobank)
were approved by the local Ethical Committees of Capital Region (approval # H-3-2012-155,
KA 98155 and KA-20060011) and Region of Southern Denmark (approval # S-20080097).
The GoDARTS study was approved by EoS REC 09/S1402/44. The Twins UK study was ap-
proved by EC04/015. The OBB study was a approved by South Central, Oxford C, 08/H0606/
107+5, IRAS project 136602. The PIVUS study is approved by 00–419 and ULSAM study by
251/90 and 2007/338. The PPP study was approved by the Committee On the Use of Humans
as Experimental Subjects at MIT (IRB 0912003615).

Phenotypes
Study participants. FG was measured in mmol/L and FI in pmol/L. Individuals were excluded
from the analysis if they had a physician diagnosis of diabetes, were on diabetes treatment (oral
or insulin), or had a fasting plasma glucose concentration�7 mmol/L or�11.1 mmol/L fol-
lowing a 2-hour oral glucose tolerance test. Individual studies applied further sample exclu-
sions, including for pregnancy, nonfasting measurements, and type 1 diabetes (S1 Table).
Measures of fasting glucose made in whole blood were corrected to approximate plasma level
by multiplying by 1.13 [35].

Trait transformations and adjustment. To achieve approximate normality of the traits
within each study, FG and natural logarithm–transformed FI levels were adjusted for age, sex,
BMI, and study specific covariates followed by inverse normalization of the residuals. Inverse
normalized residuals were used as the dependent quantitative trait in genetic association mod-
els to calibrate type 1 error. Effect estimates were obtained using untransformed FG and natu-
ral logarithm–transformed FI levels after adjusting for age, sex, BMI, and study specific
covariates.
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Genotyping and quality control
The Illumina HumanExome Beadchip array was genotyped by individual studies. This custom
array was designed to facilitate large-scale genotyping of 247,870 mostly rare (MAF<0.5%)
and low-frequency (MAF 0.5–5%) protein altering variants selected from sequenced exomes
and genomes of ~12,000 individuals (see URLs). Details of genotype calling and quality control
are presented in S1 Table. To confirm the genotyping quality of all the variants discussed in the
manuscript, we compared the genotype calls in 2,312 to 4,000 individuals for which we have
both exome-array genotypes and exome-sequence data (S8 Table). The results are highly con-
cordant for all variants (99% heterozygous genotype concordance and 100% concordance
observed for non-reference homozygotes). Call rate and Hardy-Weinberg equilibrium p-values
for each variant are provided in S9 Table.

Association analysis
Single-variant analysis.We tested single variants for association with FG- and FI-derived in-
verse normalized residuals assuming an additive genetic model using a linear mixed model to
account for relatedness with EMMAX [5]. Study-specific QQ plots and genomic lambdas are
shown in the S3 Fig. We repeated single-variant association analyses with untransformed FG
and natural logarithm–transformed FI residuals to obtain effect estimates. We then combined
the association summary statistics across studies by using a fixed-effects meta-analysis (sample
size Z-score weighted) using METAL [36]. Genotype cluster plots of all variants described here
were inspected visually in all studies.

Single-variant conditional analysis. Conditional analysis was performed to identify addi-
tional association signals at known or novel loci. The analysis included the genotypes of the
lead variant(s) at the conditioning loci as covariate(s) in the regression analysis in EMMAX.
We then performed meta-analysis of the association summary statistics across studies by using
a fixed-effects meta-analysis (sample size Z-score weighted).

Gene-based analysis. For gene-based testing, we first computed single-variant score statis-
tics and their covariance matrices for all polymorphic markers within each study. We then
combined the single-variant score statistics from all studies using the Cochran-Mantel-
Haenszel method and computed corresponding variance-covariance matrices centrally [6].
These variance-covariance matrices were used to compute gene-level statistics. We applied a
frequency-weighted burden test which assumes variants have similar effect sizes and SKAT, a
dispersion test that performs well when both protective and deleterious variants are present [8,
9]. Test-specific asymptotic distributions were used to evaluate significance. For gene-based
analyses, we used only unrelated individuals (n = 32,223 for FG and n = 29,848 for FI) and in-
cluded principal components as covariates to adjust for population structure. We generated
four variant lists using frequency data and functional annotation. Variants were mapped to
transcripts in Ensembl 66 (GRCh37.66). Using annotations from CHAoS v0.6.3, SnpEff v3.1,
and VEP v2.7, we identified variants predicted to be protein-truncating (PTV; e.g. nonsense,
frameshift, essential splice site) or protein-altering (e.g. missense, in-frame indel, non-essential
splice site) in at least one mapped transcript (by at least one of the three algorithms) [37, 38].
We additionally used the procedure described by Purcell et al. to identify subsets of missense
variants meeting “strict” or “broad” criteria for being deleterious, using annotation predictions
from Polyphen2-HumDiv, PolyPhen2-HumVar, LRT, MutationTaster, and SIFT [10]. Masks 1
(“PTV-only”) and 3 (“PTV + NSstrict”) are restricted to variants with predicted major effect on
protein function, and, as a result, disproportionately favor inclusion of rare variants, whilst
masks 2 (“PTV + missense”) and 4 (“PTV + NSbroad”) are more permissive. In total, we tested
1,028, 14,465, 4,603, and 13,093 genes having at least two such variants in the above four
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categories respectively. For gene-based tests reaching exome-wide significance, if the condi-
tional analysis showed that the signal was driven by a single variant, we required the variant to
achieve exome-wide significance in the single-variant test as well.

Gene-based conditional analysis.We performed conditional gene-level analysis to evaluate
whether rare or low-frequency variants associated with the trait in single-variant analysis could
account for or were due to a gene-based test association signal [6]. The genotypes of the
variant(s) at the conditioning locus were included as covariate(s) in this analysis.

Estimating phenotypic variance explained by SNPs.We used a subset of Finnish samples
(FIN-D2D 2007, DPS, DR’s EXTRA, FINRISK 2007, and METSIM; n = 10,266) to calculate
variance explained by G6PC2. We ran a model regressing BMI adjusted FG on the four G6PC2
variants: intronic GWAS lead SNP rs560887, p.His177Tyr (rs138726309), p.Tyr207Ser
(rs2232323), and p.Val219Leu (rs492594), assuming an additive model (and adjusting for sex,
age, age2, and study origin). A separate model was run excluding the GWAS SNP to determine
the additional variance captured with the three coding variants.

Power calculations.We had>99.9% power to identify variants that explain>0.3% of the
phenotypic variance and 80% power to detect coding variants that explain>0.1% of the pheno-
typic variance. To achieve>80% power for variants with MAF<0.05% would require effect
sizes of at least 1 SD unit of residuals of mmol/L for FG and pmol/L for FI.

When we estimate power to detect association for aggregation tests, we make many assump-
tions: i) proportion of variants contributing to trait variation, ii) direction of effects, iii) number
of variants aggregated, and iv) allele frequency distribution of the variants [34]. In this study,
assuming 100% of the variants contribute to trait variation, we had>99.9% power to detect
association for genes that explain>0.25% of the phenotypic variance and 80% to detect genes
that explain>0.1% of the phenotypic variance using a burden test and>0.5% of the
phenotypic variance using SKAT. In a less favorable scenario, for example assuming a gene ex-
plains 0.25% of the phenotypic variance, 25% of the variants contribute to trait variation, dif-
ferent directions of effect, 20 variants tested, and variants sampled from the reported allele
frequency distribution in the exome-array design, power to detect association in this study may
be near 0% for a burden test and 63% for SKAT [34].

Haplotype analysis. In 4,442 individuals from the Oxford Biobank, we used an expectation-
maximization (EM) algorithm to obtain the posterior distribution of haplotypes consistent
with the observed genotypes at four G6PC2 variants: intronic GWAS lead SNP rs560887,
p.His177Tyr (rs138726309), p.Tyr207Ser (rs2232323), and p.Val219Leu (rs492594). Haplotype
association with FG- and FI-derived residuals (after adjustment for age, sex, and BMI) was test-
ed in a linear regression framework, as a function of haplotype dosage from posterior distribu-
tion, and including principal components as covariates to account for population structure
using the most frequent haplotype as baseline.

In-silicomutation analysis. SIFT [39], PolyPhen-2 [40], and Condel [41] algorithms were
used to predict the functional effects of the associated non-synonymous variants on protein
function. Genomic Evolutionary Rate Profiling (GERP) [42] scores were calculated to indicate
the degree of evolutionary conservation at a given human nucleotide based on multiple geno-
mic sequence alignments and were measured as site-specific ‘rejected substitutions’: higher
scores indicate greater conservation.

Functional studies
Site directed mutagenesis.Human G6PC2 cDNA (NM_021176.2) within a pCMV6-Entry
vector (with a C-terminal FLAG-tag) was purchased from OriGene (RC211146). We generated
non-synonymous variants in the G6PC2 coding sequence of the clone using Quikchange II
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Site-Directed Mutagenesis (Agilent). All mutations were verified by Sanger sequencing; in each
case, only the desired nucleotide substitutions was introduced.

Western blot analyses.HEK293 and INS-1E 832–13 cells were transfected with each
FLAG-tagged wild type or mutant G6PC2 construct using Lipofectamine 2000 (Invitrogen).
In protein degradation assays, cells were treated with 10mMMG-132 (Calchembio) or 100mM
chloroquine (Sigma) for 15h. At 48h after transfection, cells were collected and homogenized
by sonication in lysis buffer. Total cellular protein was separated by 4–12% SDS-PAGE (Invi-
trogen) and transferred to nitrocellulose membranes. We determined G6PC2 expression by
immunoblotting using a mouse monoclonal FLAGM2 antibody (Sigma, F1804). A rabbit
polyclonal antibody against b tubulin (Santa Cruz, sc-9104) was used as a loading control. Sec-
ondary antibodies specific to mouse or rabbit IgG were obtained from Thermo Fisher Scientif-
ic. Protein bands were detected using the ECL reagent (Pierce Thermo Fisher Scientific).
Western blots were quantified by densitometry analysis using ImageJ and paired t tests of den-
sitometric data were carried out in GraphPad Prism.

Immunofluorescence.HEK293 cells were transfected with each FLAG-tagged G6PC2 con-
struct using FuGene 6 transfection reagent (Promega) in 4-well chamber slides (BD Biosciences).
After 48h, cells were fixed with 4% paraformaldehyde in PBS for 15 min. Cells were permeabi-
lized with 0.05% Triton X-100 in PBS for 15 min, and blocked for 1 h with 10% BSA in PBS-
Tween 20. We carried out double immunostaining of cells using FLAGM2 (Sigma, F1804) and
calnexin (Santa Cruz, sc-11397) primary antibodies followed by anti-mouse fluorescein (Vector
Labs) and anti-rabbit TRITC (Dako). DRAQ5 fluorescent probe (Thermo Fisher Scientific) was
applied at 20mM as a far-red DNA stain. Slides were mounted with Vectashield mounting medi-
um (Vector Labs) and visualized on a BioRad Radiance 2100 confocal microscope with a 60× 1.0
N.A. objective. Images were acquired with different laser settings that were optimized for each
sample and therefore fluorescent intensities are not comparable across samples.

URLs

Exome-array design,
http://genome.sph.umich.edu/wiki/Exome_Chip_Design

EPACTS,
http://genome.sph.umich.edu/wiki/EPACTS

METAL,
http://www.sph.umich.edu/csg/abecasis/Metal/download/

RareMETALS,
http://genome.sph.umich.edu/wiki/RareMETALS

The 1000 Genomes Project,
www.1000genomes.org

Supporting Information
S1 Fig. Forest plots of association results with fasting glucose (FI) and fasting insulin (FG)
levels. Individual study and meta-analysis effects of A) URB2 coding variant rs141203811
(p.Glu594Val) on FI; B) GLP1R coding variant rs10305492 (p.Ala316Thr) on FG; and C), D),
& E) G6PC2 coding variants rs138726309 (p.His177Tyr), rs2232323 (p.Tyr207Ser), rs492594
(p.Val219Leu) on FG.
(PDF)
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S2 Fig. Regional association plots for FG at G6PC2 region on chromosome 2. (A) Uncondi-
tional association results highlight the previously known non-coding lead SNP rs560887.
(B) Association results after conditioning on rs560887 highlight two non-synonymous coding
variants rs138726309 (p.His177Tyr) and rs492594 (p.Val219Leu), both largely independent
from the signal from rs560887. (C) Association results conditioning on rs560887 (GWAS
SNP) and rs138726309 (p.His177Tyr) highlights rs492594 (p.Val219Leu) as an independently
associated variant at G6PC2. (D) Association results conditioning on rs560887 (GWAS SNP)
and rs492594 (p.Val219Leu) highlights rs138726309 (p.His177Tyr) as the second independent-
ly associated coding variant at G6PC2
(PDF)

S3 Fig. Quantile-quantile plots (qq-plot) for each study included in the meta-analysis for
FG and FI. Genomic control (GC) is given in each qq-plot.
(PDF)

S1 Table. Characteristics of the study cohorts.
(DOCX)

S2 Table. Sample characteristics of the study cohorts.
(DOCX)

S3 Table. Coding variants achieving exome-wide significant association with FG and FI lev-

els in single-variant analysis.MAF: minor allele frequency. b̂: regression coefficient estimates.
SE: standard error. N: number of samples analyzed. I2: heterogeneity measure in %. P_het:
P-value for Cochran’s Q statistic. aSample-size weighted average minor allele frequency per-
centage across all studies.
(DOCX)

S4 Table. In silico predictions of the impact of the non-synonymous changes on protein
function and the evolutionary conservation of variants. GERP: Genomic Evolutionary Rate
Profiling
(DOCX)

S5 Table. Conditional analysis of genes associated with FG and FI levels at exome-wide
significance in gene-based tests using SKAT and BURDEN. � Although AKT2 reached
exome-wide significance, the signal was driven by a single variant which showed only sugges-
tive significance in single-variant analysis (P=9.3×10−7). As described in the methods, we
required the single-variant test to be exome-wide significant (P<5×10−7) in such a scenario
(DOCX)

S6 Table. FG single-variant association results of the rare and low-frequency G6PC2 coding
variants included in the gene-based tests based on unrelated samples.MAF: minor allele fre-
quency; Allele counts: Minor allele counts. aAlleles are aligned to the forward strand of NCBI
Build 37. bSample-size weighted average minor allele frequency percentage across all studies.
P values are obtained with derived inverse normalized residuals of mmol/L of fasting glucose
after adjustment for age, sex, and BMI. Direction of effect is aligned to the minor allele.
(DOCX)

S7 Table. Association with T2D, birth weight and diabetes-related quantitative traits.m:
Minor allele; M: Major allele; BMI: Body mass index; WHR: Waist-hip ratio; FG: Fasting glu-
cose level; FI: Fasting insulin level, adjusted for BMI; HbA1c: Hemoglobin A1-C level;
HOMA-B: Homeostasis model assessment-B score; HOMA-IR: Homeostasis model assess-
ment-insulin resistance; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; TG:
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Triglycerides; HDL-C: HDL cholesterol; LDL-C: LDL cholesterol; TC: Total cholesterol; BW:
Birth weight. (a) Trait increasing allele in bold. (b) Samples contributing to T2D case-control
analysis include a subset of the non-diabetic samples contributing to the current analysis.
(c) All published data is “unconditioned”. As seen in our analysis, direction of effect switches
after conditioning on rs560887 at least for FG. For exome-chip FG and T2D we have provided
results from conditional analysis and G is the trait increasing allele.
� rs2232323 (G6PC2), rs138726309 (G6PC2), rs35742417 (RREB1), and rs141203811 (URB2)
have not been investigated in earlier GWAS
(DOCX)

S8 Table. Genotype concordance of all the variants discussed in the manuscript. Concor-
dance is computed for the variants with non-missing calls in both exome-array and exome
sequence data. N: Number of samples.
(DOCX)

S9 Table. Study-wise call rate and Hardy-Weinberg equilibrium P-values of all the variants
discussed in the manuscript. CR: call rate. HWE: Hardy-Weinberg equilibrium p-value.
(DOCX)
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