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Abstract
The novel adipokine chemerin has been related to insulin-resistant states such as obesity

and non alcoholic fatty liver disease (NAFLD). However, its association with insulin resis-

tance and beta cell function remains controversial. The main objective was to examine

whether serum chemerin levels associate with insulin sensitivity and beta cell function inde-

pendently of body mass index (BMI), by studying consecutive outpatients of the hepatology

clinics of a European university hospital. Individuals (n=196) with NAFLD were stratified into

persons with normal glucose tolerance (NGT; n=110), impaired glucose tolerance (IGT;

n=51) and type 2 diabetes (T2D; n=35) and the association between serum chemerin and

measures of insulin sensitivity and beta cell function as assessed during fasting and during

oral glucose tolerance test (OGTT) was measured. Our results showed that serum che-

merin positively associated with BMI (P=0.0007) and C peptide during OGTT (P<0.004),

but not with circulating glucose, insulin, lipids or liver enzymes (all P>0.18). No BMI inde-

pendent relationships of chemerin with fasting and OGTT derived measures of insulin sen-

sitivity were found (P>0.5). Chemerin associated positively with fasting beta cell function as

well as the OGTT derived insulinogenic index IGI_cp and the adaptation index after adjust-

ment for age, sex and BMI (P=0.002-0.007), and inversely with the insulin/C peptide ratio

(P=0.007). Serum chemerin neither related to the insulinogenic index IGI_ins nor the dispo-

sition index. In conclusion, circulating chemerin is likely linked to enhanced beta cell func-

tion but not to insulin sensitivity in patients with NAFLD.
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Introduction
Chemerin is highly expressed in white adipose tissue, liver and lungs, secreted as inactive pro-
chemerin and binds after activation to the chemokine—like receptor 1 (CMKLR1) [1,2]. Bind-
ing of chemerin to CMKLR1 in immune cells and adipose tissue stimulates chemotaxis at sites
of inflammation [3,4].

Previous studies in humans suggested that chemerin is increased and/or associates with age
[3,5], degree of adiposity based on body mass index (BMI) or fat mass and obesity-related
markers such as leptin and resistin [3,6–10]. Circulating chemerin has been also related to
degree of glycemia and insulin resistance based on fasting glucose, glycated hemoglobin
(HbA1C) and fasting insulin [3,5,6,7,8]. Furthermore, chemerin has been positively associated
with blood pressure [3,7,8] and biomarkers of inflammation, such as C-reactive protein (CRP)
[3,5,8,9]. In line, body weight reduction by lifestyle intervention [11] and bariatric surgery
[12,13] also reduced serum chemerin levels. Employing different measures of insulin sensitivity
yielded contradictory results regarding its association with chemerin levels [14–27]. In addi-
tion, data on a relationship between chemerin and beta-cell function are scarce in humans. In
chemerin-deficient mice, chemerin positively regulates glucose-dependent insulin secretion
[28]. Likewise, circulating chemerin tended to be positively associated with HOMA-β as a sur-
rogate marker of fasting insulin secretion in Japanese patients with metabolic syndrome or
type 2 diabetes [20].

Circulating levels of chemerin have been also associated with non-alcoholic fatty liver dis-
ease (NAFLD) [13,29,30], which comprises a broad spectrum of disorders ranging from simple
fatty liver to nonalcoholic steatohepatitis (NASH) and cirrhosis [31]. NAFLD is closely linked
to obesity and insulin resistance, which frequently co-exists with impaired glucose tolerance
(IGT) or type 2 diabetes [32,33].

As chemerin may modulate insulin resistance and inflammatory responses [34], we exam-
ined its role in patients with NAFLD. More specifically, we tested (i) whether chemerin levels
differently associate with insulin sensitivity and/or beta-cell function using both fasting levels
and dynamic changes of glucose and insulin after oral glucose loading and (ii) if so, whether
these associations occur independently of BMI in patients with NAFLD and different degrees
of glucose tolerance.

Materials and Methods

Study participants
We studied consecutive patients who presented with elevated serum aminotransferases at the
outpatient Hepatology Clinics of Attikon University General Hospital in Athens, Greece, be-
tween June 2009 and May 2012, and who were diagnosed with NAFLD. The diagnosis of
NAFLD was based on the presence of increased liver transaminases, i.e. alanine transaminase
(ALT) and gamma-glutamyl transpeptidase (γ-GT) 1.5-2times above the upper limit of the
normal range, along with typical hepatic fat infiltration, i.e. “bright liver” or hyperechogenic
appearance employing abdominal ultrasound and the exclusion of other possible causes of
liver disease, including alcoholic liver disease (alcohol consumption exceeding 20 g/day), ad-
verse drug reactions, viral hepatitis, autoimmune disorders and hereditary diseases affecting
the liver [35].

Upon inclusion in the study, height and weight from each patient were measured. Systolic
and diastolic blood pressure values were recorded. After overnight fasting, the patients with
NAFLD underwent fasting blood sampling and a 75-g oral glucose tolerance test (OGTT), dur-
ing which blood samples were obtained through an indwelling peripheral vein cannula at 0, 30,
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60, 90 and 120 min to measure plasma glucose, serum insulin and serum C-peptide concentra-
tions. Patients with known history of diabetes or a fasting plasma glucose�126 mg/dl did not
undergo an OGTT and were therefore excluded from the study. A total of 197 patients were en-
rolled in the study and classified according to the criteria by the American Diabetes Association
[36] into 110 individuals with normal glucose tolerance (NGT), 52 with impaired glucose toler-
ance (IGT) and 35 with type 2 diabetes (T2D).

Ethics statement
The institutional review board of “Attikon” University General Hospital approved this study
and the patients gave their informed consent in writing.

Laboratory analyses
Serum cholesterol (total, LDL, HDL), triglycerides, aspartate transaminase (AST), ALT and
γ-GT were assessed using a Cobas 8000 analyzer (Roche, Basel, Switzerland). Plasma glucose
was measured using the glucose oxidase method (YSI, Yellow Springs Instruments, Yellow
Springs, CO). Serum C-peptide and insulin levels were quantified using the respective radioim-
munoassays fromMillipore (St. Charles, MO). Serum chemerin was measured by an enzyme-
linked immunosorbent assay (Chemerin Human ELISA; Biovendor, Brno, Czech Republic)
with intra- and inter-assay coefficients of variation of 3.4% and 6.4%, respectively.

Calculation of insulin sensitivity and secretion
In the fasted state, insulin sensitivity was assessed from QUICKI = 1/[log (insulin) + log (glu-
cose)] [38], while beta-cell function was estimated with the ratio of insulin to glucose concen-
tration. During the OGTT, total and incremental areas under the time curves (AUC) of plasma
glucose, insulin and C-peptide concentrations were calculated using the trapezoidal rule. The
oral glucose insulin sensitivity (OGIS) represents a measure of dynamic insulin sensitivity as
previously described and validated against the hyperinsulinemic-normoglycemic clamp
[37,38]. Beta-cell function was assessed from insulinogenic indices (IGI) [39]. The IGI_cp,
given as the ratio of the difference between C-peptide at 30 min and at fasting versus the analo-
gous difference for glucose at 30 min and at fasting, provides an empirical index mirroring
beta-cell function at portal level. Using insulin instead of C-peptide yields the classic IGI_ins
[39]. The beta-cell adaptation index reflects the mechanism, by which the beta-cell modulates
insulin release in response to changes of insulin resistance, and is given as OGIS times IGI_cp,
while the disposition index is given as OGIS times IGI_ins [38].

Statistical analysis
The characteristics of the study sample are given as percentages for categorical variables, mean
and standard deviation (SD) for continuous variables with normal distribution and median
(25th and 75th percentiles) for continuous variables without normal distribution. The Kolmo-
gorov-Smirnov test was used to test for normal distribution of data. Group comparisons for
these variables were performed using Fisher’s exact test, t-test or ANOVA with Dunnett’s mul-
tiple comparison test (for two or more groups) and Kruskal-Wallis test with Dunn’s multiple
comparison test for more than two groups, respectively. Correlations were assessed as partial
Spearman correlation coefficients adjusting for the variables indicated. P values lower than
0.05 were considered statistically significant. Statistical analyses were performed using Graph-
Pad Prism version 6.02 (GraphPad Software, La Jolla, CA) and SAS version 9.3 (SAS Institute,
Cary, NC).
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Results

Anthropometric and metabolic characteristics
Table 1 presents the basic characteristics of the study population stratified by glucose tolerance
status. Except from younger age in NGT compared with IGT and T2D, the groups did not dif-
fer with respect to sex, BMI as well as serum lipids and transaminases.

Table 1. Basic Characteristics of Study Participants.

Variable Normal glucose tolerance Impaired glucose tolerance Type 2 diabetes

n (% men) 110 (51) 51 (47) 35 (54)

Age, years 47 ± 11 53 ± 10** 57 ± 11**

BMI, kg/m² 29 ± 6 30 ± 4 31 ± 5

Serum lipids

Triglycerides, mg/dl 109 (79; 146) 121 (83; 175) 112 (92; 191)

Total cholesterol, mg/dl 207 ± 42 209 ± 41 205 ± 51

HDL cholesterol, mg/dl 54 ± 18 51 ± 25 45 ± 12

LDL cholesterol, mg/dl 133 ± 37 123 ± 31 129 ± 39

Liver enzymes

AST, U/l 29 (21; 44) 31 (22; 47) 32 (24;45)

ALT, U/l 48 (30; 75) 53 (31; 83) 53 (31; 74)

γ-GT, U/l 57 (26; 127) 56 (32; 121) 57 (26;131)

Measures of glycaemia

Fasting glucose, mg/dl 82 ± 11 88 ± 13* 107 ± 25**

2-h glucose, mg/dl 107 ± 20 167 ± 18** 249 ± 39**

AUC glucose, g/l*2h 159 ± 30 206 ± 25** 259 ± 41**

Incremental AUC glucose, g/l*2h 61 ± 25 100 ± 21** 131 ± 20**

Insulin and C-peptide levels

Fasting insulin, μU/ml 12.3 (9.1; 16.6) 12.3 (9.3; 16.4) 17.8 (12.7; 25.1)**

AUC insulin, U/l*2h 9.9 (6.4; 13.3) 11.7 (8.0; 18.8) 9.7 (7.3; 15.1)

Incremental AUC insulin, U/l*2h 8.4 (5.4; 11.9) 10.2 (6.8; 16.0) 7.8 (5.6; 12.1)

Fasting C-peptide, ng/ml 0.30 (0.10; 0.94) 0.32 (0.10; 1.00) 0.49 (0.10; 1.00)

AUC C-peptide, mg/l*2h 0.11 (0.03; 0.51) 0.11 (0.02; 0.44) 0.15 (0.02; 0.36)

Incremental AUC C-peptide, mg/l*2h 0.07 (0.01; 0.44) 0.07 (0.01; 0.32) 0.08 (0.01; 0.27)

Measures of insulin sensitivity

QUICKI 0.40 ± 0.04 0.39 ± 0.03 0.36 ± 0.04**

OGIS, ml/min*m² 420 ± 82 358 ± 72** 316 ± 71**

Measures of beta-cell function

Fasting beta-cell function 22 (8; 74) 24 (8; 64) 35 (10; 58)

Insulinogenic index IGI_ins, nmol/mmol 15.1 (11.1; 23.2) 10.4 (7.0; 15.7)** 7.1 (4.1; 12.6)***

Insulinogenic index IGI_cp, nmol/mmol 9.6 (1.2; 41.8) 4.1 (0.6; 18.0)* 3.7 (0.4; 13.6)*

Disposition index 2.7 (2.1; 3.7) 2.2 (1.6; 3.2)** 1.4 (0.9; 2.3)***

Adaptation index 2.1 (0.5; 8.3) 1.5 (0.3; 4.1) 1.0 (0.2; 4.1)*

Insulin/C-peptide, molar ratio 0.54 (0.21; 2.12) 0.58 (0.28; 1.91) 0.48 (0.26; 2.05)

Data are missing for 16–22% of the total study population for the lipid parameters, for 10–11% for the liver enzymes and for 6% for C-peptides and

derived indices.

*P<0.05,
**P<0.01,

***P<0.001 compared to controls.

doi:10.1371/journal.pone.0124935.t001
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Individuals with IGT and T2D had higher fasting, 2-h and AUC glucose than individuals
with NGT (Table 1). Fasting insulin was higher in T2D than in NGT, while other insulin and
C-peptide-related parameters were not different between groups. QUICKI was lower in T2D
than in IGT and NGT, while OGIS was lower in both T2D and IGT than in NGT (Table 1).
Fasting beta-cell function did not differ between the groups (Table 1). From OGTT estimates
of beta cell function, IGT and T2D had lower IGI_cp, IGI_ins and disposition index than
NGT, whereas the adaptation index was decreased only in T2D (Table 1).

Serum chemerin concentrations
The three groups differed with regard to serum chemerin levels (PANOVA = 0.014; Fig 1A).
Serum chemerin was 169±37 ng/ml in NGT, 189±43 ng/ml in IGT (P<0.05 vs. NGT) and 187
±63 ng/ml in T2D (P>0.05 vs. NGT). Chemerin were 11% higher in the combined IGT+T2D
group than in NGT (188±52 ng/ml, P = 0.004). Of note, serum chemerin was higher in women
than in men (190±42 ng/ml and 165±44 ng/ml, P<0.001) (Fig 1B). In addition, serum che-
merin levels differed with respect to BMI (PANOVA = 0.002; Fig 1C). Individuals with normal
weight, overweight or obesity had serum chemerin levels of 165±33 ng/ml, 169±42 ng/ml
(P>0.05 vs. normal weight) and 190±48 ng/ml (P<0.01 vs. normal weight, respectively).

Associations of chemerin with age, sex and metabolic characteristics
In a joint model containing chemerin, age, sex and BMI, both age and BMI positively associat-
ed with serum levels of chemerin, and the sex difference remained significant for chemerin
(Table 2). In contrast, no significant associations were found in age-, sex- and BMI-adjusted
analyses between chemerin levels and lipids (triglycerides, total, LDL, HDL cholesterol) or
transaminases (ALT, AST, γ-GT) (Table 2).

In age- and sex-adjusted analyses, serum chemerin levels positively associated with 2-h glu-
cose and fasting insulin, but not with other glucose- and insulin-related variables. After further
adjustment for BMI, the significant associations disappeared (Table 2), while serum chemerin
associated with C-peptide levels independently of BMI.

Serum chemerin levels neither related to QUICKI nor to OGIS after adjustment for age, sex
and BMI. In contrast, serum chemerin associated positively with fasting beta-cell function,
IGI_cp as well as adaptation index based on C-peptide, independent of BMI, but not with
IGI_ins and disposition index. Serum chemerin also inversely associated with the ratio of insu-
lin to C-peptide (Table 2).

Stratifying the study population into the subgroups with NGT and IGT/T2D did not affect
the associations between serum chemerin and metabolic parameters in both subgroups
(S1 Table).

Discussion
This study shows that circulating chemerin concentrations not only positively associate with
BMI in patients with NAFLD, but are also higher in individuals with IGT or type 2 diabetes com-
pared to NGT in this study population. Serum chemerin further exhibited BMI-independent as-
sociations with beta-cell function, but not with insulin sensitivity.

Chemerin has been proposed as a novel biomarker of insulin resistance related to obesity
and T2D, but it was unknown whether the observed associations between chemerin levels and
metabolic features are mainly mediated by obesity or occur independently of obesity. In partic-
ular, putative associations with T2D are poorly understood because it is not clear whether che-
merin primarily relates to insulin resistance or beta-cell dysfunction.
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Fig 1. Chemerin serum levels in NAFLD patients (means±SD) stratified by (A) glucose tolerance status
(normal (NGT; n = 110) or impaired glucose tolerance (IGT; n = 51) or type 2 diabetes; no sex differences
between the 3 groups, P = 0.58), (B) sex and (C) body mass index (normal weight, n = 34; overweight n = 77;
obese n = 85).

doi:10.1371/journal.pone.0124935.g001
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Our study extends previous studies by assessing insulin resistance based on dynamic mea-
surements from an OGTT rather than relying on surrogate markers of insulin resistance de-
rived from fasting parameters only. Although we found that chemerin and QUICKI were
correlated, there was no association when OGIS was used as more precise measure of insulin
resistance. Moreover, the association with QUICKI was mainly explained by BMI. These data
are in line with several studies that also failed to observe a BMI-independent association

Table 2. Associations between SerumChemerin Levels and Anthropometric and Metabolic Variables.

Variable Adjusted for age and sex Adjusted for age, sex and BMI
rs P rs P

Age* 0.13 0.08 0.14 0.048

Sex** -0.28 <0.001 -0.26 <0.001

BMI 0.24 <0.001 N/A N/A

Serum lipids

Triglycerides 0.11 0.18 0.06 0.45

Total cholesterol 0.01 0.88 0.00 0.96

HDL cholesterol -0.15 0.07 -0.10 0.23

LDL cholesterol 0.02 0.81 -0.01 0.93

Liver enzymes

AST 0.04 0.56 -0.01 0.95

ALT 0.10 0.20 0.04 0.60

γ-GT 0.00 0.99 -0.02 0.82

Measures of glycaemia

Fasting glucose 0.04 0.63 -0.02 0.74

2-hr glucose 0.15 0.03 0.10 0.18

AUC glucose 0.12 0.09 0.06 0.38

Incremental AUC glucose 0.11 0.13 0.06 0.41

Insulin and C-peptide levels

Fasting insulin 0.17 0.02 0.06 0.39

AUC insulin 0.04 0.58 -0.04 0.60

Incremental AUC insulin 0.01 0.88 -0.06 0.43

Fasting C-peptide 0.24 0.001 0.22 0.003

AUC C-peptide 0.23 0.002 0.24 0.001

Incremental AUC C-peptide 0.21 0.005 0.22 0.004

Measures of insulin sensitivity

QUICKI -0.16 0.03 -0.04 0.54

OGIS -0.06 0.37 0.04 0.58

Measures of beta-cell function

Fasting beta-cell function 0.24 0.001 0.23 0.002

Insulinogenic index IGI_ins -0.08 0.30 -0.10 0.16

Insulinogenic index IGI_cp 0.18 0.02 0.20 0.007

Disposition index -0.04 0.62 -0.06 0.44

Adaptation index 0.20 0.008 0.22 0.003

Insulin/C-peptide, molar ratio -0.18 0.02 -0.20 0.007

Data are given as partial Spearman correlation coefficients rs and respective P values.

*Adjusted for sex or sex and BMI only.

**Adjusted for age or age and BMI only.

Significant correlations (P<0.05) are highlighted using bold print.

doi:10.1371/journal.pone.0124935.t002
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between chemerin and insulin resistance assessed by HOMA-IR [6,11,14,19,26]. Two previous
studies analyzed the association between chemerin and the OGTT-based Matsuda insulin sen-
sitivity index (ISI) [11,26] with contradictory results: the first study in Japanese patients with
type 2 diabetes found a significant inverse association after adjustment for age, sex and BMI
[11], whereas the inverse association between chemerin and Matsuda ISI in children from
Germany was mainly explained by age and BMI [26]. Evidence for a direct BMI-independent
association between chemerin and insulin resistance comes from two studies using hyperinsuli-
nemic-normoglycemic clamps in non-obese normoglycemic men [17] and in a very heteroge-
neous cohort with respect to age, BMI and insulin resistance [27].

The reason for the discrepancy between the aforementioned findings is currently unclear. It
is important to note that also mechanistic studies revealed opposing effects of chemerin on in-
sulin action. Kralich et al. showed an increase in insulin—stimulated glucose uptake and insu-
lin receptor substrate-1 tyrosine phosphorylation after chemerin treatment [40], whereas
Takahashi et al. reported a decrease in insulin-stimulated glucose uptake [41]. While exoge-
nous administration of chemerin exacerbates glucose intolerance and decreases tissue glucose
uptake in obese diabetic mice [42], chemerin-deficient mice are also glucose intolerant [28].

The absence of any correlation between serum chemerin and insulin resistance in the pres-
ent study could be due to our study population consisting of patients with NAFLD. Several
studies indicated that liver disease may affect circulating chemerin levels [42]. Previous studies
reported higher chemerin levels in patients with clinical or biopsy-proven NAFLD [13,29,30].
In the present study, patients with IGT and T2D had higher chemerin levels than glucose toler-
ant patients with NAFLD suggesting a specific role for insulin action or secretion. Nevertheless,
a recent study found elevated mRNA levels of both chemerin and its receptor, CMKLR1, in the
human liver, with greater expression in patients with NASH [43]. The increase in chemerin in
overweight patients with NAFLD may be more pronounced than effects of insulin resistance
per se and thereby obscure or blunt any association with insulin resistance. On basis of the pre-
vious data and our study, a future study comprising persons without and with NAFLD and
careful matching for glucose tolerance status will be necessary to address the question whether
the presence of NAFLD modifies the association between chemerin and insulin resistance.

In contrast to insulin resistance, our study clearly showed that chemerin levels associate pos-
itively with beta-cell function during fasting and under dynamic conditions as assessed with
the insulinogenic index IGI_cp and the adaptation index. These data are novel as two previous
studies used only HOMA-B as surrogate marker of fasting beta-cell function. In these studies,
chemerin did not relate to HOMA-B in cohorts from Japan [20] and Mauritius [3] after adjust-
ment for age, sex and BMI. Data from studies using dynamic measurements of beta-cell func-
tions have not been published so far. In addition to the fact that dynamic measures are more
sensitive to detect changes in insulin secretion, the difference between the present and the pre-
vious studies could result form the study population, i.e. Caucasian patients with NAFLD. The
generally higher degree of insulin resistance in NAFLD may explain a compensatory excessive
increase in insulin secretion during OGTT, which is typical for IGT and early or newly diag-
nosed patients with T2D [44]. On the other hand, it is conceivable that chemerin per se sup-
ports insulin secretion under these conditions. Recent studies on chemerin in mouse models
serve to support our human data [28]. Islets from chemerin-deficient mice exhibit impaired
glucose-dependent insulin secretion (GSIS), whereas transgenic mice overexpressing chemerin
have increased GSIS. Although these data support a beneficial effect of chemerin on beta-cell
function, additional preclinical and clinical studies are required to elucidate the interplay be-
tween chemerin and insulin secretion in more detail.

The use of dynamic measurements from an OGTT to simultaneously assess insulin sensitiv-
ity and beta-cell function represents the main strength of our study. Nevertheless, some

Serum Chemerin and Glucose Metabolism

PLOSONE | DOI:10.1371/journal.pone.0124935 May 1, 2015 8 / 11



limitations should be taken into account. We included patients diagnosed with NAFLD using
transaminases and liver ultrasound rather than employing liver biopsy. Although the liver bi-
opsy is the gold standard procedure to diagnose NAFLD [45,46], it is not generally used in
mild forms as present in our cohort. Furthermore, we recruited patients form a specialized clin-
ic and did not include persons without NAFLD. Thus, we cannot generalize our findings to the
general population or other ethnic groups, but we were able to detect alterations within a well-
defined closely matched groups with different degrees of glucose tolerance.

In conclusion, this study did not observe a BMI-independent correlation between increased
circulating chemerin concentrations and insulin resistance in patients with NAFLD. On the
other hand, we found a robust association between elevated chemerin and increased beta-cell
function which points towards a novel beneficial role of chemerin for dynamic insulin secre-
tion in the context of NAFLD and type 2 diabetes.

Supporting Information
S1 Table. Associations between Serum Chemerin Levels and Anthropometric and Metabol-
ic Variables In the Subgroups with NGT and IGT/T2D.
(DOCX)
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