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ABSTRACT
Motor lateralization is hypothesized to depend on the complexity of the motor
function, but it might at the same time reflect hemispheric dominance within an
individual across motor functions. We investigated possible motor lateralization
patterns in four motor functions of different complexity (snout use in a
manipulative task, foot use in two-stepping tasks and tail curling) in the
domestic pig, a tetrapod species relevant as farm animal but also as a model
in human neuroscience. A significant majority of our sample showed
individual biases for manipulation with their snout and for curling their tail.
Interestingly, the tail curling was lateralized towards the right at the
population level and showed stronger lateralization patterns than the snout.
Using a cluster analysis with combined tail and snout laterality, we identified
groups of individuals with different lateralization patterns across motor
functions that potentially reflect the individuals’ hemispheric dominance. To
conclude, our results suggest that pigs show lateralization patterns that
depend on the motor function and on the individual. Such individual
lateralization patterns might have broader implications for animal personality
and welfare. Our study lays the methodological groundwork for future
research on laterality in pigs.
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Introduction

Cerebral asymmetries are widespread in animals and are supposed to have an
evolutionary advantage to improve brain efficiency by enabling the brain to

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

CONTACT Lisette M. C. Leliveld leliveld@fbn-dummerstorf.de
Supplemental data for this article can be accessed at https://doi.org/10.1080/1357650X.2017.1410555

LATERALITY: ASYMMETRIES OF BODY, BRAIN AND COGNITION
2018, VOL. 23, NO. 5, 576–598
https://doi.org/10.1080/1357650X.2017.1410555

http://crossmark.crossref.org/dialog/?doi=10.1080/1357650X.2017.1410555&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:leliveld@fbn-dummerstorf.de
https://doi.org/10.1080/1357650X.2017.1410555
http://www.tandfonline.com


perform more than one task simultaneously (Rogers, Zucca, & Vallortigara,
2004). These asymmetries are observable through behavioural lateralization,
e.g., motor lateralization, which is expressed behaviourally through side
biases. The best-studied example of motor lateralization is handedness in
humans, with the majority of the human population being strongly lateralized
at the individual level (individuals have a strong preference to use one hand
over the other; Oldfield, 1971), and a population-wide bias towards the right
(the majority is right-handed; Annett, 1985; Corballis, 2009). A number of
studies show that motor lateralization is common in non-human vertebrates
and even in invertebrates (Frasnelli, 2013; Rogers, Vallortigara, & Andrew,
2013; Ströckens, Güntürkün, & Ocklenburg, 2013), but findings are often dis-
parate (Ströckens et al., 2013; Versace & Vallortigara, 2015).

The sometimes contradicting findings may be partially explained by the
fact that different studies focus on different motor functions. According to
the “task complexity hypothesis”, more complex tasks elicit stronger lateral
biases on the individual level and are more likely to elicit population-level
biases (Fagot & Vauclair, 1991). For example, in many primate species biman-
ual coordinated tasks, in contrast to simple (unimanual) tasks, elicit stronger
hand preferences (reviewed by Hopkins, 2013) and sometimes a population
bias (Molesti, Vauclair, & Meguerditchian, 2016). However, many species do
not use their limbs for tasks of different complexity, such as walking and grab-
bing, which limits the testing of limb use in a variety of tasks. For this reason,
some authors adapted the “task complexity hypothesis” into the “organ com-
plexity hypothesis” (Keerthipriya, Tewari, & Vidya, 2015), which suggests that
the strength of lateralization varies between different organs. Specifically,
unpaired organs are suggested to be more complex than paired organs. For
example, in food-reaching tasks, elephants are more strongly lateralized in
the use of their trunk than their forefeet (Keerthipriya et al., 2015), and
spider monkeys are more strongly lateralized in the use of their tail than
their hands (Laska, 1998). From these conclusions, one can deduce that later-
ality varies across task and/or organ complexity. In this article, we will refer to
these combined effects as “motor function complexity”. To get an overview of
motor lateralization in a certain species, studies should ideally include differ-
ent motor functions.

While the strength of lateralization can be influenced by the complexity of
the task, wemight also find consistent lateralization patterns within an individ-
ual, and variation between individuals. Indeed, “each individual has a tendency
to use either its left or right hemisphere predominantly” (Rogers, 2009), which
is assumed to be observable through individually consistent lateral preferences
(Wright & Hardie, 2015). In this article, we used the term “individual hemi-
spheric dominance” to describe this phenomenon. Many studies have found
interactions between individual motor lateralization patterns and other indivi-
dually distinct behavioural patterns, such as anxiety (Branson & Rogers, 2006;
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Hicks & Pellegrini, 1978; Wright & Hardie, 2012) or approach/avoidance beha-
viours (Hardie &Wright, 2014; Hopkins & Bennett, 1994; Watson &Ward, 1996),
as a consequence of this individual hemispheric dominance. Thus, studying
motor lateralization patterns on the individual level represents a promising
approach in the study of personality, i.e., consistent individual behavioural
differences over time and/or across situations (Réale, Reader, Sol, McDougall,
& Dingemanse, 2007). Since personality plays an important role in an individ-
ual’s response to environmental challenges and therefore its welfare, the
study of (motor) laterality could contribute to animal welfare research (Leliveld,
Langbein, & Puppe, 2013; Rogers, 2010, 2011).

As the domestic pig (Sus scrofa) is one of the most intensively farmed
species in the world and is progressively used as a model in human neuro-
science (Kornum & Knudsen, 2011; Lind et al., 2007; Sauleau, Lapouble, Val-
Laillet, & Malbert, 2009), it is important to know more about lateralization in
this species. Apart from some indications on cerebral asymmetries (van der
Beek et al., 2004) and some reports on side preferences during nursing in lac-
tating sows (Gill & Thomson, 1956; Newberry & Wood-Gush, 1984; Špinka, Stě-
hulová, Zachařová, Maletínská, & Illmann, 2002), lateralization was never
systematically studied in this species before.

Our study aim was to provide a first comprehensive overview of motor
lateralization in the domestic pig. Thereby, we explored motor lateralization
in three different organs: snout, foot and tail. We tested the snout use in a
manipulative task, foot use was tested in two-stepping tasks, and we observed
the direction during the spontaneous curling of the tail.

Pigs search for food, using their snout to explore, collect, carry, manipulate
and even wash food items (Gundlach, 1968; Sommer, Lowe, & Dietrich, 2016;
Stolba & Wood-Gush, 1989). Therefore, the pig snout seems to fulfil similar
functions as the hands of primates or the trunks of elephants, making it suit-
able for studying motor lateralization. As even-toed ungulates (Artiodactyla),
their foot use represents another important motor function. A third interesting
and easily observable motor function of the pig is the curling of the tail. Tail
curling behaviour was found to occur more often during interactions with a
familiar person (Kleinbeck & McGlone, 1993), while other authors (Reimert,
Bolhuis, Kemp, & Rodenburg, 2013) recently found that this behaviour
occurs in more neutral emotional contexts, in comparison to tail wagging
(more in positive contexts) or tail hanging (more in negative contexts).

The “motor function complexity hypothesis” suggests that the snout, being
the most complex function (an unpaired organ performing a manipulative
task), would show the strongest lateralization patterns, while the feet (as
paired organs performing a simple stepping task) would show the weakest
lateralization patterns. In addition, we expected to find individual lateraliza-
tion patterns across motor functions (as an indication of an individual’s hemi-
spheric dominance), when all motor lateralization patterns were combined.

578 C. GOURSOT ET AL.



Materials and methods

Ethical note

The experimental procedure was approved by the ethics committee of the
federal state of Mecklenburg-Western Pomerania, Germany (LALLF M-V/
TSD/77221.3-2-040/14-1).

Animals and housing

The study was conducted at the Experimental Facility for Pigs of the Leibniz
Institute for Farm Animal Biology (FBN), Dummerstorf, Germany. The subjects
were 80 (among 100 pre-selected; see below) pre-pubertal, uncastrated male
German Landrace piglets (aged 5–7 weeks during the experimental period).
Experiments were performed with five consecutive replicates between
November 2014 and May 2015. As a standard procedure of the Experimental
Facility for Pigs, within the first 24 hours after birth, the tip of the tail (maximal
length of 1 cm) was routinely clipped off. Before weaning, the subjects were
submitted to 4 backtests (at the age of 5, 12, 19 and 26 days) to determine
their coping style, using the standardized method of Zebunke, Repsilber,
Nürnberg, Wittenburg, and Puppe (2015). At 4 weeks of age, 20 individuals
were pre-selected from a greater pool based on their health status, absence
of injuries (including a tail without injuries), weight (greater than 5 kg), and
their coping style (preferring active and passive over doubtful/intermediate
coping styles; these results will be discussed in another publication). The
number of full siblings was set to a maximum of 4 for preselection.

The pre-selected pigs were weaned (day 0) and grouped together in a pen
(3.75 × 1.8 m, with fully slatted plastic floors and a solid heated area in the
middle), where they had access to food and water ad libitum. From days 3–
5 post-weaning, the pigs were habituated to being handled by the exper-
imenter (2 sessions of 1 hour per day) who distributed during each session
two handfuls of chocolate raisins in the pen in order to habituate the pigs
to the food reward. Chocolate raisins are common rewards used in pig behav-
ioural studies (Gieling, Nordquist, & van der Staay, 2011). On day 6, each pig
was guided to the corridor that was adjacent to the pen and stayed there,
physically isolated from the group for a maximum of 10 minutes. During
this time, 5 chocolate raisins were thrown on the floor of the corridor, and
each individual was assessed on its motivation to eat when alone (varying
from 1 to all raisins eaten). For the experiment, we selected 16 individuals
using the following criteria (in order of importance): the absence of illness/
injuries, eating the reward alone, active or passive coping style, relatedness
to other subjects (avoidance of full siblings where possible) and the
absence of nervousness. Each subject was randomly given an ID-number,
which determined the test order throughout the entire experiment. At the
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end of the last handling day (day 6), the 20 pigs were moved into a new pen
(2.50 × 3.95 m) with fully slatted plastic floors and two solid concrete sections.
This pen was in the same room as the experimental arena (see below for the
setup description). During the experimental period, the subjects were fed an
age-appropriate ration once per day after the last session of the day. This
setup was used to ensure standardized motivation among subjects for per-
forming the food-retrieval test. Water was available ad libitum, and straw
and some other physical enrichments (buckets, rags, etc.) were provided
twice a day during the entire experimental period.

Snout and foot use

Experimental setup
Lateralized manipulation with the snout and foot use were tested in a sym-
metrical arena (1.5 × 1.5 m, see Figure 1). This arena was connected to the
home pen through a corridor (51 × 185 cm) that was used as a waiting area

Figure 1. Schema of the testing arena. The curved arrows at the top indicate how the
subject may have opened the flap door in each case. The pale arrow indicates that
they opened the flap door with the right side of the snout, and the dark arrow indicates
that they opened the door with the left side of the snout. The numbers describe the
testing procedure per trial: 1. Foot down; 2. Manipulation with the snout to open the
flap door; 3. Foot-up.
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(between trials). A sliding guillotine door (39 × 45 cm) that could be operated
from the corridor was used to provide access to the arena. A ramp was placed
at the end of the corridor, creating a 6.5-cm high step into the arena. In the
arena, on the opposite side of the sliding door, a flap door (22 × 30 cm) was
integrated in the middle of the wall (105 cm high). Behind this flap door, a
trough (5 cm high) containing a food reward (one chocolate raisin) was posi-
tioned. A fixed tube was used to ensure that the raisin was always positioned
in the middle of the trough. After the 6 training sessions (18 trials), the setup
was modified for the test situation: a fixed barrier (26 × 57 cm) was placed
15 cm in front of the flap door, so that the subjects were forced to approach
the flap door from the side and then use the left or right side of the snout to
open it.

A camera was positioned on the wall above the flap door and was focused
on the entrance of the sliding door. Another camera, connected to a digital
video recorder, was positioned centrally above the arena.

Experimental procedure
The experimental period consisted of 10 working days. The training period
began on day 8 and consisted of 6 sessions across 4 working days (2 sessions
per day on days 8 and 11 and 1 session per day on days 12 and 13). The test
period began on day 13 (after the last training session) and consisted of 10
sessions across 7 working days (2 sessions per day on days 14, 15 and 18
and 1 session per day on day 13 and days 19 through 21). In total, each pig
performed a maximum of 30 trials. Morning sessions were performed
between 08:00 and 10:00 and afternoon sessions between 11:30 and 14:00.

To improve the training’s efficiency by using social facilitation, the first
three sessions were performed with randomly paired pigs. New pairs were
formed for each session so that each subject could learn to access the
reward in a short amount of time. The last three training sessions were per-
formed with the subject alone; this was done to habituate the pigs to the
testing procedure, which was also performed alone. The barrier (before it
was fixed in the arena) was presented in the home pen for 10 minutes
once per day during the last three training days, so that the subjects were
habituated to it before the start of the test sessions.

Before each session, the experimenter entered the pen and gently guided a
subject into the corridor. The subject was then offered a chocolate raisin while
waiting in the corridor. Each trial consisted of the following procedure (see the
video in the supplemental data): The experimenter pulled up the sliding door
and the subject entered the arena. When a subject successfully opened the
flap door and retrieved the chocolate raisin, the sliding door was re-
opened. In the corridor, the subject received another chocolate raisin. The
experimenter put a new raisin in the trough. If the raisin was still there, the
measurement for snout use was counted as “failed”. Since only 0.03% of all
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trials were counted as failed, these trials were not included in the analysis. Per
session, this procedure was repeated 3 times (i.e., for a total of 3 trials). A
session finished after the third successful retrieval of the food reward, or
when a maximum of 10 minutes had passed. At the end of the session, the
experimenter opened the door connecting the corridor to the pen, so that
the subject could return to the pen. Between subjects, the experimenter
cleaned the floor of the arena as well as the barrier and flap door.

Tail curling direction

The tails were observed before and after each experimental session (6 train-
ing + 10 test sessions). A total of 32 observations per subject were made.
The observations were done in the following way: The experimenter
entered the pen, provided either fresh straw or some toys (rags, shoes) to
the pigs and noted the curling direction from pigs that were either standing
or walking. The order of observations was determined by the behaviour of the
pigs: The moment a pig with a curled tail was spotted, the direction was noted
down.

Three observations were possible (Figure 2): left curling (L; the tip of the tail
is situated to the left of the base), right curling (R; the tip of the tail is situated
to the right of the base) or an “unclear” curling (mostly curling in the middle;
the tip of the tail showed no clear deviation from the middle). Observations of
“unclear” curling were excluded from further analyses.

Behavioural analyses

Observations of snout and foot use were performed using video recordings by
the same observer. As the subject entered the arena, the front foot that
entered the arena first was observed (Figure 1: “1. Foot down”). When a
subject successfully opened the flap door and retrieved the chocolate

Figure 2. Examples of clear tail curling directions.
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raisin, the side of the snout used was observed (Figure 1: “2. Snout use”). As
the subject exited the arena, the front foot that entered the corridor first
was observed (Figure 1: “3. Foot-up”). To ensure the reliability of the video
observations, we compared a sample of observations from one randomly
selected replicate (2 test sessions, 96 trials) with a second observer and
obtained the following Kappa coefficients: 0.92 for the snout, 0.81 for foot
down and 0.82 for foot-up, which indicated almost perfect agreement.

Statistical analyses

We used SAS version 9.4 (SAS Institute Inc., Cary, NC, USA) for our statistical
analyses. To determine if an individual had a significant bias for one side
over the other, we used a simplified binomial test. For this, we calculated
an individual z-score (Branson & Rogers, 2006) using the formula:

z = R− (R+ L)/2
�����������

(R+ L)/4
√ ,

where R is the number of right choices and L is the number of left choices. A z-
score ≤−1.96 indicates a left bias (L), a z-score≥ 1.96 indicates a right bias (R),
and a value between these two scores indicates no lateral bias (i.e., ambilat-
eral; A). Using a chi-square test (FREQ procedure), we determined if a signifi-
cant majority of the subjects were lateralized. To test this, we compared the
number of L- and R-individuals with the number of A-individuals (H0: distri-
butions R + L= 50%; A = 50%). If there were significantly more lateralized indi-
viduals, we also compared the number of R-individuals with the number of L-
individuals (H0: R = 50%, L = 50%). If we found a significant difference
between the amount of L- vs. R-individuals, we finally determined if our
tested population had a significant bias for the left or the right for each
motor function (i.e., for an R population bias, H0: R = 50%, L + A = 50%). In
addition, we also calculated a continuous laterality index (LI; adapted from
Hopkins, 1999) for each subject and motor function by using the formula:

LI = R− L
R+ L

,

where R is the number of right observations and L is the number of left obser-
vations. This index ranges from −1 to 1, with positive values reflecting a right
bias and negative values a left bias. The absolute value of LI (LI_ABS) was used
to indicate the strength of laterality. In this case, the index ranged from 0 to 1,
with low values reflecting a weak bias and high values reflecting a strong bias.
To provide a graphical representation of distribution across these indices, we
used JMP 12.0.1 (SAS Institute Inc., Cary, NC, USA). We transformed our distri-
bution data into a smoothed curve, using a Kernel standard deviation of
0.1063. This smoothed curve was then visually compared to different
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adapted distribution models (normal or a mixture of several normal distri-
butions) to determine the type of distribution.

We tested for trial effects by comparing the number of L vs. R choices for
snout use between the beginning (trials 1–14) and the end (trials 15–30) of the
testing. Using the MIXED procedure, an analysis of variance (ANOVA) was cal-
culated with the percentage of choices (L or R) as a variable and the phase of
testing (beginning or end) as a fixed factor. We also compared the strength of
lateralization between the different motor functions using the MIXED pro-
cedure; an ANOVA was calculated with LI_ABS as a variable and the motor
function as a fixed factor. Multiple pairwise comparisons were calculated
using Tukey-Kramer tests. To control for the effect of replicates, we performed
the same ANOVA with the LI and the LI_ABS as variables and the replicate as a
fixed factor.

A chi-square (FREQ procedure) test was performed to test for associations
between the different motor functions. To detect individual lateralization pat-
terns across motor functions, we used a cluster analysis to obtain a combined
laterality classification. For this analysis, we selected the LIs of motor functions
that followed a bimodal distribution. These LIs were first standardized using
the STDIZE procedure. Next, we performed the FASTCLUS procedure (maxiter
= 100, strict = 0.9, nomiss). STRICT prevents an observation from being
assigned to a cluster if its distance to the nearest cluster seed exceeds the
value assigned to the STRICT variable. We tested for 2, 3, 4 and 5 clusters
(i.e., maxcluster = 2, 3, 4 and 5) to determine the number of clusters that
best represented the variation in the data. The reliability of the model is
given by the cubic clustering criterion (CCC values greater than 2 or 3 indicate
good clusters) combined with a graphical verification. For a continuous rep-
resentation of the combined laterality, we calculated a combined LI for
each individual, based on the mean of the laterality indices that were included
in the cluster analysis. A graphical representation of the distribution across
this index was created in JMP 12.0.1 (SAS Institute Inc., Cary, NC, USA).

Results

For technical reasons, we could not observe the foot use during the first repli-
cate (n = 16). During the food-retrieval test, all subjects learned to open the
flap door, but four subjects were excluded from the snout and foot-use ana-
lyses because they could not learn to eat the reward alone. Two other subjects
were excluded from the tail analyses because the number of R and L obser-
vations was not sufficient to perform the individual binomial tests. This
resulted in the following sample sizes per motor function: n = 76 for snout,
n = 60 for foot-up and foot down and n = 78 for tail curling.

There was no effect of the test phase (beginning vs. end) on the percen-
tage of R or L choices for snout use, F(2, 211.1) = 0.3, p = .74. We found a
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significant effect of the replicate on the strength of snout laterality, F(4, 71) =
5.7, p < .001. The pairwise comparisons revealed that the second replicate
showed significantly weaker snout laterality compared to the fourth, t(71) =
−3.78, p < .01, and the last, t(71) =−3.39, p < .01, replicates, while the third
replicate showed significantly weaker snout laterality compared to the
fourth replicate, t(71) =−3.13, p < .05.

Lateralization patterns by motor function

Table 1 and Figure 3 show the distributions for all motor functions across the
different laterality categories and indices, respectively. For snout, significantly
more individuals were lateralized than not lateralized, Χ2 = 278.421, DF = 1, p
< .001, n = 76. The number of individuals with a bias for the right side of the
snout did not differ significantly from the number of individuals with a bias for
the left side, Χ2 = 0.1475, DF = 1, p = .7009, n = 61. Figure 3 shows the distri-
bution of the tested population for the snout LI. The smooth curve plotted
by JMP was found to resemble an adapted mixture of two normal distri-
butions, with two peaks at the extremes (at LI =−1 and LI = 1).

Significantly more individuals were ambilateral than lateralized for step-
ping down, or into, and stepping up, or out of, the experimental arena (foot
down: Χ2 = 416.667, DF = 1, p < .001, n = 60; foot-up: Χ2 = 192.667, DF = 1, p
< .001, n = 60). Figure 3 shows the distribution of the foot laterality indices.
The smooth curves plotted by JMP were found to resemble a normal distri-
bution, with one peak at LI = 0.

For tail curling, significantly more individuals were lateralized than not
lateralized, Χ2 = 702.051, DF = 1, p < .001, n = 78. There were significantly
more individuals with a right bias for tail curling than individuals with a left
bias, Χ2 = 52.632, DF = 1, p = .0218, n = 76. There were also significantly
more right-biased individuals compared to non-right-biased individuals (L +
A subjects), which indicates a population-level right bias for the tail curling
direction, Χ2 = 41.538, DF = 1, p = .0415, n = 78. Figure 3 shows the distribution
of the tested population for the tail LI. The smooth curve plotted by JMP was
found to resemble an adapted mixture of two normal distributions, with a
high peak at LI = 1 (right) and a somewhat lower peak at LI =−1 (left).

Table 1. The number of subjects per laterality category for each motor function (based
on the binomial test).
Motor function R L R + L A

Snout 29 32 61 15
Foot-up 6 7 13 47
Foot down 4 1 5 55
Tail 48 28 76 2

Note: R = individuals with a significant right bias, L = individuals with a significant left bias, R + L = later-
alized individuals, A = ambilateral individuals without a significant bias.
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The comparison of the LI_ABS between the different motor functions is
shown in Figure 4. The motor function had an effect on the strength of later-
ality, F(3, 71.6) = 408.5, p <.001. The pairwise comparisons revealed that the
LI_ABS for tail was significantly the highest (compared to snout: t(76.7) =
−6.05; foot down: t(78.0) =−32.0; foot-up: t(71.5) =−23.5; all p < .001). The
LI_ABS for snout was still higher than the LI_ABS for both foot functions
(foot down: t(74.8) =−14.0; foot-up: t(72.2) =−12.4; all p < .001).

Individual lateralization patterns across motor functions

The LI for snout use and tail curling showed a bimodal distribution, while the
LI for the two-foot functions showed a normal distribution; thus, we only
included the LIs of snout and tail curling in the analysis of a combined later-
ality classification. The snout side categories were not significantly associated
with the tail curling direction categories (Χ2 = 2.7688, DF = 4, p = .597228, n =
74; see Table 2).

Using the FASTCLUS procedure, we obtained 4 reliable clusters (CCC =
14.17, n = 74; Figure 5). We could distinguish four main clusters located in
the four quadrants of the two-dimensional space that is created by the
snout and tail LIs. As seen in the graphical representation (Figure 5), there
were 18 right-biased (for both functions) subjects in the RR cluster, 12 left-
biased (for both functions) subjects in the LL cluster, 15 subjects in the RL
cluster (right biased for snout use and left biased for tail curling), and 25

Figure 3. Distribution of the individuals according to their laterality indices (with an
increment of 0.1). Positive values reflect a right bias and negative values a left bias.
Solid lines indicate the smooth curve that is plotted in JMP. Dashed lines indicate the
calculated mixture of two normal functions, and dotted lines indicate the calculated
approximation of a normal function.
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subjects in the LR cluster (right biased for tail curling and left biased for snout
use). Based on the STRICT criterion (0.9), four individuals were not assigned to
any of these clusters. Note that the classification based on cluster analysis can
deviate from the classification based on the binomial tests.

Figure 6 shows the distribution of the tested population for the combined
LI, which is the mean of the laterality indices of both lateralized motor func-
tions (tail and snout). The smooth curve was found to resemble an adapted
mixture of three normal distributions, with two peaks at the extremes (at LI
=−1 and LI = 1) and one peak in the middle (at LI = 0).

Figure 4. Absolute values of the laterality indices for the different motor functions (LS
means and standard errors).

Table 2. The number of subjects per combined tail and snout bias (based on the
binomial test).

Motor function Snout

Tail R L A

R 16 21 9
L 12 10 4
A 0 1 1

R = individuals with a significant right bias, L = individuals with a significant left bias, A = ambilateral indi-
viduals without a significant bias.
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Figure 5. Graphical representation of the cluster analysis: Each individual is positioned on
the graph according to its laterality indices (LIs) for snout (x-axis) and tail (y-axis). Positive
values reflect a right bias and negative values a left bias. The various filled symbols indi-
cate the different clusters: The first letter indicates the direction (R for right, L for left) of
the bias for the snout, the second letter indicates the direction of the bias for the tail.
Crosses indicate subjects that were not assigned to any cluster (due to a distance
greater than 0.9 from the centre of any cluster).

Figure 6. Distribution of the individuals according to their combined LI (with an incre-
ment of 0.1). Positive values reflect a right bias and negative values a left bias. The
solid line indicates the smooth curve that is plotted in JMP. The dashed line indicates
the calculated approximation of a mixture of three normal functions.
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Discussion

We found that most of the pigs had a significant side bias for manipulating
with their snout and curling their tail, indicating lateralization on the individ-
ual level. We also found a significant right bias at the population level for the
tail curling direction. In contrast, there was no evidence of lateralized foot use
in either stepping task since only a minority of the pigs showed significant
biases for stepping down or stepping up. Concerning the strength of laterality,
we found that pigs were more strongly lateralized for tail curling, followed by
manipulation with the snout, for which they were still more strongly latera-
lized than for the two-foot functions.

Lateralization patterns by motor function

Concerning manipulation with the snout, our findings of individual-level later-
alization are comparable to findings in other species on motor biases for
manipulation, e.g., hand use in primates (Marchant & McGrew, 2013), trunk
use in elephants (Martin & Niemitz, 2003) and paw use in other tetrapod
species (Bisazza, Rogers, & Vallortigara, 1998; Ströckens et al., 2013). Mastica-
tion has been found to be symmetrical in pigs (Herring, 1976), so it is unlikely
that any preferences to eat the food reward on one side of the mouth may
have affected the side bias for opening the flap door. Training in other
species has been found to modify lateralization patterns, leading to stronger
biases (Leliveld, Scheumann, & Zimmermann, 2008) or even shifts in the direc-
tion of the biases (Lorincz & Fabre-Thorpe, 1994). Here, we found no trial effect
on the lateralized manipulation with the snout, suggesting that the observed
lateralized behaviours reflect individual side biases, rather than a learned
process during this task. However, though we observed side biases in
motor functioning, we cannot exclude the possibility that sensory (olfactory
or visual) functions may have affected these side biases. For instance, Hook
and Rogers (2008) found no population-level hand preferences in marmosets,
but a right eye preference at the group level. These authors suggested that
this sensory function interfered with the motor tasks, causing a lack of popu-
lation-level alignment in hand preferences. In our case, further research is
needed on individual nostril and eye preferences to determine if sensory pro-
cessing may have affected the snout biases that we observed.

Concerning the foot, our results are not in line with results in dogs
(Tomkins, Thomson, & McGreevy, 2010), where the authors found that a step-
ping task (consisting of three steps) elicited strong individual preferences and
a population bias. Since our stepping task consisted of only one step, this task
may not have been challenging enough to elicit foot preferences. Our results
are similar to those found in other ungulate species, where no preference in
the use of forefeet was found for standing (Austin & Rogers, 2012, 2014) or
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locomotion (Langbein, 2012; Versace, Morgante, Pulina, & Vallortigara, 2007).
However, individual foot preferences may still be found for other (more
complex) functions since a digging task elicited individual foot preferences
in another Artiodactyla species (the reindeer: Espmark & Kinderås, 2002).

Our findings of strong individual biases for tail curling are in line with find-
ings of lateralized tail posture in rats (Rosen, Berrebi, Yutzey, & Denenberg,
1983) and spider monkeys (Laska & Tutsch, 2000; Stevens, Wright, Covert, &
Nadler, 2008). In rats, tail posture was found to be associated with cerebral
metabolic asymmetries (Rosen, Finklestein, Stoll, Yutzey, & Denenberg,
1984; Ross, Glick, & Meibach, 1981), meaning tail curling direction may also
reflect cerebral asymmetries in pigs. Surprisingly, we found that tail curling
is also lateralized at the population level. Lateralized behaviour at the popu-
lation level is suggested to have evolved as a consequence of an increased
need for social coordination (Vallortigara & Rogers, 2005). Indeed, our
results are comparable to reports of population-level biases for other motor
functions that are used in social interactions, such as communication mechan-
isms (Meguerditchian & Vauclair, 2006; Meguerditchian, Molesti, & Vauclair,
2011; Wallez & Vauclair, 2012). Tail postures are components of the global
body posture “which may have a communication value without having
necessarily evolved to serve as a signal” (Kiley-Worthington, 1976). Indeed,
lateralized tail wagging has been found to reflect a dog’s emotional state
(Quaranta, Siniscalchi, & Vallortigara, 2007), as well as affect the emotional
state of other dogs (Siniscalchi, Lusito, Vallortigara, & Quaranta, 2013),
suggesting a relevance for intra- and inter-specific interactions (Artelle,
Dumoulin, & Reimchen, 2011; Siniscalchi et al., 2013). Additionally, the tail
posture of pigs was found to vary according to the emotional context
(Reimert et al., 2013), which is the first prerequisite for emotional communi-
cation. Because tail curling does not occur in wild boars (Jensen, 2002), it
may have emerged in domestic pigs during the domestication process. Simi-
larly, tail up in adult domestic cats has been shown to play a social function
that is not found in adult wild cats (Cafazzo & Natoli, 2009). This behaviour
may be partly explained by a need for domestic cats to communicate with
humans (Cafazzo & Natoli, 2009). Additionally, domestic pigs show the
curled tail more often during interactions with a familiar person (Kleinbeck
& McGlone, 1993), suggesting it may have a function in interactions with
humans. Based on this, tail posture in pigs may play a role in social inter-
actions, either with conspecifics or with humans; however, this possibility
needs to be further investigated. The right population bias could result
from a left hemispheric specialization for communication, as is shown in
humans (Knecht et al., 2000) and non-human animals (e.g., Meguerditchian
& Vauclair, 2006; Siniscalchi, Laddago, & Quaranta, 2016). However, this
right population bias may also result from a left hemispheric specialization
for approach behaviours in rewarding contexts, especially in the context of
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feeding (e.g., Rogers et al., 2013; Rogers & Andrew, 2002; Siniscalchi et al.,
2011). During our tail curling observations, the rewarding context may have
consisted of a familiar human entering the home pen with enrichments. Alter-
natively, the population bias in tail curling may be the result of a morphologi-
cal directional asymmetry, which is described as an inherited trait where most
individuals are asymmetrical in one direction (Palmer, 2004). One example of
this is claws of crabs that differ in size (Perez, Heatwole, Morrell, & Backwell,
2015). Future studies on the (muscular) structure of the tail would help
increase our understanding of its function and determine if lateralized tail
curling is the result of a morphological asymmetry or not. Our work here
does not permit us to conclude the exact function of the pig’s tail, but the sim-
plicity of measuring its laterality makes this organ very attractive for future
laterality research on pigs. This has implications for the common practice of
tail docking in pig husbandry to reduce tail biting (Sutherland & Tucker, 2011).

As predicted by the “motor function complexity hypothesis”, we found sig-
nificant differences in the strength of lateralization between the tested motor
functions. The fact that we found the weakest biases for the foot use (i.e., step-
ping up and down) suggests that these motor functions are less complex than
the motor functions that involved unpaired organs (snout and tail). As such,
our results seem to align with the “organ complexity hypothesis” (Keerthipriya
et al., 2015). Surprisingly, tail curling elicited stronger biases than manipu-
lation with the snout, which seems to contradict the “task complexity hypoth-
esis” (Fagot & Vauclair, 1991). However, as discussed above, this finding may
be because tail curling behaviour may be a more complex function (with a
social-emotional component) than we expected. Alternatively, our results
may also support the suggestion of Rogers (2009), which states that the
nature of tasks, rather than their complexity, explains the differences found
between laterality patterns.

Individual lateralization patterns across motor functions

We found no significant associations between the individual biases for tail
curling and for manipulation with the snout. This lack of consistency in direc-
tion across both functions may be partially due to the involvement of sensory
processing in the snout manipulation function, which we discussed pre-
viously. Nevertheless, our results are in line with previous findings in rats
(Noonan & Axelrod, 1989) and marmosets (Hook & Rogers, 2008), where no
associations between lateralized functions were found. Additionally, Laska
(1998) found no associations between the use of tail and hand for grasping
in spider monkeys. This led the author to suggest that the lateral biases in
hand and tail use are driven by different neural substrates. In addition,
similar observations have been made in rats (Noonan & Axelrod, 1989) and
humans (Bracha, Seitz, Otemaa, & Glick, 1987; Mohr & Bracha, 2004; Mohr,
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Landis, Bracha, & Brugger, 2003), where the authors suggested that individual
left or right hemispheric dominance does not necessarily lead to consistency
between every single behavioural asymmetry (Noonan & Axelrod, 1989).

Since laterality is multidimensional, it is suggested that non-human animal
studies should take this aspect into account by including several motor func-
tions (Uomini & Hunt, 2016). In this study, we used a cluster analysis to gain
more insight into an individual’s lateralization pattern across functions. This
cluster analysis was based on the individual laterality indices (for the two later-
alized functions), which contain more detailed information than the lateraliza-
tion categories. Therefore, the advantage of the cluster analysis, in contrast to
a simple combination of lateralization categories, is that it takes the intra-indi-
vidual structure for both functions into account (Granero et al., 2016; Tran,
Stieger, & Voracek, 2014). The resulting distribution provides a first insight
into potentially different brain organizations in domestic pigs with four differ-
ent laterality types. We found two clusters (RL and LR) where manipulation
with the snout and tail curling resulted in different biases. This may indicate
that these individuals have no strong tendency to use one hemisphere
more than the other. However, since this is a first approximation of an individ-
ual’s lateralization pattern across functions and is based on only two motor
functions, it is also probable that not enough biases are included to identify
their individual hemispheric dominance. In contrast, the RR and LL clusters
seem to include individuals with a more consistent lateralization pattern
across motor functions, suggesting that they are more likely to be right or
left hemispheric dominant, respectively. Based on previous reports in
humans (Knecht et al., 2000; Pujol, Deus, Losilla, & Capdevila, 1999), these
two groups may also be expected to present a high probability of showing
qualitatively different cerebral patterns. Accordingly, these two opposite clus-
ters could also be distinguishable in their personality (Rogers, 2009). In a
future publication, we plan to focus on the interactions between motor later-
alization patterns and personality indices.

Conclusion

Our study contributes to a better understanding of motor lateralization in pigs
in general, and particularly adds an insight into the rarely documented later-
ality of unpaired organs. We found stronger lateralization patterns for the two
unpaired organs compared to the paired organs, supporting the organ com-
plexity hypothesis. Cluster analyses revealed first indications of potentially
different brain organizations in pigs, according to their individual lateraliza-
tion patterns across motor functions. To our knowledge, this study provides
the first comprehensive investigation of motor lateralization patterns in the
domestic pig. The developed methods provide a good basis to further
study laterality in domestic pigs.
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