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Background & aims: Human milk is known to be the best food for
infants, as it contains all of the nutrients they need and also helps
to protect them against infection. Staphylococcus aureus is one of
the most common clinical and foodborne pathogens. It produces a
variety of extracellular protein toxins, including enterotoxins,
exfoliative toxin (ET), haemolysins and Panton-Valentine leukoci-
din (PVL). This study was carried out to evaluate the Xpert MRSA/
SA nasal (Cepheid) PCR assay for the detection of Methicillin-
Resistant S. aureus (MRSA) and Methicillin-susceptible S. aureus
(MSSA) isolates, and to analyse the frequency of genes encoding
the classical antigenic staphylococcal enterotoxins (SE) and exfo-
liative toxins (ET) in S. aureus strains isolated from raw human
breast milk (HBM).
Methods: A total of 72 milk samples were collected from mothers
who had delivered in the hospital between 16 February 2014 and
24 April 2016. Samples were cultured and bacterial colonies were
identified phenotypically by standard bacteriological methods. All
staphylococci strains isolated by routine tests were examined with
MALDI-TOF-MS. Then PCR Xpert MRSA/SA nasal was performed on
the closed GeneXpert® random access platform (Cepheid), then
the house-PCR to detect SE genes and ET genes.
.
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Results: S. aureus was identified in 86.2% (62/72) of the 72 Staph-
ylococcus spp isolated from raw milk culture. PCR results showed
that 30 of the 62 S. aureus strains (48.3%) harboured genes coding
for toxins. sea was the most prevalent virulence gene (24.1%),
followed by see (12.9%) and eta (12.9%) genes.
Conclusions: Xpert MRSA/SA nasal complete assay allows rapid
and accurate identification of MRSA and MSSA. This assay is very
easy to perform and is useful for the diagnosis of milk contami-
nation by S. aureus in human milk banks. These results suggest the
potential infant health threat related to S. aureus contamination of
HBM. Efforts are therefore required to improve safety standards to
prevent staphylococcal food poisoning in these infants.

© 2017 The Authors. Published by Elsevier Ltd on behalf of
European Society for Clinical Nutrition and Metabolism. This is an

open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

HBM is considered to be the best food for infants, as it contains all of the nutrients they need and
also helps to protect them against infection. Healthcare professionals generally agree that properly
collected and stored HBM is appropriate for healthy full-term and preterm babies. However, for many
reasons, breast-feeding may be impossible or inadvisable.

Milk is a good substrate for Staphylococcus aureus growth and enterotoxin production [1]. The
presence of S. aureus in HBM samples can be explained by secondary contamination from the skin,
breasts and nasal cavity of milk donors and healthcare professionals, or alternatively, unsatisfactory
conditions of the utensils used [2]. Since its first description, MRSA has become a major public health
issue because of worldwide spread of several clones. The specific genetic mechanism of its resistance
has been identified as a mobile genetic element (Staphylococcal Cassette Chromosome mec e SCCmec)
integrated into the S. aureus chromosome, within which the mecA gene encodes a specific methicillin-
resistant transpeptidase (penicillin-binding protein 2a-PBP2a) [3]. A new divergent mecA homologue
(mecC or mecA LGA251) was described in a novel SCCmec named type XI [4] in S. aureus or coagulase-
negative staphylococci (CoNS).

S. aureus produce a variety of extracellular protein toxins, including enterotoxins, toxic shock
syndrome toxin 1 (TSST-1), ET, haemolysins, coagulase and Panton-Valentine leukocidin (PVL). S.
aureus is one of the most commonly isolated pathogenic bacteria and is responsible for many
nosocomial infections, besides being the main causative agent of food poisoning by virtue of its
wide range of enterotoxins. According to serological classification, seven classical antigenic SEs have
been identified as SEA, SEB, SEC1, SEC2, SEC3, SED, SEE and SEH [5e7]. Munson et al. [8] identified
and characterized seg and sei, while Zhang et al. [9] identified the gene sej. Several other toxins,
called enterotoxins SEK, SEL, SEM, SEN, SEO, SEP, SEQ, SER and SEU, have been described, and their
genes have been sequenced [1]. Toxic shock syndrome in humans and animals is caused by the
presence of S. aureus isolates producing TSST-1 [10]. The tsst gene is chromosomal. Enterotoxins, as
well as TSST-1, belong to a family of superantigens [11]. Some strains of S. aureus producing one or
both of two distinct ET, A (ETA) or B (ETB), have been associated with a series of impetiginous
staphylococcal diseases referred to as staphylococcal scalded-skin syndrome [12]. PVL produced by
less than 5% of S. aureus strains is a pore-forming toxin encoded by the lukS-PV and lukF-PV genes
[13].

In the light of the above findings, the present study was designed to: (i) evaluate the ability of the
Xpert MRSA/SA real-time PCR assay (Cepheid, Sunnyvale, CA) to detect MRSA and MSSA isolates in a
collection of staphylococci strains isolated fromHBM; (ii) analyse the frequency of genes encoding SEA,
SEB, SEC, SED, SEE, ETA and ETB in S. aureus strains isolated from raw HBM.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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2. Materials and methods

2.1. Human milk bank and sample collections

We conducted a retrospective study over a 26-month period from 16 February 2014 to 24 April 2016.
Seventy-twoHBMsampleswere collectedunderaseptic conditions and transported frozen to theAmiens
University Hospital milk bank (France), in which milk is voluntarily donated by mothers who have
delivered in the hospital. To ensure optimumquality ofmilk donations, the donorswere instructed in the
appropriate methods for sanitary collection, handling, storage and transportation of the breast milk
according to the French Ministry of Health recommendations [14]. In the milk bank, the milk was pro-
cessed according to a detailed protocol defined by Ministry of Health recommendations [14].

The study was conducted according to the Code of Ethics of the World Medical Association (Decla-
ration of Helsinki) and all procedures were approved by the Picardie Human Research Ethics Committee.

2.2. Bacteriological screening and Staphylococci counts

Seventy-two fresh-frozenHBMsampleswere transportedondry ice fromthemilk bank to thehygiene
laboratory. One milk tube, corresponding to approximately 2 mL of raw milk, of each sample was taken.
Each samplewas screened for contaminationbynormal skinflora as follows: 10 mL of samplewere seeded
on sheepbloodColumbia agar (5%) andChapmanagar (Bio-Rad, France). After incubation at37 �C for 48h,
colonies presenting morphological characteristics of staphylococci were counted. Sheep blood agar was
used for counting of normal skinflora and Chapman agarwas used for counting of S. aureus colonies.Milk
acceptable for dispensing raw must contain � 106 CFU/mL of skin flora and <104 CFU/mL of S. aureus.

2.3. Identification of S. aureus

Strains positive for mannitol, catalase, Gram staining and bound coagulase (Pastorex Staph Plus-
Bio-Rad) were classified as S. aureus and stored at �80 �C in sterile Mueller-Hinton (M. H) medium
enriched by horse serum, then seeded in conservation tubes.

2.4. MALDI-TOF-MS

All staphylococci strains isolated by routine tests were examined by Matrix-assisted laser desorp-
tion ionization-time of flight mass spectrometry (MALDI-TOF-MS) (Brucker Daltonics, Bremen, Ger-
many) according to the previously described procedure [15]. Absolute ethanol was used for sample
preparation and 1 mL of DHB matrix solution (2,5-dihydroxybenzoic acid, 50 mg/mL, 30% acetonitrile,
0.1% trifluoroacetic acid) was added. Flex control 3.0 software and Biotyper 2.0 database (Brucker
Daltonics) were used to calculate and process the analytical data, as previously described [16]. Iden-
tification was performed in duplicate and the identification score cut-off was applied to each mea-
surement, according to the manufacturer's instructions.

2.5. Methicillin agar screen

Susceptibility to oxacillinwas determined by the disk diffusionmethod onM.H agar at 37 �C for 24 h
on disks loaded with 30 mg of cefoxitin and 6 mg of benzyl penicillin, according to the recommendations
of the Comit�e de l'Antibiogramme de la Soci�et�e Française de Microbiologie (CA-SFM) and European
Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines V1.0 February 2013.

2.6. Xpert MRSA/SA nasal PCR assay

This test was performed on the closed GeneXpert® random access platform (Cepheid), allowing
autonomous, fully integrated and automated molecular analysis: the extraction, amplification, and
detection of amplified products steps are performed successively in the same cartridge. This method
uses automated real-time PCR technology to detect proprietary sequences of genes that encode
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S. aureus protein A, the methicillin resistance element (mecA) and the Staphylococcal Cassette Chro-
mosome (SCCmec). The Xpert MRSA/SA nasal assay was performed according to the manufacturer's
instructions on the GeneXpert® system (Cepheid).

Briefly, bacterial suspension 0.5 McFarland was diluted to 1:100 and then vortexed for 10 s. This
dilution (100 mL) was transferred to the elution reagent vial, and then vortexed for 10 s. The entire
sample was then dispensed into the S chamber of the cartridge, followed by reagent 1 into port 1, and
reagent 2 into port 2, and the cartridge was inserted into the GeneXpert® apparatus and the assay was
started. The results were available within 71 min. The following results were considered: spaþ mecA�

SCCmec� (MSSA), spaþ mecAþ SCCmecþ (MRSA). Although not recommended by the manufacturer, in
the case of MRSA-/SA-, the result was extrapolated to indicate methicillin-resistant coagulase-negative
staphylococci (MRCoNS) when mecA was positive or methicillin-susceptible coagulase-negative
staphylococci when mecA was negative (MSCoNS). The Cepheid assay used in this study has not been
validated for the identification of MRSA and MSSA isolated from HBM.

2.7. DNA isolation and PCR conditions

Total DNAwas extracted by using the NucliSENS easyMAG extractor apparatus (BioM�erieux, France)
according to the manufacturer's instructions. Oligonucleotides ranging from 120 to 200 bp were
selected from the published DNA sequences of the S. aureus genes [17] (Table 1). PCR was performed
with a final volume of 50 mL according to the Master Mixes of components from the QIAGEN Top Taq
master mix kit. Each reaction contained 25 mL of Master Mix, 1 mL of each primer, 2 mL of DNA as
template, 5 mL of CoralLoad and 16 mL of RNase-free water. The amplification conditions were 94 �C for
5 min followed by 35 cycles of amplification (denaturation at 94 �C for 2 min, annealing at 57 �C for
2 min, and an extension at 72 �C for 1 min), and a final extension at 72 �C for 7 min. All PCR ampli-
fications were carried out in a Veriti Thermal Cycler (Applied Bio System, France).

3. Results

Over a 26-month of study period, 72 staphylococci strains isolated from raw milk culture were
identified as S. aureus by agglutination test (Pastorex Staph Plus) at concentrations ranging between
Table 1
Nucleotide sequences, gene locations, and predicted sizes of amplified products for the staphylococcal toxin-specific oligonu-
cleotide primers used in this study.

Genea Primer Oligonucleotide sequence (50/30) Location within the gene Size of amplified product (bp)

sea SEA-1 TTGGAAACGGTTAAAACGAA 490e509 120
SEA-2 GAACCTTCCCATCAAAAACA 591e610

seb SEB-1 TCGCATCAAACTGACAAACG 634e653 478
SEB-2 GCAGGTACTCTATAAGTGCC 1091e1110

sec SEC-1 GACATAAAAGCTAGGAATTT 676e695 257
SEC-2 AAATCGGATTAACATTATCC 913e932

sed SED-1 CTAGTTTGGTAATATCTCCT 354e373 317
SED-2 TAATGCTATATCTTATAGGG 632e671

see SEE-1 TAGATAAAGTTAAAACAAGC 491e510 170
SEE-2 TAACTTACCGTGGACCCTTC 640e659

eta ETA-1 CTAGTGCATTTGTTATTCAA 374e393 119
ETA-2 TGCATTGACACCATAGTACT 473e492

etb ETB-1 ACGGCTATATACATTCAATT 51e70 200
ETB-2 TCCATCGATAATATACCTAA 231e250

a Nucleotide sequence and locations derived from published nucleotide sequences [1].



Table 2
Phenotypic and genotypic characteristics of S. aureus and S. lugdunensis strains isolated from human milk before pasteurization.

Agglutination test Identification of strains Phenotypic characters Genotypic characters Total

Pastorex
Staph Plus

MALDI-TOF-MS Oxacillin Cefoxitin SPAþ

Mec�

SCC�

SPAþ

Mecþ

SCCþ

SPAþ

Mecþ

SCC�

SPAþ

Mec�

SCCþ

SPA�

Mec�

SCC�

SPA�

Mecþ

SCCþ

þ S. aureus R R e þ e e e e 3
þ S. aureus R R e e þ e e e 10
þ S. aureus S S e e e þ e e 1
þ S. aureus S S þ e e e e e 48

62
þ S. lugdunensis S S e e e e þ e 7
þ S. lugdunensis R R e e e e e þ 1
þ S. lugdunensis S S þ e e e þ e 1
þ S. lugdunensis S S e e þ e e e 1

10
TOTAL 72

11.2% (8172) of cases were discordant. Eight of these discordant results were Pastorex Staph Plus positive results and Xpert
negative results.
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103 and 106 CFU/mL. All 72 staphylococci isolates were examined by MALDI-TOF-MS. Pastorex Staph
Plus correctly identified 62 of these isolates, which were confirmed to be S. aureus (86.2%) and ten
(13.8%) isolates, which were identified as Staphylococcus lugdunensis. Two of the ten S. lugdunensis
isolates were spa gene positive and eight were spa gene-negative by GeneXpert® assay. All 62 S. aureus
identified were spa gene positive. Overall, Pastorex Staph Plus results were concordant with Xpert
results in 88.8% (64/72) of cases versus 11.2% (8/72) of discordant cases. Eight of these discordant re-
sults were Pastorex Staph Plus-positive results and Xpert-negative results (Table 2).

Eight (80%) of the 10 S. lugdunensis isolates were phenotypically methicillin-susceptible coagulase-
negative staphylococci (MsCoNS) and genotypically spa� mec� SCCmec� and were interpreted by
GeneXpert® as MRSA�/SA�; one was phenotypically MSCoNS and genotypically spaþ mecþ SCCmec�

and was interpreted by GeneXpert® as MRSA�/SA� and another was phenotypically methicillin-
resistant CoNS (MRCoNS) and genotypically spa� mecþ SCCmecþ and was interpreted by GeneXpert®

as MRSA�/SA�. Among the 62 S. aureus strains identified, 48 (77.4%) were phenotypically methicillin-
susceptible S. aureus (MSSA) and genotypically spaþ mec�SCCmec� and were interpreted by Gen-
eXpert® as MRSA�/SAþ (MSSA); ten (16.2%) were phenotypically methicillin-resistant S. aureus (MRSA)
and genotypically spaþmecþ SCCmec� and were interpreted by GeneXpert® as MSSA, three (4.8%) were
phenotypically MRSA and genotypically spaþ mecþ SCCmecþ and were interpreted by GeneXpert® as
MRSAþ/SAþ, and one strain (1.6%) was phenotypically MSSA and genotypically spaþ mec� SCCmecþ and
was interpreted byGeneXpert® asMSSA (Table 2). Of 62 S. aureus strains, 44 (70.9%) were positive for se
or et genes, among which 35 (79.5%) strains carried SE genes and 9 (20%) carried ET genes. Of the genes
that code for SEA-SEE, seawas the most frequent, it was found in 15 (24,1%), isolates, followed by see in
8 (12.9%) (Table 3). Of the genes that code for ETA-ETB, eta were the most frequent (12.9%) (Table 3).
Table 3
The percentages of S. aureus strains positive for staphylococcal enterotoxins (SE) and exfoliative toxins (ET) genes.

Gene Number of strains tested Number of positive strains (%)

sea 62 15 (24.1)
see 62 8 (12.9)
eta 62 8 (12.9)
seb 62 6 (9.6)
sec 62 4 (6.4)
sed 62 2 (3.2)
etb 62 1 (1.6)

Among the S. aureus strains isolated from breast milk, 24.1% harboured sea genes and 12.9% harboured see and eta genes. These
genes appeared to be more prevalent.



Table 4
Toxin gene profile of S. aureus isolated from human breast milk.

Toxin gene profiles Number of S. aureus strains positive for se and et genes

a 1
b 3
c 2
d 1
e 11
eta 1
a þ eta 5
a þ b þ d þ eta 1
a þ b þ eta 1
b þ e 1
c þ e 2
e þ etb 1

Sea(a), seb(b), sec(c), sed(d), see(e) (staphylococcal enterotoxin genes), eta, etb (exfoliative genes).
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Table 4 shows 12 different genotype toxin profiles: 6 genotypes contained a single toxin gene (a, b, c, d,
e and eta); 4 genotypes contained each two toxin genes (b þ e, c þ e, a þ eta, and e þ etb); 1 genotype
contained three toxin genes (a þ b þ eta) and 1 genotype contained four toxin genes (a þ b þ d þ eta).
4. Discussion

Although French legislation does not define acceptable limits for the amount of S. aureus in HBM,
the quantity of toxins produced by toxigenic S. aureus are known to achieve levels that are sufficient
to induce symptoms of food-borne disease for S. aureus concentrations � 105 CFU/mL, as was the
case for 7 (11.2%) of the 62 raw HBM samples. Milk and milk products have frequently been
implicated in staphylococcal food poisoning and contaminated raw milk is often involved. Human
handlers, milking equipment, and the environment are possible sources of bulk milk contamination.
Several researchers have reported different results for bacterial counts in contaminated dairy
products expressed in CFU/mL [18e20]. Variations in S. aureus counts in milk may depend on the
sanitary precautions observed during the milk processing chain. In the present study, we used the
routine bacteriological procedure for isolation of S. aureus from HBM. In view of the findings and
comparing the routine technique with Xpert MRSA/SA results, the Xpert MRSA/SA nasal test for
amplification of spa, mecA and SCCmec genes can be considered to allow rapid diagnosis and
confirmation of S. aureus isolates. The present study showed that 10 (13.8%) of the 72 staphylococci
identified had a positive result on the Pastorex Staph Plus test, two of which were positive for spa
gene on GeneXpert® PCR MRSA/SA and were considered to be false-positive results. These 10
staphylococci isolates were identified by MALDI-TOF-MS as S. lugdunensis. Previous publications
have also reported false-positive results on latex agglutination tests, mainly for Staphylococcus
intermedius, S. lugdunensis, Staphylococcus schleiferi, Staphylococcus hycus, and Staphylococcus hae-
molyticus [21,22], indicating that latex agglutination tests must be performed with caution. S. lug-
dunensis produces a bound coagulase (clumping factor) (which is used in the rapid slide
agglutination test), a property it shares with S. aureus, but unlike S. aureus, it does not produce a free
coagulase, and can therefore give positive results on the latex agglutination test. S. haemolyticus has
been reported in other studies to give false-positive results, probably due to the production of type 5
and 8 capsular polysaccharides [21,22]. The presence of both surface antigens can easily lead to
misidentification as S. aureus. Among the 72 staphylococcus isolates detected, 62 (86.2%) were spa
gene positive and were confirmed as S. aureus, two (2.7%) were spa gene positive and were identified
as S. lugdunensis. The remaining eight (11.1%) isolates without spa gene were identified as S. lug-
dunensis. The two S. lugdunensis isolates harbouring a spa gene were positive on the Pastorex Staph
Plus test and were considered to be false-positive results. Ninety percent of protein A is found in the
cell wall and the remaining 10% is free in the cytoplasm of bacteria. The Xpert MRSA/SA assay is the
molecular MRSA surveillance method most commonly used in our laboratory. The use of
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GeneXpert® to characterize staphylococci and their resistance to methicillin has been well docu-
mented [23,24]. The mechanism mediating methicillin resistance in S. aureus can be easily detected
by using either mecA or the SCCmec/orfX junction as a marker [25,26]. GeneXpert® detects only a
single staphylococcal target, corresponding to the junction at which SCCmec, the genetic element
that contains the mecA gene and which confers resistance to methicillin, integrates the S. aureus
chromosome. The integration site of the cassette into the staphylococcal genome is located in OrfX
that is unique to S. aureus with its internal mecA gene that inserts into the OrfX and, in so doing,
splits orfX into two parts. This target is called the SCCmec/OrfX junction region. This region is usually
highly conserved [27,28]. Molecular characterization studies of this region identified eight SCCmec
types (I to VIII) [29,30], as well as a large number of nontypeable and new SCCmec types. The mecA
gene encodes PBP2a, which is involved in peptiglycan synthesis and confers resistance to all
b-lactam antibiotics due to low-affinity binding, thereby overcoming the inhibition of native PBP
conferred by these antibiotics.

A good agreement between the phenotypic method and Xpert assay was observed in 62 (86.2%) of
the 72 staphylococci species isolated from HBM cultures with pure growth, while a discordance be-
tween the phenotypic method and Xpert assay was observed in 13.8% (10/72) of cases (Table 5). These
strains were phenotypically methicillin-resistant and cefoxitin-resistant and genotypically spaþ mecþ

SCCmecA- and were misinterpreted as MSSA by Xpert. These strains have been considered to be false-
negative for MRSA. False-negatives for MRSA have been reported in isolates with atypical or novel
SCCmec types as a result of polymorphisms. The SCCmec/orfX PCR target fails to amplify. These spaþ

mecAþ SCCmec- are interpreted as MSSA by the Xpert® system [4] and these strains are called “empty
cassette” variants because they have SCCmec lose just the mecA portion of the cassette through exci-
sion, while the basic structure of the element, the mecA gene, remains intact and the mecA portion of
the cassette is therefore “empty”, at least in terms of its ability to confer methicillin resistance [31].
Various incorrectly identified mechanisms of MRSA isolates have been described [32]: missing mecA
sequences (mecA excision, empty cassettes), prevalence of a SCCmec-like cassette in a CoN isolate,
acquisition of a new variant mecA homologue (mecC or mecA LGA251) [33,34] that was recently
described in a novel SCCmec named type XI [35]. This newly identified protein has <63% aa identity
with PBP2a encoded by mecA. This new mecA homologue has been detected in bacteria from dairy
cattle in England and humans in England, Scotland, Denmark [33] and France [4]. Finally, Donnio et al.
[36] reported loss ofmecA due to deletion within a type IV cassette. The in vitro selection for resistance
Table 5
Discordance between phenotypic and genotypic results of 11 S. aureus strains analysed.

Phenotypic result Genotypic results Interpretation

spaþ

CT value
mecþ

CT value
SCCmec�

CT value

Methicillin-resistant
Cefoxitin-resistant

23.5 38.5 0 MRSA�/SAþ ¼ MSSA
23.6 36 0
23.7 37.7 0
24 38.7 0
24.4 39 0
24.5 39.1 0
24.7 36.7 0
25.1 36.7 0
25.6 36.2 0
32.5 37.1 0
spaþ

CT

mec�

CT

SCCmecþ

CT
Methicillin-susceptible
Cefoxitin-susceptible

24 0 26.5 MRSA�/SAþ ¼ MSSA

Amplification data obtained with Xpert MRSA/SA assay for 10 MRSA phenotypes and 1 MSSA phenotype. The 10 MRSA phe-
notypes had MRSA�/SAþ genotypes with CT values between 23.5 and 32.5 for spaþ, >35 for mecþ and CT value ¼ 0 for SCCmec�.
The MSSA phenotype had a MRSAþ/SAþ genotype with CT values ¼ 24.0 for spaþ, 26.5 for SCCmecþ and 0 for mecþ.
CT: score cut-off.
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to vancomycin has also been shown, in three different MRSA isolates carrying a type II SCCmec, to
coincide with conversion of MRSA to MSSA [37]. Other studies have reported transposition/recombi-
nation between ccrC1 allele 8 and ccrC1 allele 10 [31] and site-specific chromosomal excision of SCCmec
elements from the genome or partial deletion of mec gene complexes involving IS431 elements [37] in
the mechanism for MRSA-to-MSSA conversion.

In this study, a collection of 62 S. aureus strains isolated from HBM were investigated for the
presence of classical SE genes and ET genes by PCR. S. aureus can produce a wide variety of virulence
factors. Of the 62 S. aureus isolates investigated, 44 (70.9%) were found to harbour one or more SE or ET
genes. Amongwhich 79.5% strains carried SE genes and 20% carried ETgenes. This rate (70.9%) is higher
to the result reported by Giannatale et al. [38], and lower than the rates reported by Xie et al. [39]
(90.7%) and similar to the result reported by Wang et al. [40] (68.1%). sea was the most prevalent
enterotoxin gene detected in this study (24.1%), similar to the result reported by Mehrotra et al. [10]
(19.6%) versus 41% for Rall et al. [1] and 44.4% for Xie et al. [39]. The eta gene rate observed in this
studywas 12.9%, compared to 2.4% and 0.6% for Hayakawa et al. [41], 0.9% for Xie et al. [39], and 0.8% for
Wang et al. [40].

These discordant results can be attributed to improvements in the handling and sanitary proced-
ures during milk collection and processing. Although the level of S. aureus in milk was considered to be
not sufficient to cause disease, the presence of toxin genes can be considered to be a potential risk for
infants. Several conditions, such as delayed processing, inadequate refrigeration, poor personal hygiene
and post-process contamination are associated with the growth of S. aureus strains harbouring se and
et genes.

In conclusion, conventional laboratory tests for the detection of MRSA and MSSA in human milk
banks require long incubation times and do not allow rapid decision-making for selection of the most
appropriate milk for infants. Most routine laboratory detection of staphylococci isolates in humanmilk
banks is based on latex agglutination tests. This test may take as long as 48 h. MALDI-TOF-MS iden-
tification is necessary due to the false-positive results of agglutination tests, which can take at least
50e72 h for the results to reach the milk bank. The Xpert MRSA/SA assay, performed directly on fresh-
frozen milk, is an alternative for routine diagnosis. It allows rapid (50 min) and accurate identification
of MRSA and MSSA isolates and is suitable for testing on human milk banks. The results of this study
provide important preliminary data about the prevalence of S. aureus strains harbouring genes coding
for SE and ET in human milk.
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