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ABSTRACT 

Freshwater species are adapted to and depend on various discharge conditions, such as 32 

indicators of hydrologic alteration (IHA). Knowing how these indicators will be altered under 

climate change is essential for predicting species response and to develop mitigation 

concepts. The simulation of IHA under climate change is subject to considerable uncertainties 

which should be considered to obtain credible and robust predictions. Therefore, we 

investigated the major uncertainties inherent in climate change data and processing: General 

circulation model (GCM) and regional climate model (RCM) choice, representative 

concentration pathway (RCP) scenario, bias correction (BC) method, all within three 

mesoscale catchments in the European ecoregions: Central Plains, Central Highlands, and 

Alpine. Highest uncertainties were caused by the GCM and RCM choice, followed by the type 

of BC and the RCP. For the prediction, we reduced these uncertainties tailored to the ideal 

depiction of the IHA in each ecoregion. Together with a significance test, this enabled a robust 

depiction of the change in IHA for two future time periods. We found diverging changes 

within the ecoregions, caused by the complex interaction between precipitation, temperature 

and the governing catchment hydrological processes. The results provide an important basis 

for further impact research, especially for ecological freshwater studies. 

 

Keywords: climate change, EURO-CORDEX, uncertainty, prediction, hydrological indicators, 

indicators of hydrologic alteration (IHA) 

 

 

1. INTRODUCTION 

Climate change alters the discharge regime of rivers (Nemec and Schaake, 1982, Donnelly et al. 

2017) and along with it magnitude, duration, frequency, rate and timing of discharge events. 

Assessing climate change impacts by indicators such as timing or seasonal flows showed a 

more robust response as compared to e.g. average annual discharge (Melsen et al. 2018, 

Addor et al. 2014). Furthermore, freshwater ecosystems have evolved in response to the 

prevailing discharge regime in streams and rivers (Lytle and Poff, 2004) and are impacted by 
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changes to this regime (Domisch et al. 2017, Guse et al. 2015). Therefore, these indicators are 

increasingly used to predict species distribution (Kakouei et al. 2017) and ecosystem health 

(Poff and Zimmerman, 2010) due to their comprehensive depiction of the flow conditions. 

Simulating changes in streamflow under climate change is subject to considerable 

uncertainties (Addor et al. 2014, Melsen et al. 2018). Clark et al. (2016) postulate a two-step 

approach towards dealing with these uncertainties: First, to quantify sources of and second, 

to develop and apply a method to select combinations of methods and models for less 

uncertain predictions. Here, we consider uncertainties arising from general circulation model 

(GCM), regional climate model (RCM) and representative concentration pathway (RCP) 

selection, and bias correction (BC) method choice as well as the application in three European 

ecoregions.  

The Coordinated Regional Downscaling Experiment (CORDEX, Jacob et al. 2014) provides the 

most recent and continuously updated, high resolution climate change data for the European 

continent, coupling the GCM forcing data with RCMs to provide climate parameters on a 

0.11°-grid (Kotlarski et al. 2014). Daily data of climate parameters are available for multiple 

GCM, RCM and RCPs in a harmonized data structure. This makes the CORDEX data an ideal 

source to assess uncertainties related to the selection of models and scenarios. Climate 

models often provide biased representations of observed time series, emphasizing the need 

for bias correction (BC), especially in regional climate scenarios that are used to assess climate 

change impacts on streamflow using watershed-scale hydrologic models (Muerth et al. 2013). 

Numerous methods exist (Teutschbein and Seibert, 2012, Wagner et al. 2013), whose 

application is however critically discussed: Ehret et al. (2012) stress the need to test the 

uncertainty introduced by different methods, including no BC. In addition, Kotlarski et al. 

(2014) show that climate models perform differently among ecoregions. No single GCM and 

RCM was found that performs superior in all regions of Europe and none could be suggested 

for general use. Therefore, it is necessary to assess the performance of the climate change 

data in different ecoregions. Additional uncertainties not considered here arise from the 

selection and parameterization of the hydrological model. For this study, one semi-distributed 

hydrological model was chosen using one parameterization.  

The main objective of this study is a thorough impact analysis of climate change on discharge 

in rivers, as characterized by ecologically relevant hydrological indicators. It is our aim to 

obtain robust predictions of changes for two 10yr-periods (2050 and 2090). Therefore, our 

emphasis lies on identifying and reducing the uncertainties introduced by different 

representative concentration pathways (here: RCP 4.5 and 8.5), different GCM (here: 5), and 

RCM (here: 8), bias correction methods for precipitation and temperature, including no bias 

correction (here: 5) and ecoregional differences by choosing three mesoscale catchments 

located in three European ecoregions.  

 

 

2. METHODOLOGY 

2.1. Study areas 

We selected three mesoscale river catchments in Germany, from three Central European 

ecoregions: The Treene in the Central Plains (henceforth “Plains”) contains the catchment of 

the Kielstau, Germany’s first UNESCO ecohydrological demonstration site (Fohrer and 



3 
 

Schmalz, 2012). The Kinzig in the Central Highlands (“Highlands”), is part of the Rhine-Main-

Observatory  
  

Table 1 Catchment characteristics of the three study catchments 

Catchment characteristic Unit Treene Kinzig Ammer 

River basin - Eider Rhine Danube 
Ecoregion - Central Plains Central Highlands Alpine 
Longitude / Latitude deg 9.5 / 54.7 9.3 / 50.3 11.0 / 47.7 
Catchment area km² 477 (non-tidal) 921 608 
Elevation gradient mASL 4 - 80 104 - 624 551 - 2157 
Major land use classes - Agriculture (48%) 

Pasture (32%) 
Forest (45%) 
Pasture (22%) 

Forest (47%) 
Pasture (37%) 

Annual precipitation gradient * mm 830 - 944 623 - 1094 998 - 1460 
Temperature daily average 
spatial gradient in JJA * 

°C +16.4 - +16.6 +17.6 - +19.2 +15.8 - +17.3 

Temperature daily average 
spatial gradient in DJF * 

°C +1.6 - +1.6 +1.3 - +2.6 -0.9 - +0.1 

Mean runoff rate * ls
-1

km
-2 

13.2 10.7 24.8 
q2 runoff rate * ls

-1
km

-2
 3.3 2.8 8.9 

q98 runoff rate * ls
-1

km
-2

 43.6 45.3 73.3 

* data from 1995-2015; JJA: Summer (June, July, August); DJF: Winter (December, January, February) 

 

and is a Long-Term Ecological Research (LTER; www.ilter.network) site. At this site, different 

taxonomic groups and numerous abiotic variables associated with freshwater and floodplain 

ecosystems are continuously monitored. The Ammer catchment in the Alpine region 

(“Alpine”; EEA, 2009), is an extensively monitored TERENO (TERestrial ENvironmental 

Observatories; www.tereno.net) site. The in-catchment variability of topography, climate, and 

hydrology increases from North (Treene) to South (Ammer) (Table 1, Figure 1). 
 

 

http://www.ilter.network/
http://www.tereno.net/
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Figure 1. Catchments overview map with ecoregions (EEA 2009); (a) Treene; (b) Kinzig; (c) Ammer 

including elevation, the EURO-CORDEX grid and precipitation and temperature gauges 

Table 2 Thirty-two IHA flow indicators considered in this study, according to Richter et al. (1996) 

Group Indicator Description Abbreviation Unit 

Monthly 
Mean (MM) 

ma12-23* Mean flow value for Month 1-12 Q av Jan –  
Q av Dec 

m³/s 

Magnitude 
and duration 
(MAG) 

dl1 Annual minimum 1-day average flow Q min 1d m³/s 
dl2 Annual minimum 3-day average flow Q min 3d m³/s 
dl3 Annual minimum 7-day average flow Q min 7d m³/s 
dl4 Annual minimum 30-day average flow Q min 30d m³/s 
dl5 Annual minimum 90-day average flow Q min 90d m³/s 
dh1 Annual maximum 1-day average flow Q max 1d m³/s 
dh2 Annual maximum 3-day average flow Q max 3d m³/s 
dh3 Annual maximum 7-day average flow Q max 7d m³/s 
dh4 Annual maximum 30-day average flow Q max 30d m³/s 
dh5 Annual maximum 90-day average flow Q max 90d m³/s 

 dh15 Duration of flow events above 75th percentile  Days high Q d 
 dl16 Duration of flow events below 25th percentile  Days low Q d 
Timing (TIM) tl1 Julian date of annual minimum Day Q min d 

th1 Julian date of annual maximum Day Q max d 
Frequency 
(FRE) 

fh1 No. flow events above 75th percentile  No. high Q - 
fl1 No. flow events below 25th percentile  No. low Q - 

Rate (RAT) ra1 Mean change in flow for days of positive change delta Q pos m³/s 
ra3 Mean change in flow for days of negative change delta Q neg m³/s 
ra5 Ratio of days of flow being higher than previous day Rise rate - 
ra10 Ratio of days of flow being lower than previous day Fall rate - 

* represents 12 IHA 

 

 

2.2. Hydrological indicators 

Richter et al. (1996) developed the indicators of hydrologic alteration (IHA) which, in their 

basic set, are 32 ecologically relevant hydrological metrics classified into five groups (Table 2). 

IHA describe the hydrological regime regarding the timing, frequency, magnitude, duration 

and rate of discharge events.  
 

 

2.3. Hydrological models 

The Soil and Water Assessment Tool (SWAT, Arnold et al. 1998) in the version SWAT3S 

(Pfannerstill et al. 2014a, Guse et al. 2016) is used in this study. SWAT is a semi-distributed 

hydrological model that divides the model domain into subbasins, which are furthermore split 

into Hydrological Response Units (HRUs) of equal land use, soil and slope. In this study, the 

Plains catchment was divided into 13, the Highlands catchment into 20 and the Alpine 

catchment into 15 subbasins. For each HRU, SWAT calculates the daily water balance and 

transfers the outflow from surface runoff, interflow and two groundwater aquifers of each 

HRU to the reach through which the water is routed to the catchment outlet.  

SWAT was calibrated in the three catchments using Latin Hypercube sampling of the 

parameter space, as implemented in Pfannerstill et al. (2014b), which leads to three different 

parameterizations in the three catchments. Best models were selected using a multi-objective 

function which incorporated the 32 IHA (Table 2). This is required since deriving IHA from 

simulated flow time series include uncertainties (Vigiak et al. 2018, Vis et al. 2015) which can 
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be reduced through a tailored model optimization incorporating the IHA into the optimization 

process (Kiesel et al. 2017, Pool et al. 2017). The optimized model represents a trade-off 
 

Table 3 EURO-CORDEX models and versions used in this study 

ID GCM GCMshort RCM RCMshort 

1 CNRM-CERFACS-CNRM-CM5 CNRM CLMcom-CCLM4-8-17 CLMcom 

2 CNRM-CERFACS-CNRM-CM5 CNRM CNRM-ALADIN53 CNRM 

3 CNRM-CERFACS-CNRM-CM5 CNRM SMHI-RCA4 SMHI 

4 ICHEC-EC-EARTH ICHEC CLMcom-CCLM4-8-17 CLMcom 

5 ICHEC-EC-EARTH ICHEC DMI-HIRHAM5 DMI 

6 ICHEC-EC-EARTH ICHEC KNMI-RACMO22E KNMI 

7 ICHEC-EC-EARTH ICHEC SMHI-RCA4 SMHI 

8 IPSL-IPSL-CM5A-MR IPSL IPSL-INERIS-WRF331F IPSL 

9 IPSL-IPSL-CM5A-MR IPSL SMHI-RCA4 SMHI 

10 MOHC-HadGEM2-ES MOHC CLMcom-CCLM4-8-17 CLMcom 

11 MOHC-HadGEM2-ES MOHC KNMI-RACMO22E KNMI 

12 MOHC-HadGEM2-ES MOHC SMHI-RCA4 SMHI 

13 MPI-M-MPI-ESM-LR MPI CLMcom-CCLM4-8-17 CLMcom 

14 MPI-M-MPI-ESM-LR MPI MPI-CSC-REMO2009v1 MPI1 

15 MPI-M-MPI-ESM-LR MPI MPI-CSC-REMO2009v2 MPI2 

16 MPI-M-MPI-ESM-LR MPI SMHI-RCA4 SMHI 

 

between all IHAs, where each indicator (Table 2) was given equal weight. When optimizing for 

low- or high flows separately, indicators not considered in the calibration process can show 

deviations of up to 100%, which does not occur when including all indicators (Kiesel et al. 

2017). The parameterization can hence be considered balanced between high- and low-flow 

conditions. Regarding typical hydrological performance metrics, the models show good 

(Alpine catchment) to very good (Plains- and Highland catchments) performances in Kling-

Gupta-Efficiencies (KGE, Kling et al. 2012) of 0.61 – 0.94 (calibration) and 0.74 – 0.91 

(validation). For a detailed model setup and optimization procedure description, please refer 

to Kiesel et al. (2017). 

 

 

2.4. Climate change data 

16 datasets of GCM+RCM from EURO-CORDEX are used in this study (Table 3). No likelihood 

of occurrence is assigned to the RCPs (Van Vuuren et al. 2011). However, the CORDEX 

database had different data availability for the RCPs: RCP 2.6 was available for less than 50% 

of the RCP 4.5- and 8.5-scenarios and RCP 6.0 was missing altogether. To obtain a 

homogeneous dataset, and still consider the uncertainty in future emissions, we chose the 

RCP 4.5 and 8.5 (henceforth designated as RCP45 and RCP85). The parameters “precipitation” 

as well as “minimum-” and “maximum daily near surface air temperature” were downloaded 

in daily time step and highest grid resolution (i.e. 0.11°). From these grids, the time series 

from each CORDEX scenario were extracted from the grid cells where the original climate 

station was located. 

 
 

2.5. Bias correction 
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Climate models often provide biased representations of observed time series, emphasizing 

the need for bias correction, especially in regional climate scenarios that are used to assess 

climate change impacts on streamflow using watershed-scale hydrologic models (Muerth et 

al. 2013).  

  
Table 4 Bias correction methods for precipitation and temperature, their combination in the 

hydrological model and short description 

Precipitation Temperature Combination Description 

Linear scaling (LS) 
Linear scaling  

(LS) 
pLS+tLS Adjust monthly mean 

Distribution mapping 

(DM) 

Distribution mapping 

(DM) 
pDM+tDM 

Adjust monthly mean, 

monthly frequency 

distribution 

Local intensity scaling 

(LIS) 

Linear scaling  

(LS) 
pLIS+tLS 

Adjust monthly mean, 

wet-day frequency, 

precipitation intensity 

Power transformation 

(PT) 

Variance scaling  

(VS) 
pPT+tVS 

Adjust monthly mean 

and variance 

No correction 

(NO) 

No correction  

(NO) 
pNO+tNO Raw CORDEX data 

 

Since bias correction methods are however controversially discussed and may alter the actual 

climate change signal (Ehret et al. 2012), we evaluated the impact of different bias correction 

algorithms as well as raw climate model data (NO BC) on streamflow. The bias-correction 

methods used for both precipitation and temperature are: linear scaling (LS) and distribution 

mapping (DM, also denoted as quantile mapping), for precipitation: local intensity scaling (LIS) 

and power transformation (PT), and for temperature: variance scaling (VS). LIS, PT, and DM 

were combined with LS to ensure monthly mean values match. Four BC-combinations of the 

six methods were selected based on their ability to account for differences in statistical 

parameters. The selected BC-combinations for precipitation and temperature and the main 

characteristics of the BC algorithms are shown in Table 4 and were applied using an adapted 

version of the software CMhyd (Rathjens et al. 2016). A detailed description of each method 

including an in-depth discussion of advantages and disadvantages is given in Teutschbein and 

Seibert (2012).  

 

 

2.6. Quantifying and reducing uncertainties 

We aimed at projecting changes in IHA, and therefore developed a method to quantify and 

reduce the uncertainty in depicting the IHA. Therefore, the IHA were calculated from 

hydrological simulations with observed climate (“baseline”) and from hydrological simulations 

with all combinations of climate model and BC (“hindcasted”) for the time period 2005-14 

(“2010”). The uncertainty of the simulations was quantified by comparing hindcasted to 

baseline IHA. Therefore, we applied a multi-objective function using all IHA: We normalized 

the IHA values through feature scaling over all hindcasted combinations and the baseline (32 

normalization procedures). For each combination, the Euclidean Distance (ED) between 

hindcasted and baseline was calculated for the 32 normalized indicators. The smaller the ED, 
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the better hindcasted and baseline simulations match (where ED=0 is ideal, and ED=√32 

worst). ED of the combinations were ordered ascendingly within each ecoregion. We 

refrained from using arbitrary cutoff values (e.g. 10% of the best ED values) but decided to 

base the uncertainty reduction on the slope of the ED distribution. The point of inflection is 

used as the cutoff value since the subsequent differences in ED of the combinations are 

getting smaller 
 

  
Figure 2. ED distribution grouped according to ecoregion (ECO), RCP, BC, GCM and RCM within each 

ecoregion, number below legend keys shows the number of points per boxplot, horizontal dashed 

lines marks the ED cutoff values which is defined in Figure 3 

 

below the inflection point and larger after the point of inflection. Therefore, we fitted a fifth-

order Taylor polynomial function through the points and derived the points of inflection 

(Christopoulos, 2014). All combinations below these points were chosen as the best 

combinations within each ecoregion. 

 

 

2.7. Climate change impact assessment 

We used the selected combinations for a climate change impact assessment on the IHA. IHA 

values were calculated for the years 2045-54 (“2050”) and 2085-94 (“2090”) and compared to 

the 2010 hindcasted indicator values of the same combination. ANOVA and Tukey Honest 

Significant Difference tests were carried out with a cutoff p-value of 5% to distinguish 

significant from not-significant projected IHA changes. In climate change studies, 30-year time 

periods are typically used for characterizing climate change (Maraun et al. 2017). However, 

for this study, ten-year time periods are chosen to enable a direct usage of the projections for 

ecological studies, since for those, the investigation period is usually chosen based on the life 

span of the investigated species (Jourdan et al. 2018). This ranges between one (e.g. most 
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macroinvertebrates) to ten years (e.g. freshwater fish), of which we chose the longest period. 

Still, decadal variability may influence the projection using ten-year periods and therefore, we 

analyzed a second set of time slices (2035-44: “2040” and 2075-84: “2080”) to check if the 

results are robust across decades. 

 

 

3. RESULTS 

3.1. Quantifying and reducing uncertainties 

The overall model performance (indicated as the ED) is best in the Plains- and similar in the 

Highland- and Alpine ecoregion (Figure 2-ECO). The ED for RCP45 and RCP85 are comparable 

(Figure 2-RCP). The raw CORDEX data (no bias correction) reveals a North-South gradient 

since the performance of some combinations in the catchment in the Plains is equally high as 

bias-corrected combinations in other catchments (Figure 2-BC). Interestingly, the skills of BC 

methods vary among the ecoregions. For instance, LS and LIS perform reasonable in the 

Plains-, but worse than others in the Highland- and Alpine ecoregion. DM performs well in the 

Plains- and Highland ecoregion, but weak in the Alpine. Only PT performs good constantly. 

Both GCM and RCM show no clear pattern (Figure 2-GCM-RCM). While most models perform 

well in one ecoregion with low ED values and low variability (e.g. CNRM, ICHEC and MPI; 

CNRM, IPSL, MPI1 and MPI2 in the Plains ecoregion), they do not so elsewhere. The different 

groups (ECO, RCP, BC, GCM, RCM) lead to a varying range of the ED, where a higher range is 

associated with higher uncertainty. The lowest 25th- and highest 75th- percentile in ED of 

each group and their range is summarized in Table 5. The smaller the range, the lower the 

impact of choosing a particular model or method from the respective group on ED and vice-

versa.  As can be seen, the choice of the RCP (0.49) matters least for the agreement between 

baseline and hindcasted hydrological indicators, while the decision to carry out or not carry 

out bias correction is the strongest influencing factor (1.78). However, if a choice is made to 

carry out bias correction, the selection between the different bias correction methods 

introduces less uncertainty (0.44)) than any other choice, which are declining in relevance 

from GCM (0.62), ecoregion (0.61) to RCM (0.57) and RCP (0.49). 

All 160 combinations per ecoregion (Figure 2) are ordered by increasing ED (Figure 3) and 

shown as small circles. Each fitted fifth-order Taylor polynomial function (Figure 3, dashed 

line) follows these ordered values closely, which represents a good fit. Their inflection points 

are defined as the ED cutoff values that divide the distribution into more- and less uncertain 

combinations. These cutoff values are at ED=0.72 (20 combinations) in the Alpine-, ED=0.73 

(31 combinations) in the Highland- and ED=0.72 (70 combinations) in the Plains ecoregion. 

The best combinations below the cutoff value are shown in Figure 4. The methods and 

models within each ecoregion are scaled to 100% within each group so that the ecoregions 

with more selected combinations do not mask ecoregions with fewer combinations. Since 

some models occur more often than others in the CORDEX dataset (n=xx in legends of 

Figure 2-GCM-RCM), the occurrences were normalized so that models with higher initial 

occurrences are not favored. An example for that is IPSL in the GCM group, which is favored 

over the ICHEC model in the Highland catchment. Both have five occurrences below the ED 

threshold (not shown), 
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Table 5. Minimum 25th and maximum 75th percentile of ED within each group of models and methods, 

including the resulting ED-range 

 

  BC GCM ECO RCM RCP 

minimum of 25th percentile 0.64 0.67 0.63 0.68 0.70 

maximum of 75th percentile 2.42 (1.08)* 1.29 1.24 1.25 1.19 

Range of 25 and 75 percentiles 1.78 (0.44)* 0.62 0.61 0.57 0.49 

* number in brackets: without 'no Bias Correction' 
   

 
 

Figure 3. ED of all combinations in increasing order, 5th order fitted Taylor polynomial with point of 

inflection, grouped by catchment  

 

but IPSL’s only 60 instead of 120 (ICHEC) source combinations lead to a higher percentage 

occurrence. The bias correction method that performs best and consistently well across the 

ecoregions is PT, while other methods show strengths and weaknesses in different regions. 

LIS and LS perform similar in the Plains and Highland Ecoregion. In the Plains, NO bias 

correction is selected within the best performing combinations. In Figure 4, more RCP85 

combinations were selected than RCP45, especially in the Highland ecoregion. In the GCM 

group, CNRM performs best in the Alpine, the ICHEC model in the Plains and MPI in the 

Highland ecoregion. Regarding the RCM, only CLMcom and SMHI are amongst the selected 

models in the Alpine and MPI1 performs best in the Highland ecoregion. In the Plains 

ecoregion, multiple models perform almost equally well. To back up the results regarding the 

bias correction and to ensure these impacts are not due to non-linearity in the hydrological 

models, we separately analyzed the precipitation and temperature values before and after 

bias correction. Figure 5a confirms that PT and DM generally perform best in matching 

historical precipitation patterns across the three regions. For temperature (Figure 5b), no 

clear difference between the methods are apparent,  

but it is obvious that the raw CORDEX temperature data consistently underestimates 
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Figure 4. Occurrences in percent per group and ecoregion of the selected combinations below the ED 

cutoff values; for abbreviations of models, see Table 3 

(a) 

 

(b) 

 

Figure 5. Impact of bias correction methods on 0.05-, 0.25-, 0.5-, 0.75- and 0.95 percentile of 

precipitation (a) and temperature (b) over the hindcasted period 2004-2014, red line marks the 

observed value 

 

temperatures, apart from the coldest temperatures in the Plains and Highland ecoregion 

(Figure 5b, 0.05 percentile). The impact of the BC selection method is stronger for 

precipitation than for temperature. 

 

 

3.2. Climate change impacts 

Figures 6, 7 and 8 show the baseline indicator values (column 2010) and changes in absolute 

values for 2050 and 2090 period of all combinations. This allows a visual interpretation of the 
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variability in the baseline simulations and the predictions. Generally, the restriction to the 

combinations below the ED cutoff value show a closer fit to the observations and slightly 

decrease the variability in the predictions. Statistically significant changes in indicators 

compared to the baseline are marked with triangles and occur within each indicator group in 

all ecoregions. The center of the triangles shows the change in indicator (ensemble mean). 

The indicator’s units of change and description is provided in Table 2. Significant and robust 

projected changes of IHA are: In the Plains catchment (Figure 6), fewer extremes (2090, 

fh1+fl1, RCP45+85) but more intense (2090, dh1-5 RCP85) and longer flood events (2050 

RCP45, dh15, 2090 RCP45+85) as well as higher average flow in February (2050+2090, ma13, 

RCP45+85) and a reduction in late autumn and early winter (2050+2090, ma21+ma22, 

RCP45+85) are projected. In both the Plains and Highland catchment (Figure 7), a slight 

increase in the rise rate and reduction in the fall rate (2050+2090, ra5+ra10, RCP45+85) are 

projected. Additionally, in the Highland catchment, fewer extremes (2050+2090, fh1+fl1, 

RCP45+85) but longer high flows (2090, dh15, RCP45+85) are projected to occur. In the Alpine 

catchment (Figure 8), earlier low  
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Figure 6. IHA values for the three time periods in the Plains ecoregion. 2050 and 2090 show the 

changes in comparison to hindcasted 2010 in the unit of the indicator (Table 2, incl. description) 

2010 2050 2090 
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Figure 7. IHA values for the three time periods in the Highland ecoregion. 2050 and 2090 show the 

changes in comparison to hindcasted 2010 in the unit of the indicator (Table 2, incl. description) 

2010 2050 2090 
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Figure 8. IHA values for the three time periods in the Alpine ecoregion. 2050 and 2090 show the 

changes in comparison to hindcasted 2010 in the unit of the indicator (Table 2, incl. description) 

2010 2050 2090 
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Table 6. Relative changes in percent of the 32 IHA for 2050 and 2090 in comparison to hindcasted 

(Baseline) 2010 which shows the absolute value; grey cells mark no significant change where only the 

direction of change (- negative, + positive) is given; blue cells mark positive- and orange cells negative 

significant change; results show significant mean change as an ensemble over the selected 

combinations 
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Q av Jan 
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³/
s
] 

4.4 - + + 14 18.4 -18 23 - + 4.8 + 28 + + 

Q av Feb 3.8 18 18 10 23 17.2 - + + 25 4.6 24 25 + 39 

Q av Mar 3.7 - - - + 14.6 + - + -13 9.1 - + - -18 

Q av Apr 2.4 -10 + -17 + 9.1 -24 + - + 9.6 + -7 -19 -35 

Q av May 1.6 - 18 - 24 7.8 - 18 - + 10.1 + - -14 -40 

Q av Jun 1.4 - + - 33 8.0 - + - + 11.9 + - + - 

Q av Jul 1.6 - + - 18 7.2 + + + - 10.0 + - - -31 

Q av Aug 1.9 + + + - 7.5 - + + - 12.2 - + - - 

Q av Sep 1.9 + + + + 5.0 + + - + 8.2 - + - - 

Q av Oct 2.3 -19 - -19 -14 6.8 - + - - 6.3 - + - - 

Q av Nov 3.4 -14 - - -11 9.7 + - - - 5.2 - + - - 

Q av Dec 3.8 - -14 - + 14.0 + - - - 4.7 + 19 - + 

M
a

g
n
it
u

d
e
 

Q min 1d 

[m
³/

s
] 

0.8 - - - - 2.0 - - - - 2.0 - + - -35 

Q min 3d 0.8 - - - - 2.1 - - - - 2.1 - + - -34 

Q min 7d 0.8 - - - + 2.2 - - - - 2.2 - + - -32 

Q min 30d 1.0 - + - - 3.3 - + - - 3.1 - + - -20 

Q min 90d 1.4 - + - - 5.8 - + - - 4.9 - + - -16 

Q max 1d 10.7 + + + 20 64.5 - - - - 78.8 15 + + + 

Q max 3d 10.4 + + + 20 61.5 - - - - 52.3 + + + + 

Q max 7d 9.2 + + + 18 51.6 - - - + 33.2 + + + + 

Q max 30d 6.2 + 7 + 17 28.0 - + - + 17.0 + + - - 

Q max 90d 4.3 + + + 12 17.0 - + + + 12.2 + + - - 

  Days high Q 

[d
a

y
] 14.1 18 + 19 15 9.3 - + 24 19 3.0 25 - + + 

  Days low Q 12.6 + + + - 8.6 - -11 + + 6.3 59 -23 + + 

T
im

 Day Q min 

[d
a

y
] 261 + + - 4 279 -4 - - - 50 -16 -18 -29 -37 

Day Q max 16 - - - + 19 - - - - 176 + + - - 

F
re

 Nr high Q 

[-
] 6.2 -8 - -18 -13 9.1 - -8 - -9 30.2 - + - - 

Nr low Q 7.2 - - -11 - 9.5 + + + -7 13.2 - 22 - - 

R
a
te

 

delta Q pos 

[m
³/

s
] 0.3 - - - + 1.9 - + + - 5.2 - + - + 

delta Q neg 0.2 + + + 10 1.1 + + + + 2.2 + + - - 

Rise rate 

[-
] 0.4 4 3 4 2 0.4 4 4 4 4 0.3 + + + -6 

Fall rate 0.7 -2 -1 -2 - 0.6 -3 -2 -2 -3 0.7 - - - 2 

 

flows (2050+2090, tl1, RCP45+85), less average flow in spring (2090, ma14-ma16, RCP45+85), 

and higher average flow in late winter (2050+2090, ma12+ma13, RCP45+85) are projected. 
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In addition, the selected combinations below the ED cutoff value have been used as an 

ensemble (mean over all combinations) to predict relative changes in future streamflow and 

IHA. Table 6 summarizes the results for all indicators and ecoregions, both RCPs and time 

periods in percent changes from baseline to the respective future time period. 23% of the 

projections (88/384) show significant changes. The highest number of significant changes of 

indicators are observed in the Plains catchment (39), followed by the Alpine catchment (28) 

and the Highland catchment (21). On average, RCP85 shows 75% more significant changes in 

indicators than RCP45. In 2090, 38% more indicators are subject to significant changes than in 

2050. The average percentage change over all indicators, ecoregions and RCPs is ±16%. The 

second analysis for the 2040 and 2080 time slices is used to assess the decadal stability of the 

projections. The results for 2040 and 2080 (supplementary material, Table S1) lead to a 

similar pattern of change as the 2050 and 2090 results (Table 6). The agreement in the 

direction of change between both analyses is 91%, indicating that the results are not 

impacted by decadal variability. 

 

 

4. DISCUSSION 

4.1. Quantifying and reducing uncertainties 

According to our results, uncertainties show an increasing trend from the Plains-, over the 

Highland- to the Alpine catchments. This finding is in agreement with Kotlarski et al. (2014) 

who found a better performance of the CORDEX dataset for both temperature and 

precipitation in mid-Europe than in the Alpine region. In our case, the Plains catchment, 

where the raw climate model data performed best, is also subject to the highest number of 

significant changes in indicators, revealing that the predictions are least uncertain there. On 

the other hand, the Highland and Alpine catchment are subject to less significant changes, 

indicating that climate models agree less which cannot be improved through bias corrections. 

The RCP85 and RCP45 scenarios are different from 2006 onwards, allowing a careful 

comparison between the two scenarios regarding the agreement with the observations since 

that year. In that regard, the RCP85 model results depict recent streamflow slightly better 

than RCP45. This result is supported by observations that the actual greenhouse gas 

emissions of the last decade have followed the RCP85 trajectory closer than the RCP45 

scenario (Sanford et al. 2014).  

Carrying out any bias correction greatly reduces the ED values and their range. However, their 

performances vary among the catchments. The Plains catchment has the best result based on 

the raw CORDEX data, which also leads to best overall performance. There, the climate 

models seem to be able to reproduce the precipitation pattern best, which is characterized by 

more, yet less intense rainfall events (Figure S1a, 0.95 percentile). In both the Highland and 

Alpine catchments, the raw CORDEX data causes strong overestimations of streamflow in 

winter and summer. Using bias corrected climate in these regions means, that the original 

CORDEX data is altered more than in the Plains catchment. Therefore, the derived climate 

change signal in these regions will be more uncertain, especially since the BC methods 

assume stationarity of the BC parameters over the decades (Ehret et al. 2012). Similar to 

Teutschbein and Seibert (2013), we see the tendency that more complex bias correction 

methods are preferable over simpler methods. 
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Uncertainties introduced into the simulations by the GCMs and RCMs choices vary across 

ecoregions. The GCMs show a different performance in the different ecoregions, but all GCMs 

are represented in the best simulations. Some GCM are particularly skilled in depicting certain 

regions, but no model can be suggested for general use in all ecoregions: Plains and Highland 

have the same best GCM (ICHEC and MPI), while the best model in the Alpine (CNRM) 

performs only average in the other ecoregions. The RCMs have a stronger spatial dependence 

than the GCMs, and show a heterogeneous distribution of performance. Only for the Plains 

catchment, all RCMs are represented in the best model runs. This is reduced to only two 

RCMs present in the best simulations in the Alpine catchment, indicating that RCMs have to 

be more specialized to depict the more erratic precipitation processes in the Alpine 

ecoregion.  

The uncertainty introduced by hydrological model choice and its parameterization was not 

considered in this study. Hagemann et al. (2013) found a decisive influence of the 

hydrological model choice on runoff, with a focus on the higher latitudes (50 and higher), 

however, two more recent studies (Addor et al. 2014 and Melsen et al. 2018) found that the 

uncertainty due to the hydrological model choice or parameterization are usually overruled 

by the climate change projections. The latter studies show, that the choice of the GCM 

(Melsen et al. 2018) and RCM (Addor et al. 2014) are usually the main source of uncertainty.  

 

 

4.2. Climate change impacts 

The change in hydrological indicators shows a diverse picture with significant changes 

occurring in all catchments and indicator groups. This shows, that climate change is projected 

to impact all major hydrological flow components. In the Plains catchment, the shift towards 

higher spring and lower autumn average flows may be triggered by an increase in 

temperature leading to higher evaporation, especially in summer. Due to the strong 

groundwater influence, catchment response to decreasing flow in late autumn is delayed. 

This may also lead to the projected, though not significant, reduction in annual low flows, 

increase in the duration of low flows (flow is longer below the 25th percentile) and decrease in 

the number of low flow events (flow passes the 25th percentile less often). Highest flows in 

the baseline occur during the first four months of the year in the Plains catchment. Those are 

projected to increase further, which is also represented in the increase of annual maximum 

flows and the duration of high flows. This observation is most likely due to increasing 

precipitation during the winter months. The findings presented here for the Plains catchment 

are qualitatively supported by a recent regional analysis (DWD, 2017). 

The change in the rise- and fall rate of the hydrograph in both the Plains and Highland 

catchment is small, yet consistent. Possibly, less water storage in the shallow and deep 

groundwater aquifers result in a faster flow recession which may decrease the duration of 

receding flows (the fall rate) and subsequently, increase the duration of rising flows (the rise 

rate). However, the impacts are rarely significant and not consistent across time periods and 

RCPs in the Highland catchment. The projected increase in the duration of high discharge 

events can be linked to an increase in heavy rainfall in the central German mountain range 

(Adelphi et al. 2015). 



18 
 

In the Alpine catchment, most changes in the flow metrics can be traced back to the snow 

processes which respond to the consistent increase of temperatures over time and from the 

RCP45 to the RCP85. Therefore, significant changes show a higher magnitude for the RCP85 

than for the RCP45 and for 2090 than 2050. A consistent decrease of average flows in the 

spring months of March to May as well as an increase in the average flows in the late winter 

months of January and February can be explained through earlier occurring and faster 

snowmelt. This is linked to the reduction of low flows towards the end of this century. In the 

baseline, the lowest flow occurs during late winter and early spring. The projected shift of the 

lowest flow to mid-winter (2050) and late autumn (2090) is connected to the snowmelt 

processes as well: The earlier occurrence of snowmelt increases the lowest flows, occurring in 

late winter in the baseline. Due to this shift towards earlier groundwater recharge, 

groundwater storages in the catchments are depleted earlier and together with an increased 

evapotranspiration, late autumn flows are reduced (Barnett et al. 2005).  

Significant changes with a high ecological impact are considered to be the alteration in 

extremes (Poff and Zimmerman, 2010). These are the 16% to 35% reduction in low flows in 

the Alps, the shift of the lowest flows from spring to late autumn and the 12% to 20% 

increase in high flows in the Plains catchment.  

 

 

5. CONCLUSION 

To evaluate robust climate change impacts on ecologically relevant streamflow indicators, we 

(1) carried out a comprehensive uncertainty analysis using a broad range of climate change 

forcings and five bias correction methods in three ecoregions, we (2) reduced the uncertainty 

by selecting the combinations that depicted baseline hydrological indicators best, and we (3) 

used these combinations to carry out an analysis of climate change-induced alterations of IHA 

for the period 2050 and 2090.  

We can confirm findings in previous studies, that the choice of the GCM and RCM significant 

uncertainties and the performance of the climate models varies among different regions. 

Therefore, we suggest that all available GCM and RCM should be initially screened when 

carrying out climate impact studies. Regarding bias correction methods, we stress the 

importance of including the raw climate change data into the full analysis to assess the 

agreement of the original climate change data to the baseline. This yields important 

information regarding the uncertainty in the prediction, which was also highest for the 

regions where raw climate data performed worst. If bias correction is carried out, we also 

suggest to test different methods, while Distribution Mapping and Power Transformation 

seem to be the better choice rather than simpler methods. 

Acknowledging the previously described uncertainty and studies, it is important to select 

simulations with the lowest uncertainty to predict future streamflow changes. We stress that 

the uncertainty reduction method should incorporate the IHA to be analyzed. This is 

important, because choosing simulations based on different criteria, e.g. standard 

hydrological performance criteria, does not prevent the choice of simulations where IHA are 

depicted unrealistically.  

The changes in IHA under climate change are predicted using an ensemble of the previously 

selected simulations. Despite the fact that only the best-performing simulations were used in 
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the analysis, we stress the importance to carry out statistical tests for a significance 

assessment of the evaluated change in indicator values. Only about a quarter of indicators 

were subject to significant changes, which varied across ecoregions, RCPs and time periods. 

The significant changes were different in different ecoregions and due to the complex 

interaction between precipitation and temperature change and catchment properties. This 

raises the question of spatial stability of the projected changes in IHA within and across 

borders of ecoregions, e.g. as continental or global studies of climate change impact on 

hydrology have shown for runoff (Hagemann 2013). The projected changes in IHA provide an 

important basis to assess climate change impacts and related uncertainties on freshwater 

species that depend on certain flow conditions (Kakouei et al. 2018). 
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SUPPLEMENTARY MATERIAL 
Table S1. Relative changes in percent of the 32 IHA for 2040 and 2080 in comparison to hindcasted 

(Baseline) 2010 which shows the absolute value; grey cells mark no significant change where only the 

direction of change (- negative, + positive) is given; blue cells mark positive- and orange cells negative 

significant change; results show significant mean change as an ensemble over the selected 

combinations 
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Q av Jan 4.4 9.0 + 10.4 22.7 18.4 - 22.7 + 29.7 4.8 + + 33.0 50.2

Q av Feb 3.8 20.2 11.9 10.1 19.3 17.2 + + - 17.3 4.6 + + 36.8 74.8

Q av Mar 3.7 + - - + 14.6 + -8.9 - - 9.1 - + - +

Q av Apr 2.4 - + -10.2 10.3 9.1 - - -25.5 13.8 9.6 - - - -19.0

Q av May 1.6 + 16.0 - 16.7 7.8 - + - + 10.1 - - - -

Q av Jun 1.4 + 24.2 + 19.7 8.0 - + - + 11.9 - - + -23.9

Q av Jul 1.6 - 20.6 - + 7.2 + - - + 10.0 - - - -31.9

Q av Aug 1.9 + + + + 7.5 - + - + 12.2 - + - -

Q av Sep 1.9 + + - + 5.0 + + - + 8.2 - + - -

Q av Oct 2.3 - - -21.8 - 6.8 + + - + 6.3 - + - +

Q av Nov 3.4 + - -12.0 - 9.7 + + - 22.6 5.2 - + - 27.7

Q av Dec 3.8 + - - + 14.0 + + + + 4.7 + + 40.9 49.0

Q min 1d 0.8 - - - - 2.0 - - - + 2.0 - - - -

Q min 3d 0.8 + - - - 2.1 - - - + 2.1 - - - -

Q min 7d 0.8 + - - - 2.2 - - - + 2.2 - - - -

Q min 30d 1.0 + + - + 3.3 + + - + 3.1 - - - -

Q min 90d 1.4 - + - + 5.8 - + + + 4.9 - - - +

Q max 1d 10.7 + 16.4 + 15.0 64.5 - - + + 78.8 - + + +

Q max 3d 10.4 + 15.8 + 14.8 61.5 - - + + 52.3 - + + +

Q max 7d 9.2 + 14.1 + 14.3 51.6 - - + + 33.2 - + + +

Q max 30d 6.2 + 9.2 + 14.9 28.0 + + + 18.2 17.0 - + + -

Q max 90d 4.3 9.7 8.2 + 12.9 17.0 + + - 17.7 12.2 - + - -

Days high Q 14.1 18.1 14.4 + 12.3 9.3 + 17.7 + 27.4 3.0 + + + -

Days low Q 12.6 + - + - 8.6 - - + - 6.3 + - + -20.5

Day Q min 261 + + + 2 279 -4 -2.4 - -3.1 50 -15 -23 -23 -38

Day Q max 16 - + - - 19 - - -5.4 - 176 - - - +

Nr high Q 6.2 -10.7 -8.5 -9.6 -11.5 9.1 - -10.2 - -13.9 30.2 - - - +

Nr low Q 7.2 - - + -6.1 9.5 + + + + 13.2 - + + 16.8

delta Q pos 0.3 - + - + 1.9 + - - + 5.2 - + - +

delta Q neg 0.2 + 8.27 + 8.59 1.1 + + + + 2.2 - + + +

Rise rate 0.4 3.72 3.32 3.81 + 0.4 4.44 5.16 3.61 4.37 0.3 + + + -

Fall rate 0.7 -1.82 -1.66 -1.82 - 0.6 -1.90 -2.95 - -2.49 0.7 - - - +
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