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Abstract: Most studies linking maternal diet with offspring adiposity have focused on single
nutrients or foods, but a dietary pattern approach is more representative of the overall diet. We
thus aimed to investigate the relations between maternal dietary patterns and offspring adiposity in
a multi-ethnic Asian mother–offspring cohort in Singapore. We derived maternal dietary patterns
using maternal dietary intake information at 26–28 weeks of gestation, of which associations with
offspring body mass index (BMI), abdominal circumference (AC), subscapular skinfold (SS), and
triceps skinfold (TS) were assessed using longitudinal data analysis (linear mixed effects (LME))
and multiple linear regression at ages 0, 3, 6, 9, 12, 15, 18, 24, 36, 48, and 54 months. Three dietary
patterns were derived: (1) vegetables-fruit-and-white rice (VFR); (2) seafood-and-noodles (SfN);
and (3) pasta-cheese-and-bread (PCB). In the LME model adjusting for potential confounders, each
standard deviation (SD) increase in maternal VFR pattern score was associated with 0.09 mm lower
offspring TS. Individual time-point analysis additionally revealed that higher VFR score was generally
associated with lower postnatal offspring BMI z-score, TS, SS, and sum of skinfolds (SS + TS) at ages
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18 months and older. Maternal adherence to a dietary pattern characterized by higher intakes of fruit
and vegetables and lower intakes of fast food was associated with lower offspring adiposity.

Keywords: pregnancy; dietary patterns; developmental origins of health and diseases; children;
adiposity; BMI; subscapular skinfold; triceps skinfold; fruit; vegetables

1. Introduction

The prevalence of childhood obesity has risen at an alarming rate [1]. Overweight and obese
children are not only more likely to become overweight and obese as adults, but also have higher risk
of stroke, heart disease, and type 2 diabetes in adulthood [2]. In the recent Commission of Ending
Childhood Obesity report, it was highlighted that as of 2014, approximately 41 million children under
five years old are either obese or overweight, with close to half of them living in Asia [3,4]. In addition
to the promotion of healthy food intakes and physical activity during childhood, the importance
of prenatal care, including appropriate maternal nutrition, was identified as a key strategy in the
prevention of childhood obesity [4].

The theory of in utero exposure having a lifelong influence on offspring health, initially
proposed by Barker and colleagues [5], has been increasingly substantiated by evidence from both
epidemiological and experimental studies [6]. For example, it has been reported that in utero
famine exposure is associated with increased risks of obesity [7], coronary heart disease [8], and
hypertension [9] during adulthood. More recent studies also suggested that less severe prenatal
nutritional challenges (e.g., suboptimal macronutrient balance [10]) can impart long-term influence on
offspring, with epigenetic alterations proposed to be a major underlying mechanism [11].

To date, most nutritional epidemiological studies investigating associations between maternal
nutrition and offspring birth outcomes or body composition have used single nutrient and food
approaches. While useful in isolating influences of specific foods or nutrients, these approaches may
not be adequate to account for the complex behavior of food consumption and interactions among
nutrients [12]. The dietary pattern approach may be easier to interpret by the public and thus more
useful for public health messaging [12]. In two large cohort studies (n > 40,000), maternal dietary
patterns characterized by high intakes of meats, fats, and potatoes were associated with increased
risks of adverse birth outcomes, while patterns characterized by high intakes of vegetables, fruit, fish,
and poultry were associated with a decreased risk [13,14]. Of two existing studies examining the
associations with offspring postnatal body composition, one found that higher maternal adherence to
“processed foods” pattern was associated with higher risk of offspring overweight and obesity at five
years of age [15], while the other showed no association [16].

The relationship between maternal dietary patterns and offspring body composition remains
unclear and it remains to be elucidated whether having longitudinal offspring postnatal measurements
at multiple time-points can reveal relationships that are otherwise not apparent in single time-point
analyses. Thus far, the relationships between maternal dietary patterns and offspring adiposity have
not been examined in Asian populations, where dietary patterns can be vastly different due to social
and cultural differences [12] and where the risk of metabolic disorders such as type 2 diabetes is
higher than in Caucasian populations at similar BMI levels [17–19]. We aimed to investigate this by
using longitudinal analysis of repeated offspring anthropometric measurement data derived from
the Growing Up in Singapore Towards healthy Outcomes (GUSTO) study, a multi-ethnic Asian
mother–offspring cohort.
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2. Materials and Methods

2.1. Study Design

GUSTO is a mother–offspring cohort study that has been described in detail elsewhere [20].
Briefly, from June 2009 to September 2010, pregnant women attending antenatal care visits (<14 weeks
of gestation) were recruited from the KK Women’s and Children’s Hospital (KKH) and National
University Hospital (NUH), the major public maternity units in Singapore. To be eligible, the pregnant
women had to be Singapore citizens or permanent residents of homogeneous ethnic background
(Chinese, Malay, or Indian) and between 18 and 50 years old, to agree to donate cord blood, cord, and
placenta, and intending to deliver in KKH and NUH and to reside in Singapore for the next 5 years.
Women with serious health conditions such as psychosis and type 1 diabetes mellitus were excluded.
The study was granted ethical approval by both the National Healthcare Group Domain Specific
Review Board (reference No. D/09/021) and the Sing Health Centralized Institutional Review Board
(reference No. 2009/280/D). Written informed consent was collected from all women at recruitment.

2.2. Subjects

Of 2034 eligible women, 1247 consented and were recruited into the study. Pregnant women
who underwent in vitro fertilization or were bearing twins (n = 95) were excluded from the present
analysis. From the remaining 1152, 1127 completed a single 24-h dietary recall and 1087 babies were
delivered. We further excluded 13 mothers with unrealistic reported energy intake (<500 kcal/day or
>3500 kcal/day) [21]. Of the remaining mother–child dyads, 1048 had information on both maternal
dietary intake and offspring BMI at birth. The extraction of maternal dietary patterns and baseline
information was thus limited to this subset. The participant flow is detailed in Figure 1. Numbers of
mother–offspring dyads with both maternal dietary pattern and childhood anthropometry information
at each follow-up time-point were 718–1048 for body mass index (BMI), 692–998 for subscapular
skinfold (SS), 737–999 for triceps skinfold (TS), and 758–997 for abdominal circumference (AC).
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2.3. Maternal Dietary Assessment and Extraction of Dietary Patterns

Assessment of maternal dietary intakes in this cohort has been described in detail elsewhere [22,23].
Briefly, clinical research staff conducted 24-h dietary recalls at 26–28 weeks gestation with a 5-step,
multiple-pass interviewing method [24] using visual aids to assist women in quantifying their dietary
intakes. Nutrient analysis of the dietary recalls was performed using nutrient analysis software
(Dietplan6, Forestfield Software, West Sussex, UK) and a food composition database of locally available
foods [25], with modifications made to inaccuracies found. All food and drinks recorded were
subsequently grouped according to similarity of nutrient composition and comparable usage (e.g.,
apple, orange, watermelon, etc. were grouped into the “fruit” food group), resulting in 68 food groups
(Supplementary Materials Table S1). Dietary patterns were derived by exploratory factor analysis
with varimax rotation on the 68 food groups. Exploratory factor analysis is an established technique
to extract dietary patterns [26,27]; it reduces the dimension of the data by aggregating correlated
variables, resulting in linear combinations (factors) of the included variables [26–28]. Three factors
(i.e., dietary patterns) were retained based on break point of the Scree plot (Supplementary Materials
Figure S1), eigenvalues >1.5, and factor interpretability. Dietary pattern scores for each participant
were then calculated by summing the standardized intakes of food groups (g/day) weighted by their
factor loadings (correlation coefficients between each food group and the dietary pattern).

Table 1 shows the factor loadings of specific food groups for the maternal dietary patterns.
The top four positive loadings unique to the dietary pattern were used to label the pattern.
The vegetables-fruit-and-white rice (VFR) pattern was characterized by high consumption of fruit,
vegetables, and white rice and low consumption of fast food items and flavored rice; this pattern
is reminiscent of a prudent pattern identified in many studies [29–31], including in a Singapore
middle-aged population [32]. The seafood-and-noodles (SfN) pattern was characterized by high
intakes of noodles, seafood, and soya sauce based gravies and low intakes of curry and ethnic bread;
this pattern is reflective of the typical Chinese diet. Finally, the pasta-cheese-and-bread (PCB) pattern
was defined by high consumption of pasta, cheese, bread, and butter, reflecting high intakes of Western
food items.

In a small subset of participants (n = 212), information about late pregnancy maternal diet using
a 3-day food diary was also available; we have previously shown that similar dietary patterns were
extracted from this subset, and that the correlation coefficients of the dietary pattern scores were
moderately strong (Pearson’s correlation coefficients (r) > 0.5, p < 0.001) [33,34]. To keep consistent
with the analysis methods used in the previous publications [33,34], and to increase statistical power,
we thus presented results for 24-h recall in this manuscript.

2.4. Maternal Characteristic

Data on maternal age, ethnicity, education level, and self-reported pre-pregnancy weight were
collected from the participants at recruitment. During a clinic visit at 26–28 weeks of gestation,
maternal weight (SECA weighing scale model 803, SECA Corp., Hamburg, Germany) and height (SECA
stadiometer model 213) were measured, and weight gain up to 26–28 weeks of gestation was derived
by subtracting self-reported pre-pregnancy weight from the weight at 26–28 weeks. Pre-pregnancy
BMI was calculated as reported pre-pregnancy weight divided by the mother’s measured height
squared (kg/m2). At the same clinic visit, maternal cigarette smoking, alcohol drinking, and physical
activities were assessed using a questionnaire while maternal blood was collected for analysis of plasma
vitamin D and folate concentrations. Furthermore, oral glucose tolerance tests were administered
and gestational diabetes mellitus (GDM) was defined based on the 1999 World Health Organization
criteria [35,36].
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Table 1. Factor loadings for the maternal dietary patterns during pregnancy 1.

Food or Food Groups VFR SfN PCB

Cruciferous, leafy-green and dark-yellow vegetables 0.52 * - -
Other vegetables 2 0.45 * - -

Fruits 0.37 * - -
White rice 0.31 * −0.40 -

Non-fried red meat 0.26 - -
Flavored rice 3 −0.27 - -

Red meat and poultry (deep fried/in curry) −0.29 - -
Sweetened drinks 4 −0.29 - -

Hamburger −0.35 - -
Carbonated drinks −0.35 - -

Fried potatoes −0.44 - -
Soup - 0.46 * -

Fish and seafood products - 0.40 * -
Flavored noodles 5 - 0.38 * -
Noodles (in soup) - 0.37 * -

Non-fried red meat - 0.37 -
Soya sauce based gravies - 0.31 -

Seafood - 0.29 -
Curry based gravies - −0.30 -
Legumes and pulses - −0.37 -

Ethnic bread 6 - −0.44 -
Pasta - - 0.56 *

Tomato based gravies - - 0.56 *
Cheese - - 0.51 *

White bread - - 0.46 *
Margarine and peanut butter - - 0.32

Cream based gravies - - 0.31
Low fat milk - - 0.30

Whole-grain bread - - 0.26
1 Only food groups with loadings larger than 0.25 or smaller than −0.25 were shown. VFR, vegetables-fruit-
and-white rice; SfN, seafood-and-noodles; PCB, pasta-cheese-and-bread; 2 Vegetables other than cruciferous,
leafy-green and dark-yellow vegetables; 3 Chicken rice, nasi lemak, biryani, and flavored glutinous rice;
4 Non-carbonated, cordial and fruit drinks; 5 Stir-fried or gravy-based noodles such as char kway teow, Hokkien
noodles, lor mee, and mee goreng; 6 Chinese steamed bun, tortilla, idli, puri, thosai, chapati, and naan; * Food
items with top 4 positive loadings (unique to the dietary pattern) that were used to label the dietary patterns.

2.5. Child Characteristics

Information on birth weight, gestational age, infant sex, and birth order was abstracted from
obstetric records. Gestational age was determined based on a dating ultrasound scan in the first
trimester. Infant milk feeding was ascertained using interviewer-administered questionnaires at ages 3,
6, 9, and 12 months, and duration of any breastfeeding was subsequently calculated. Infant dietary
intake (from which macronutrient and energy intakes were derived) was assessed at age 1 year using
either a 24-h recall or a food diary. At age 2 years, the times children spend doing outdoor activities
(e.g., walking and bike riding) and using media (e.g., watching television and playing video games)
were assessed using a parental-report questionnaire.

Anthropometric measurements of offspring (weight, length/height, and AC) were obtained at
birth and at ages 3, 6, 9, 12, 15, 18, 24, 36, 48, and 54 months. Weight until 18 months of age was
measured using calibrated mobile digital baby scale (SECA model 334) to the nearest 1 g. After age
18 months, offspring weight was measured using calibrated digital scale (SECA model 813) to the
nearest 10 g. From birth to age 24 months, recumbent length of the infants was measured from the
top of the head to the soles of the feet using a mobile infant mat (SECA model 210) to the nearest
0.1 cm. From ages 18 months to 54 months, offspring head-to-heel standing height was measured
using a stadiometer (SECA model 213). When both offspring length and height were present, the
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measurements were averaged. AC was measured using an inelastic measuring tape (Butterfly brand,
China) and recorded to the nearest 1 mm. All anthropometric measurements were taken in duplicates
(and subsequently averaged) using standardized protocols [37].

TS and SS were measured using Holtain skinfold calipers (Holtain Ltd., Crymych, UK) on the
right side of the body and recorded to the nearest 0.2 mm at birth and at ages 18, 24, 36, 48, and
54 months; three measurements were taken with the two closest values averaged. Sum of skinfolds
thickness (SST) were derived by adding TS and SS.

Anthropometric training and standardization sessions were conducted every 3 months, and
observers were trained to obtain measurements that, on average, were the closest as possible to the
values measured by an expert anthropometrist. Reliability was estimated by inter-observer technical
error of measurement and coefficient of variation (Supplementary Materials Table S2). Offspring BMI
was calculated using the formula weight (kg)/length2 (m2) and was subsequently transformed into
age- and sex-specific z-score using a local Singapore reference [38].

2.6. Statistical Analysis

The dietary pattern score was used as continuous variable or in quartiles; a higher score or quartile
indicates greater adherence to the dietary pattern.

Maternal and child characteristics were first summarized (mean ± SD or n (%)) according to
quartiles of maternal dietary pattern scores. p-trends for the associations between maternal dietary
pattern scores and maternal and child characteristics were assessed by modeling the median values of
the quartiles in linear regression analysis for continuous variables and by Cochran–Mantel–Haenszel
tests for categorical variables.

The longitudinal associations of maternal dietary pattern scores with offspring adiposity from
birth through 54 months were examined using linear mixed effects (LME) models with an unstructured
covariance matrix for random effects variables (intercept and slope) and maximum likelihood
estimation method. The LME model takes into account within-subject correlation of repeated
measurements and at the same time allows for incomplete outcome measurement [39]. Model selection
was guided by Akaike and Bayesian information criteria, and the final LME model included linear,
quadratic, and cubic terms for children’s age to estimate the change in adiposity indicators over time
associated with a SD increase in dietary pattern scores. In addition to the fixed effect of age, we also
allowed for a random intercept and random linear slope for age. Previous studies have suggested that
the relationship between maternal diet and offspring adiposity may be modified by offspring sex and
ethnicity [23,40,41]. Therefore, we tested interactions of maternal dietary pattern scores with offspring
sex and ethnicity in relation to associations with measures of offspring adiposity by including the
corresponding interaction terms into the models. Furthermore, we also assessed the maternal dietary
pattern scores vs. offspring adiposity relationship at each time-point (at birth and at ages 3, 6, 9, 12,
15, 18, 24, 36, 48, and 54 months) using traditional linear regression as a complementary analysis.
The analysis was first minimally adjusted for child’s age at the time of anthropometric measurement.
The full model was further adjusted for potential confounders or determinants of childhood adiposity:
(continuously) maternal age, height, pre-pregnancy BMI, weight gain until 26–28 weeks gestation,
energy intake and scores of the other two dietary patterns, and infant gestational age at birth and
duration of any breastfeeding; (categorically) maternal education level, ethnicity, gestational diabetes,
and infant sex and birth order. Offspring sex and birth order are included in the model because
they have been shown to affect childhood adiposity and obesity risk (thus, they are covariates in our
analysis) [42–44].

We conducted several sensitivity analyses. First, we further adjusted our LME models for
maternal smoking, alcohol intake, physical activities, and plasma vitamin D and folate concentrations.
Second, to determine if the influence of maternal dietary patterns was independent of postnatal
environment, the analyses were further adjusted for infant dietary intakes (macronutrient intakes) at
age 1 year and duration of outdoor activities and media use at age 2 years. Third, we further included
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small-for-gestational age (birth weight <10th percentile for gestational age, calculated using a global
reference for birth weight percentiles [45]), low birth weight (birth weight <2500 g), or total gestational
weight gain (measured weight at last antenatal visit (mean ± SD gestational age: 37.3 ± 2.5 weeks)
minus pre-pregnancy weight) as covariates in our models to assess potential mediation effects. Fourth,
we excluded participants with preeclampsia (n = 5) or type 2 diabetes (n = 4) from our analysis. Last,
for repeated individual time-point analysis (i.e., not LME), we also limited the analysis to a subsample
with all the measurements at all time-points to assess the robustness of results.

All statistical analyses were performed using the statistical software package STATA
version 13.1 (StataCorp., College Station, TX, USA). A two-sided p-value < 0.05 was considered
statistically significant.

3. Results

3.1. Maternal and Child Characteristics

Maternal and child characteristics according to quartiles of maternal dietary patterns score are
shown in Table 2. Mothers who scored higher for the VFR pattern were older, more likely to be Chinese
and to have a university degree; their children were less likely to be first-born (all p < 0.01). Mothers
who scored higher for the SfN pattern were taller, had lower pre-pregnancy BMI, and more likely
to be Chinese; their children were more likely to be first-born (all p ≤ 0.01). Lastly, more educated
mothers scored higher for the PCB pattern (p = 0.012). There were also significant differences in
maternal nutrient intake according to quartiles of maternal pattern scores (higher quartiles mean
higher adherence to dietary pattern). For example, mothers in the highest quartile of VFR pattern had
higher intakes of protein, total carbohydrate, starch, and dietary fiber but lower intakes of fat and
sugar (all p ≤ 0.01), as compared with mothers in the lowest quartile.

3.2. Longitudinal Analysis (LME Models)

Table 3 shows the associations between maternal dietary patterns score and offspring indicators
of adiposity from birth through 54 months assessed using LME models. In models adjusting for
age at measurement only, a higher maternal VFR pattern score was associated with lower offspring
BMI z-score and TS and higher offspring AC, but not with SS or SST. However, after adjusting for
potential confounders (in particular ethnicity), the only significant association was that of higher VFR
score with lower offspring TS (β = −0.09 mm per SD increase in VFR pattern score; 95% CI: −0.17
to −0.01 mm; p = 0.022). In contrast, higher maternal SfN pattern score was associated with higher
offspring BMI z-score, SS, and AC (but not with TS and SST), but most of these associations were
similarly attenuated after adjustment for confounders, in particular ethnicity. In the fully adjusted
model, higher maternal SfN pattern score was only associated with higher offspring BMI z-score
(β = 0.06 SD per SD increase in SfN pattern score; 95% CI: 0.01 to 0.12 SD; p = 0.026). The significant
association between higher maternal VFR score and lower offspring TS thickness persisted following
further adjustment for maternal smoking, alcohol intake, physical activities, and plasma vitamin D and
folate concentrations (Supplementary Materials Table S3), and for postnatal factors including childhood
diet, outdoor activity and media use (Supplementary Materials Table S4); the association between
maternal SfN and offspring BMI z-score, however, was largely attenuated after these adjustments.

When small-for-gestational age, low birth weight, or total gestational weight gain was included
in the LME models, the effect estimates (Supplementary Materials Table S5) remained largely similar
as our main analysis, implying that our observed associations were unlikely to be mediated by these
variables. Furthermore, when we excluded participants with preeclampsia and type 2 diabetes from
our analysis, the results remained very similar. The PCB pattern was not associated with any of the
offspring adiposity measures. There were no significant interactions between maternal dietary pattern
and offspring sex and ethnicity for the assessed associations.
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Table 2. Maternal and child characteristics according to quartiles of maternal dietary pattern scores 1.

All
(n = 1048)

Vegetables-Fruit-and-White Rice Seafood-and-Noodles Pasta-Cheese-and-Bread

Q1 (n = 262) Q4 (n = 262) p-Trend Q1 (n = 262) Q4 (n = 262) p-Trend Q1 (n = 261) Q4 (n = 262) p-Trend

Maternal characteristics

Age, year 30.5 ± 5.1 28.4 ± 5.1 32.1 ± 4.8 <0.001 30.6 ± 5.3 30.9 ± 4.8 0.53 30.1 ± 5.0 30.8 ± 5.3 0.40
Height, cm 158.2 ± 5.6 157.7 ± 5.1 158.1 ± 5.8 0.35 157.4 ± 5.4 158.7 ± 5.5 0.010 157.8 ± 5.3 158.6 ± 5.6 0.19

Pre-pregnancy BMI, kg/m2 22.7 ± 4.4 22.8 ± 4.6 22.2 ± 3.7 0.07 23.4 ± 4.5 21.9 ± 4.0 <0.001 22.5 ± 4.1 22.7 ± 4.5 0.97
Weight gain till 26 weeks, kg 8.6 ± 4.4 8.9 ± 4.5 8.5 ± 4.0 0.12 8.2 ± 4.0 8.9 ± 4.2 0.09 8.8 ± 4.3 8.7 ± 4.3 0.91

Ethnicity <0.001 <0.001 0.45
Chinese 580 (55.3%) 97 (37.0%) 197 (75.2%) 69 (26.3%) 211 (80.5%) 138 (52.9%) 153 (58.4%)
Malay 275 (26.2%) 135 (51.5%) 18 (6.9%) 62 (23.7%) 45 (17.2%) 81 (31.0%) 74 (28.2%)
Indian 193 (18.4%) 30 (11.5%) 47 (17.9%) 131 (50.0%) 6 (2.3%) 42 (16.1%) 35 (13.4%)

Education status <0.001 0.06 0.012
Primary/secondary 319 (30.4%) 94 (35.9%) 65 (24.8%) 69 (26.3%) 83 (31.7%) 99 (37.9%) 66 (25.2%)

Post-secondary 384 (36.6%) 114 (43.5%) 81 (30.9%) 86 (32.8%) 94 (35.9%) 92 (35.3%) 106 (40.5%)
University 345 (32.9%) 54 (20.6%) 116 (44.3%) 107 (40.8%) 85 (32.4%) 70 (26.8%) 90 (34.4%)

Maternal nutrient intake

Energy, kcal/day 1846 ± 562 1945 ± 578 1978 ± 530 0.37 1807 ± 576 2017 ± 515 <0.001 1878 ± 579 1997 ± 519 <0.001
Protein, % kcal/day 15.6 ± 3.8 14.9 ± 3.8 16.7 ± 4.1 <0.001 15.2 ±3.6 16.3 ± 3.8 <0.001 14.4 ± 3.6 17.2 ± 3.9 <0.001

Fat, % kcal/day 32.5 ± 7.6 35.2 ± 7.3 31.2 ± 7.7 <0.001 30.2 ± 8.0 33.9 ± 7.1 <0.001 33.5 ± 7.6 32.8 ± 6.9 0.63
Carbohydrate, % kcal/day 51.9 ± 8.8 49.9 ± 8.3 52.1 ± 9.4 0.014 54.7 ± 9.0 49.8 ± 8.1 <0.001 53.0 ± 9.3 50.0 ± 7.8 0.001

Sugar, % kcal/day 16.1 ± 7.1 17.2 ± 7.6 14.5 ± 6.3 <0.001 14.1 ± 6.5 16.6 ± 6.8 <0.001 16.9 ± 7.3 15.5 ± 6.2 0.035
Starch, % kcal/day 33.8 ± 9.6 33.9 ± 9.0 35.1 ± 10.2 <0.001 38.7 ± 10.6 32.2 ± 7.4 <0.001 33.2 ± 8.8 32.3 ± 8.5 0.07

Dietary fiber, g/1000 kcal 8.8 ± 4.3 7.2 ± 2.7 10.7 ± 5.2 <0.001 10.6 ± 6.2 8.3 ± 3.1 <0.001 8.4 ± 3.6 8.7 ± 4.4 0.89

Child characteristics

Birth weight, kg 3.1 ± 0.5 3.0 ± 0.5 3.1 ± 0.5 0.36 3.1 ± 0.4 3.1 ± 0.5 0.06 3.1 ± 0.5 3.1 ± 0.5 0.20
Gestational age at birth, week 38.7 ± 1.4 38.6 ± 1.5 38.8 ± 1.4 0.48 38.8 ± 1.3 38.7 ± 1.3 0.39 38.7 ± 1.4 38.8 ± 1.5 0.24

Infant sex 0.32 0.10 0.60
Male 544 (51.9%) 131 (50.0%) 142 (54.2%) 125 (47.7%) 147 (56.1%) 130 (49.8%) 139 (53.1%)

Female 504 (48.1%) 131 (50.0%) 120 (45.8%) 137 (52.3%) 115 (43.9%) 131 (50.2%) 123 (47.0%)
Birth order 0.004 0.014 0.23
First-born 446 (42.6%) 128 (48.9%) 98 (37.4%) 94 (35.9%) 119 (45.4%) 119 (45.6%) 127 (48.5%)

Non first-born 602 (57.4%) 134 (51.2%) 164 (62.6%) 168 (64.1%) 143 (54.6%) 142 (54.4%) 135 (51.5%)
1 Values presented are mean ± SD or n (%). Q, quartile.
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Table 3. Associations of maternal dietary pattern scores with indicators of offspring adiposity from birth through 54 months of age using linear mixed effects model.

n Vegetables-Fruit-and-White Rice Seafood-and-Noodles Pasta-Cheese-and-Bread

β (95% CI) p β (95% CI) p β (95% CI) p

BMI z-score
Model 1 1048 −0.06 (−0.11, −0.02) 1 0.010 0.06 (0.01, 0.11) 0.012 −0.01 (−0.05, 0.04) 0.84
Model 2 1048 −0.02 (−0.07, 0.03) 0.45 0.06 (0.01, 0.12) 0.026 −0.01 (−0.06, 0.03) 0.53

Subscapular skinfold, mm
Model 1 1034 −0.04 (−0.10, 0.03) 0.25 0.06 (0.003, 0.12) 0.039 −0.001 (−0.06, 0.06) 0.97
Model 2 1034 −0.04 (−0.11, 0.02) 0.18 0.03 (−0.03, 0.10) 0.32 0.003 (−0.06, 0.06) 0.92

Triceps skinfold, mm
Model 1 1036 −0.09 (−0.16, −0.02) 0.008 0.04 (−0.03, 0.10) 0.31 −0.01 (−0.08, 0.06) 0.82
Model 2 1036 −0.09 (−0.17, −0.01) 0.022 0.04 (−0.04, 0.12) 0.38 −0.004 (−0.07, 0.07) 0.90

Sum of skinfolds, mm
Model 1 1034 −0.11 (−0.23, 0.01) 0.08 0.10 (−0.02, 0.22) 0.10 −0.01 (−0.13, 0.11) 0.85
Model 2 1034 −0.12 (−0.25, 0.01) 0.07 0.07 (−0.07, 0.21) 0.31 −0.003 (−0.12, 0.11) 0.96

Abdominal circumference, cm
Model 1 1039 0.17 (0.05, 0.30) 0.007 0.20 (0.08, 0.33) 0.002 0.03 (−0.09, 0.16) 0.61
Model 2 1039 0.06 (−0.08, 0.19) 0.41 0.04 (−0.11, 0.18) 0.63 −0.02 (−0.14, 0.11) 0.80

1 All such values are β (95% CI) per 1 SD increment of maternal dietary pattern score. Model 1 adjusted for exact age at each measurement. Model 2 further adjusted for infant sex
(except for BMI z-score), birth order, gestational age, duration of any breastfeeding, ethnicity, maternal age, height, pre-pregnancy BMI, weight gain until 26–28 weeks gestation,
education level, gestational diabetes, energy intake, and scores of the other two dietary patterns (e.g., adjusting for SfN and PCB pattern scores for associations between VFR pattern
and childhood adiposity.
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3.3. Individual Time-Points Analyses (Multiple Linear Regression Models)

Similar trends of associations were observed in the individual time-point analyses (Supplementary
Materials Tables S6–S10). Overall, all of the derived patterns were not significantly associated with
offspring adiposity measures at birth. However, a higher VFR pattern score tended to associate with
lower offspring postnatal BMI z-score, although statistical significance in fully adjusted model was only
observed at Months 18 and 48 (Supplementary Materials Table S6). Furthermore, a higher maternal
VFR pattern score was consistently associated with lower offspring postnatal SS (β ranged from −0.17
to −0.31 mm; p < 0.05 at all postnatal time-points), TS (β ranged from −0.17 to −0.28 mm; p ≤ 0.01
at ages 18, 24, and 48 months), and SST (β ranged from −0.33 to −0.58 mm; p ≤ 0.05 at all postnatal
time-points) (Supplementary Materials Tables S7–S9). In contrast, there were no clear associations
between maternal SfN and PCB pattern scores and offspring adiposity, except that a higher maternal
SfN score was generally associated with a higher offspring BMI z-score (Supplementary Materials
Table S6). When we limited the individual time-point analyses to a subsample of children with
anthropometric measurements at all time-points, the trends of associations between higher maternal
VFR pattern score and lower offspring postnatal BMI z-score, SS, TS, and SST were similar (results not
shown). However, for the association between maternal SfN pattern and childhood BMI z-score, no
significant associations were observed at all time-points and the point estimates suggested a mix of
direct and inverse associations at different time-points.

3.4. Associations between Quartiles of Maternal VFR Pattern Score and Childhood Adiposity (LME Models)

Figure 2 shows that with increasing quartiles of maternal VFR pattern score, there are
correspondingly lower predicted adjusted mean values (based on LME models) of offspring BMI
z-score (Figure 2A), SS (Figure 2B), TS (Figure 2C), and SST (Figure 2D) from birth through 54 months of
life. However, the differences in measurements of offspring adiposity across VFR quartiles only became
more apparent from around 18 months of life, in concordance with our complementary individual
time-point analyses.
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Figure 2. Predicted adjusted mean values with corresponding standard errors (from linear mixed
effects models): (A) BMI z-score (n = 1048); (B) subscapular skinfold thickness (n = 1034); (C) triceps
skinfold thickness (n = 1036); and (D) sum of skinfolds thickness (n = 1034) according to quartiles of
maternal vegetables-fruit-and-white rice pattern score. The linear mixed effects models were adjusted
for exact age at measurement, infant sex (except for BMI z-score), birth order, gestational age, duration
of any breastfeeding, ethnicity, maternal age, height, pre-pregnancy BMI, weight gain until 26–28 weeks
gestation, education level, gestational diabetes, energy intake, and scores of the other two dietary
patterns (e.g., adjusting for SfN and PCB pattern scores for associations between VFR pattern and
childhood adiposity). Median (range) of standardized dietary pattern scores: −1.09 (−3.26, −0.65) SD
for Q1; −0.31 (−0.64, −0.02) SD for Q2; 0.28 (−0.02, 0.67) SD for Q3; 1.16 (0.68, 3.27) for Q4. Q, quartile.

4. Discussion

In this prospective Asian mother–offspring cohort study, we observed that a higher maternal VFR
dietary pattern score was associated with overall lower offspring adiposity (especially at ≥18 months
of age), indicated by lower BMI z-score, SS, TS, and SST. This suggests that greater adherence to the
VFR pattern may be associated with lower offspring fat mass accretion. In contrast, maternal SfN and
PCB dietary patterns were not consistently associated with offspring adiposity. To our knowledge, this
is the first study that investigated the associations between maternal dietary patterns and offspring
adiposity in an Asian population. Given the scarcity of evidence in this area, our study contributes
to and extends the understanding of the potential influence of maternal diet on offspring adiposity
measured at multiple time-points during infancy and early childhood.

Only two previous studies conducted in Ireland [15] and the Netherlands [16] have investigated
the associations between maternal dietary patterns and offspring postnatal body composition or weight
status. In the Irish study (n = 307), a higher maternal score on the “processed” pattern characterized
by high intakes of soft drinks, chips, pizza, and sweets and chocolate was associated with a higher
risk of offspring being overweight at five years of age. The result was consistent with our observation
that a higher adherence to the VFR pattern characterized by lower intakes of Western fast food
items (e.g., fried potatoes, carbonated drinks, and hamburger) was associated with lower offspring
adiposity. In the Dutch study (n = 2695), two predominantly healthy dietary patterns characterized by:
(1) vegetables, fish, and oil (VFO); and (2) nuts, soy, and high-fiber cereals (NSH), and an unhealthy
pattern characterized by margarine, snacks, and sugar (MSS) were identified. In unadjusted analysis,
higher maternal adherence to VFO and NSH patterns, but not MSS pattern, was associated with
lower offspring BMI, fat mass index, and lower risk of being overweight at six years of life. However,
the significant associations attenuated with adjustment for maternal and child sociodemographic and
lifestyle factors, leading the authors to conclude that maternal dietary patterns were not independently
associated with offspring body composition. However, in our study the associations between higher
adherence to VFR pattern and lower offspring TS and SST were statistically significant even after
adjustment for postnatal offspring diet at one year and outdoor activity at two years of age. The dietary
patterns derived from our population and the Dutch population may not be directly comparable due
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to cultural differences. For instance, the NSH and MSS dietary patterns in the Dutch study were not
identified in our study. Although our VFR pattern shares some similarity with their VFO pattern
in terms of high positive loading of vegetables and negative loading of sugar-containing beverages,
the two patterns differ in terms of fish and oil (high positive loading in the Dutch study) and fruits
and white rice (high positive loading in our study). Furthermore, we have only included adiposity
measures up to 4.5 years of age; subsequent follow up will allow us to investigate if later offspring
adiposity is indeed less associated with maternal diet.

Several postulated mechanisms may underpin the association between greater maternal adherence
to the VFR pattern and lower offspring adiposity. The VFR pattern is characterized by high
consumption of fruit and vegetables and concurrently low intakes of Western fast food items. In terms
of nutrient profile, greater adherence to the VFR pattern is associated with lower intake of sugar
but higher intakes of protein and dietary fiber. A higher intake of vegetables and/or fruit has been
associated with lower adiposity, weight gain, and lower overweight risk in both adult [46,47] and
pediatric [48,49] populations, probably due partly to increased satiety and reduced energy density
in a diet rich in fruit and vegetables, as they usually have low fat, high water, and high dietary fiber
contents [50]. Furthermore, higher fast food intakes were associated with higher weight gain and
higher risk of overweight, probably owing to the unfavorable nutrient profile (high fat, high sugar,
and low micronutrients density) of fast food [51,52]. In addition, offspring of rat dams fed a high fat,
high sugar diet during pregnancy showed a postnatal preference for fat, which might be explained by
an altered development of the central mesolimbic reward system [53].

It is possible that our observed associations between greater maternal adherence to VFR pattern
and lower offspring adiposity were due to transmission of eating and lifestyle habits within a family.
However, our observed associations for VFR pattern persisted after further adjustment for offspring
postnatal diet, outdoor activity, and media use. Although we acknowledge that residual confounding
due to unmeasured and incompletely measured confounders may remain, it is likely that our
observations were not purely attributable to shared family environment. Despite that, in order
to disentangle the complex interplay between these factors, our results should be confirmed in further
studies with more information on shared family diet (e.g., the availability of paternal diet and postnatal
offspring diet at a later time point) and attendance of children in child care or preschool that might
have affected their dietary patterns.

Alternatively, greater maternal adherence to a VFR pattern may have affected offspring adiposity
through epigenetic mechanisms. For instance, offspring of pregnant dams fed a protein-restricted diet
had decreased methylation status of their hepatic PPARα and GR genes, which in turn may be the
underlying mechanism of impaired fat and carbohydrate metabolism and later hypertension induced
by maternal protein restriction [54]. Similarly, in a Drosophila study, a high sugar maternal diet was
associated with offspring metabolic defects (e.g., increased whole body glucose) that persisted in the
F2 generation [55]. Finally, because higher maternal inflammation and oxidative stress have been
associated with higher offspring adiposity in both human [56] and animal studies [57], a maternal
dietary pattern rich in fruit and vegetables (and therefore rich in anti-oxidants [58,59]) may have
resulted in lowered maternal inflammation and subsequently lowered offspring adiposity. It is not
clear why the influence of maternal VFR pattern on offspring adiposity is more apparent during
the later postnatal period (≥18 months of age) than at birth/during infancy in our study. Because
adipose tissues accretion in the offspring starts only in late gestation and continues postnatally [60],
it is possible that differences in adiposity become more prominent as the child grow. It may also be that
maternal diet-induced alterations of gene expression in offspring, if any, tend to present themselves
only later in life. For instance, in offspring of pregnant rats fed a protein-restricted diet, increased
expression of PPARα and CPT-1 (key genes in lipid and carbohydrate metabolism) was only detected in
adulthood but not during neonatal period [61]. However, due to different physiological and metabolic
properties in rodents and flies, the postulated mechanisms should be further explored and confirmed
in a human population.
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The prospective design of our study is important in establishing the temporal sequence for the
association of maternal dietary pattern and offspring adiposity. Moreover, our frequent postnatal
anthropometric and skinfold measurements increase the precision of offspring adiposity assessment.
In addition, we characterized maternal diets using a dietary pattern approach which incorporates
dietary behaviors and complex interactions among nutrients and food items. Furthermore, the
longitudinal approach of our analysis elucidates the associations between maternal dietary pattern and
offspring adiposity trajectory, taking into account within-person correlation of repeated measurements
and missing outcome measurements.

However, our results should be interpreted in consideration of our study limitations. First,
maternal dietary intake information in this study was assessed using a single 24-h recall, which
may not provide adequate representation of an individual’s usual intake due to day-to-day variation
in food intake. However, similar maternal dietary patterns have been extracted using data from
3-day food diary in a small subset of our study population (n = 212; [33]), suggesting that a single
24-h recall reasonably captured the usual maternal dietary patterns in our population. Second,
assessment of maternal diet was done only once during late mid-gestation, and investigation of
potential trimester-specific influence of maternal dietary pattern on offspring adiposity was not
possible. However, it has been shown that dietary patterns change little during pregnancy [62,63],
suggesting that dietary patterns derived at one time-point can be reasonably representative of the
whole pregnancy period. Third, we did not collect information on paternal diet, which could have
shed further insight on whether our observed associations were due to shared family environment
or in utero fetal programming. Fourth, the non-response rate (787/2034 × 100% = 38.7%) in our
cohort could potentially give rise to non-response bias. However, for this kind of bias to occur, the
reason for non-participation must be related to both the exposure (maternal nutrition, data collected
during 26th–28th week gestation) and outcome (offspring adiposity measures), which were both
unknown during the time of recruitment (<14 weeks of gestation). Therefore, we do not expect
that non-response bias significantly affected our results. Nonetheless, replication of results in other
independent studies will increase the generalizability of our findings. Last, as in any observational
study, residual confounding may have affected our observations and causality cannot be claimed.

5. Conclusions

In conclusion, in this multi-ethnic Asian mother–offspring cohort, a higher maternal VFR pattern
score during pregnancy was associated with lower postnatal adiposity in the offspring. As the VFR
pattern is characterized by high intakes of fruit and vegetables and low intakes of fast food items,
promotion of such diets may reduce offspring adiposity. Although the observed effect sizes for reduced
offspring adiposity may appear modest, childhood obesity is a multifactorial condition requiring
an integrated strategy. Thus, pending confirmation from other independent studies and clinical trials,
our results may point to potential new approaches to preventing childhood obesity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/9/1/002/s1,
Table S1. Complete list of the 68 food groups, Figure S1: Scree plot from exploratory factor analysis, Table S2:
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