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Abstract

Motivation: Alternative splicing is a biological process of fundamental importance in most eukary-
otes. It plays a pivotal role in cell differentiation and gene regulation and has been associated with
a number of different diseases. The widespread availability of RNA-Sequencing capacities allows
an ever closer investigation of differentially expressed isoforms. However, most tools for differen-
tial alternative splicing (DAS) analysis do not take split reads, i.e. the most direct evidence for a
splice event, into account. Here, we present DIEGO, a compositional data analysis method able to
detect DAS between two sets of RNA-Seq samples based on split reads.

Results: The python tool DIEGO works without isoform annotations and is fast enough to analyze
large experiments while being robust and accurate. We provide python and perl parsers for com-
mon formats.

Availability and implementation: The software is available at: www.bioinf.uni-leipzig.de/Software/

DIEGO.
Contact: steve@bioinf.uni-leipzig.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The phenomenal complexity of transcripts is mainly enabled by al-
ternative splicing, allowing cells to generate multiple different
mRNAs from a single gene. It affects >95% of all human multi-
exon genes, and differences in isoform usage, i.e. differential alterna-
tive splicing (DAS), contribute to many phenotypic differences, e.g.
in diseases (Tazi et al., 2009). One prominent example is the epider-
mal growth factor receptor (EGFR), where cancer cells often pro-
duce a splice variant that lacks exon 4—in contrast to the
surrounding healthy tissue (Oltean and Bates, 2014). Thus, the de-
tection of differential splice variants, e.g. in cancer versus control tis-
sues, is of interest in many medical and biological research projects.

©The Author 2017. Published by Oxford University Press.

In the past years, different tools for the detection of DAS on the
basis of RNA-seq data have been proposed [reviewed in (Liu et al.,
2014; Hayer et al., 2015)]. These methods may roughly be divided
into those that only work on existing isoform annotations and those
that are able to detect changes of yet unknown isoforms, i.e. isoform
resolution methods. The tool DEXSeq (Anders ez al., 2012) works
with read counts for existing isoform annotations and uses a nega-
tive binomial model to detect alternative exon usage. This model has
recently been extended to split read counts (Hartley and Mullikin,
2016). Alternatively, IUTA (Niu et al., 2014) infers the isoform
usage for two sets of samples and tests for differences under
Aitchison’s geometry (Aitchison, 1986). IUTA’s application is also
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DIEGO: detection of differential splicing

limited to known isoforms. The most prominent isoform resolution
method Cufflinks (Trapnell e al., 2010), in contrast, is able to re-
port new events by inferring isoform structure and transcript abun-
dances. Cufflinks achieved good benchmarks under certain test
conditions (Liu et al., 2014). However, comparative studies also re-
vealed that the performance of all methods varies considerably with
the test scenario (Liu et al., 2014; Hayer et al., 2015). In several test
cases, the agreement of the tools on DAS events was low. More im-
portantly, for large scale projects with a multitude of samples, the
runtime of DAS detection methods quickly becomes a serious bottle-
neck. Here, we present DIEGO (DlIfferential altErnative splicinG
detectiOn), a method that combines the simplicity of a count based
approach with the ability to also report DAS of yet unknown iso-
forms. Based on split mapped RNA-seq reads, it is capable of rapidly
analyzing even large groups of samples. Our approach also works
on exon based read counts, as used by DEXSeq, to detect differential
exon expression.

2 Materials and methods

2.1 Differential alternative splicing detection (DAS
mode)

In a first step, all splice junctions (as inferred from split read align-
ments) with one or both splice sites within the boundaries of anno-
tated genes are collected (see Supplementary Material). Junctions
and genes with an insufficient split read coverage or not present in a
minimum number of samples are discarded. Subsequently, for each
gene the split read data is transformed into a compositional data
space, i.e. the simplex space:

S”:{[xh...,x,,]:x,-zo for i=1,...,n and inzl}
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where each vector consists of # components that correspond to #
exon junctions of a gene. Note, that the sum of all components is
constrained to 1. Thus, we transform the split read counts support-
ing the junctions of a gene to fractions. For each junction 7 of a gene
we calculate
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where D is the set of all junctions for the given gene. After the trans-
formation, we are now able to calculate the simplex center cen,
roughly comparable to a mean in euclidean space, for each of the
groups of samples under investigation. The distance between two
centers then allows to directly measure abundance changes for each
junction.

In the practical implementation of this approach, only junctions
with a minimum absolute abundance change are considered in fur-
ther statistical evaluation (default: 1.0). To detect significantly dif-
ferential junctions, i.e. DAS events, DIEGO uses a Mann-Whitney U
test. Therefore, the data is transformed back to the euclidean space.
Furthermore, p-values obtained from this non-parametric test are
subsequently corrected for multiple testing using the Benjamini-
Hochberg Method. Finally, DIEGO reports the results in a csv—file.

2.2 Clustering and outlier detection
In order to detect outliers or identify sub-groups within a set of sam-
ples, our method allows clustering based on Aitchison’s distance.

To do this, genes with the highest variance of exon junction ex-
pression are pre-selected, where the variance is defined as the
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Fig. 1. Performance of DIEGO. (a) Receiver operator statistics for simulated
data comparison of DIEGO (close dots) to DEXSeq (solid line), cufflinks (far
dots), rIMATSturbo (big dashes) and MAJIQ (dots/dashes) on an artificial data-
set. (b,c) Time and memory consumption of DIEGO in clustering mode (blue)
and DAS mode with different relative group sizes (solid line with dots 1:1, solid
line 1:10 group size) compared to DEXSeq (black). (d) Effect of swapping sam-
ples between conditions on the number of significant results (Color version of
this figure is available at Bioinformatics online.)

average distance from each sample to the centre of all samples. For
each sample pair, we average Aitchison’s distances of all genes in
this highly variable set to generate a distance matrix between the
samples. This matrix is subjected to a hierarchical agglomerative
clustering using the average linkage method. When run in clustering
mode, the tool will generate a dendrogram that allows the user to
easily spot similarly and dis-similarly spliced samples.

3 Performance evaluation

In simulation experiments, DIEGO performs comparable to
DEXSeq regarding sensitivity and specificity, and outperforms
rMATSturbo (Shen, 2014), MAJIQ (Vaquero-Garcia et al., 2016)
and Cufflinks (Fig. 1a). However, DIEGO clearly needs less time
and memory compared to DEXSeq when using TCGA transcrip-
tome data for an increasing number of samples (Fig. 1b and c). In
order to get an idea on the stability of DIEGO with respect to
wrong group assignments, we randomly chose a number of con-
trol/tumor sample pairs and swapped their assignments. As Figure
1d shows, DIEGO is quite stable against a small number of wrong
assignments, while a higher number leads to a decrease of pre-
dicted differentially used splice junctions to only about 3% of the
original value, indicating a high specificity when applied to ran-
dom data. Analyzing DIEGO’s predictions revealed a slight bias
towards genes with a high number of splice sites to be predicted to
contain DAS.

4 Conclusion

We present DIEGO, a fast and robust tool for detecting DAS in large
RNA-Seq datasets. DIEGO includes parsers for standard splice
aware aligners and TCGA’s splice count files. The low time and
memory consumption together with the relatively low false positive
rate make DIEGO suited for the analysis of large RNA-Seq datasets
with split read information.
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