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The traditional Chinese food Fuzhu is a dried soy protein-lipid film formed during the heating of soymilk. This study investigates
whether a simple and accurate model can nondestructively determine the quality parameters of intact Fuzhu. The diffused
reflectance spectra (1000–2499 nm) of intact Fuzhu were collected by a commercial near-infrared (NIR) spectrometer. Among
various preprocessing methods, the derivative by wavelet transform method optimally enhanced the characteristic signals of
Fuzhu spectra. Uninformative variable elimination based on Monte Carlo (MC-UVE), random frog (RF), and competitive
adaptive reweighted sampling (CARS) were proposed to select key variables for partial least squares (PLS) calculation. The strong
performance of the developed models is attributed to the high ratios of prediction to deviation values (3.32–3.51 for protein,
3.62–3.89 for lipid, and 4.27–4.55 formoisture).The prediction set was used to assess the performances of the best models of protein
(CARS-PLS), lipid (RF-PLS), andmoisture (CARS-PLS), which resulted in greater coefficients of determination of 0.958, 0.966, and
0.976, respectively, and lower root mean square errors of prediction of 0.656%, 0.442%, and 0.123%, respectively. Combined with
chemometrics methods, the NIR technique is promising for simultaneous testing of quality parameters of intact Fuzhu.

1. Introduction

The Chinese traditional soybean food “Fuzhu” originates
from the Tang Dynasty in ancient China and has long been
considered a luxury in China and Japan. Formally described
as dried soybean protein-lipid film, Fuzhu is formed dur-
ing the heating of soymilk [1, 2]. Fuzhu is increasingly
sought by domestic and overseas consumers because of its
meatlike texture and high nutritional value. Along with the
increased consumption, large-scale production of this food
has gradually emerged in recent years. The yield per year has
reached 200,000 tons in China. To protect and ensure the
inheritance of traditional Chinese food, the Administration
of Quality Supervision, Inspection and Quarantine (AQSIQ)
of China has authenticated the Fuzhu produced in Xuchang,
Gaoan, Tuodong, and Guilin (China’s main production
areas) as National Geographical Indication Protection Prod-
uct (NGIPP). The AQSIQ has imposed standards on the

quality parameters (protein, lipid, and moisture contents) of
NGIPPs. The protein, lipid, and moisture contents provide
valuable information for commercial pricing, because they
underlie the required quality standards of Fuzhu foods sold
to consumers. However, current chemical analysis methods
are time-consuming and costly, requiring the extensive use of
auxiliary chemicals.Therefore, a rapid, high-efficiency, online
analytical method is urgently required.

Combinedwith chemometrics, near-infrared (NIR) spec-
troscopy is a fast, accurate, nondestructive technique that
is easily implemented. Moreover, a series of professional
reviews have reported the wide usage of the NIR technique
in the analysis of quality parameters in food industries [3–
6]. In practical applications, the NIR spectra always derive
from meaningful variables contributed by sample attributes
and from noise variables caused by environmental and
instrumental fluctuations. Therefore, the spectral data must
be pretreated to improve the important signal characteristics.
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Commonly used preprocessing methods are Savitzky Golay
(SG) smoothing [7], the Norris derivative filter (NDF), first-
order derivative (1D) or second-order derivative (2D), multi-
plicative scatter correction (MSC), and the standard normal
variate (SNV) [8].Thesemethods, respectively, filter the high-
frequency noises, improve the signal-to-noise ratio, enhance
the spectroscopy resolution, resolve the overlapping peaks,
correct the baseline, and eliminate scatter. As an alternative
to these conventional methods, Shao and Ma [9] and Nie et
al. [10] applied the wavelet transform (WT) to the derivative
calculation (D-WT). Singh et al. [11] reported the theory of
WT analysis and reviewed its application in signal processing
and feature extraction for quality monitoring of agricultural
and food products.

Variable selection is a critical step when analyzing
datasets with hundreds of thousands of variables in NIR
spectroscopy. Thus, selecting the key variables is essential
for improving the efficiency and decreasing the prediction
errors in a robust model [12–15]. Variable selection also sim-
plifies themodel dimensionality, improves the interpretation,
and lowers the measurement costs [16]. The performance
of partial least squares (PLS) models has been enhanced
by numerous variable selection methods, such as genetic
algorithms (GAs), uninformative variable elimination based
on Monte Carlo (MC-UVE), random frog (RF), successive
projections algorithms (SPAs), variable importance in pro-
jection (VIP), and competitive adaptive reweighted sampling
(CARS). Variable selection by MC-UVE combined with GAs
has been applied in predictions of soluble solid contents
in watermelon [17] and the prior storage period of lamb’s
lettuce [18]. The RF proved to be a promising selector
of cancer-related genes [19]. The RF algorithm was also
proposed as the variable selector in the determination of
polyphenol contents of tea from 14 tea-tree cultivars [20]
and the detection of fungus infection on rapeseed petals [21].
Zhang et al. [22] predicted the pH of anaerobic digestion
liquid of water hyacinth-rice strawmixtures by hyperspectral
imaging. For this purpose, they selected 8, 15, and 20 optimal
wavelengths using the SPAs, RF, and VIP, respectively. CARS
was proposed for variable selection in calibration models
of branched-amino acid contents (leucine, isoleucine, and
valine) in fermentedmycelia of theChinese caterpillar fungus
(Cordyceps sinensis) [23] and caffeine contents in roasted
Arabica coffee [24]. However, to our knowledge, key variables
selection byNIRmodeling for simultaneous determination of
the quality parameters in Fuzhu has never been reported.

The present work applies NIR spectroscopy to the
simultaneous determination of protein, lipid, and moisture
contents in intact Fuzhu. The specific objectives were (1)
to determine a suitable pretreatment method for spectral
processing; (2) to select the key variables for protein, lipid,
and moisture analyses by MC-UVE, FR, and CARS; (3) to
develop PLS models and inspect their practical performan-
ces.

2. Materials and Methods

2.1. Fuzhu Sample. Fuzhu samples were collected from local
market in Xuchang, which is one of the China’s main

production areas. To create a wide range of protein, lipid,
andmoisture contents, Fuzhu samples with different prices or
brands were deliberately selected. In total, 180 Fuzhu samples
(about 500 g of each sample) were obtained from October
2015 to September 2016 and immediately transported to a cold
storage contained at ∼4∘C with relative humidity of ∼50%
until the trial began.

2.2. Diffuse Reflectance Spectra Acquisition. Prior to NIR
spectra acquisition, the Fuzhu samples were kept in labo-
ratory (∼24∘C, ∼62% relative humidity) for more than 8 h
for temperature equilibration and to diminish the influence
of temperature on the NIR spectral profile. After reaching
equilibrium, the diffused reflectance NIR spectra (log(1/𝑅))
of intact Fuzhu were acquired by a commercially avail-
able NIR spectrometer (mode SupNIR-2750; FPI-INC Co.,
Hangzhou, China) equipped with an InGaAs detector. To
acquire representative spectral information, a rotator with a
motor-driven sample cup rotated during spectrumcollection.
Each spectrum was the average of 16 scanned spectra.
log(1/𝑅) spectra were recorded using the NIR spectrometer
at 1 nm intervals, and the NIR wavelength ranged from 1000
to 2499 nm (giving in 1500 variables). For each spectrum
determination, about 70 g Fuzhu samples were manually
placed on the sample cup. Seven spectra were obtained for
each Fuzhu sample by nonrepetitively loading the sample
seven times. These spectra were averaged to obtain the final
spectrum of each sample.

2.3. Reference Values Measurement. Before reference mea-
surement, intact Fuzhu samples were crushed into powder
using a grinder for consistent measurements. The powder
particle size was kept below 40 Taylor mesh, and the sieved
powders were collected for wet chemical analysis. The ref-
erence values of Fuzhu quality parameters were measured
according to the national standards of China. The total pro-
tein content was determined by the classical Kjeldahl method
using a Digestion Unit (mode DT 208; Foss Scino, Denmark)
combined with a Kjeltec Analyzer Unit (mode 2300; Foss
Tecator, Sweden), according toGB 5009.5-2010 [25].The lipid
content was measured by a Soxhlet Analyzer (mode SOX406;
Hanon Instrument Co., Jinan, China) according to GB/T
5009.6-2003 [26]. The moisture content was determined in a
drying oven (mode DZF-6020; Zhongxingweiye Co., Beijing,
China), following GB 5009.3-2010 [27].

2.4. Chemometrics

2.4.1. Spectral Preprocessing Methods. Before model develop-
ment, the original spectral data were subjected to spectral
preprocessing using MSC, SNV, SG smoothing, NDF, 1D
or 2D, and D-WT. In present study, the data point and
the polynomial order of SG smoothing were set to 7 and
3, respectively. The segment length and the gap between
segments of NDF were set as 5 and 5. Haar wavelet func-
tion with scale of 60 was used for D-WT calculating of
analytical signals. The lowest root mean squared error of
cross-validation (RMSECV) was used to determine suitable
preprocessing method.
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2.4.2. MC-UVE. MC-UVE, which combines uninformative
variable elimination (UVE) with the Monte Carlo (MC)
method, was proposed by Cai et al. [28] and is used for
variable selection in NIR spectral modeling. The main steps
of the MC-UVE procedure are described below:
(1) Construct an original sample set comprising an (n ×

p) spectral matrix𝑋 and an (n × 1) reference value matrix 𝑌.
(2) Based on the MC technique, randomly select 𝑛𝑡 sam-

ples from the original sample set. These samples constitute
the training subset for building a PLS submodel. Record the
regression coefficient (RC) of each variable. Specifically, if
𝛽(𝛽1, 𝛽2, . . . , 𝛽𝑝) is the regression vector of the PLS model,
the RCs are the 𝛽1, 𝛽2, . . . , 𝛽𝑝 of the 1st, 2nd, . . . , 𝑝th variable,
respectively.
(3) Repeat Step (2) N times, and construct an (N × p)

matrix𝛽 of the PLS RCs. Finally, calculate the reliability index
(RI) of each variable by

RI =
mean (𝛽𝑗)

std (𝛽𝑗)
, 𝑗 = 1, 2, 3, . . . , 𝑝, (1)

where mean(𝛽𝑗) and std(𝛽𝑗) denote the mean and standard
deviation of the RC of the jth variable, respectively.

2.4.3. RF. RF is a simple and efficient method that borrows
the framework of reversible-jumpMarkov chainMonte Carlo
method. PLS is the modeling method in the RF procedure.
The principles of RF are detailed in Li et al. [19] and Yun et al.
[29]. Here, we summarize themain steps of the RF procedure:
(1) Construct an original sample set consisting of 𝑋 and
𝑌.
(2) Set the tuning parameters that control the RF perfor-

mance and initialize a subset 𝑉0 consisting of 𝑄 randomly
selected variables.
(3)Generate a random number𝑄∗ from the presupposed

normal distribution (𝑄, 𝜃𝑄), where 𝜃 is a constant. A can-
didate subset 𝑉∗ of 𝑄∗ variables can be proposed in three
situations, as detailed in the literature [29]. Retain the 𝑄∗
variables with the largest absolute RCs in the PLS model and
collect them into the candidate subset V∗.
(4) Using subsets 𝑉0 and 𝑉∗ in the PLS model, calculate

the root mean squared error of cross-validation (RMSECV)
and RMSECV∗, respectively. If RMSECV∗ ≤ RMSECV,
accept𝑉∗ as𝑉1; otherwise, accept𝑉∗ as𝑉1 with a probability
of 𝜂RMSECV/RMSECV∗, where 𝜂 is a constant. Repeat
Steps (3)–(5) N times, updating the candidate subset at each
iteration.
(5) After 𝑁 simulations, N subsets are obtained. Let 𝑁𝑗

be the frequency at which the jth variable is selected in these
𝑁 subsets. The selection probability (SP) of the jth variable is
then computed by

SP𝑗 =
𝑁𝑗
𝑁
, 𝑗 = 1, 2, 3, . . . , 𝑝. (2)

2.4.4. CARS. Developed by Li et al. [30], CARS is a simple
and effective method that selects the optimal combination
of key variables of multicomponent spectral data. CARS is

based on the “survival of the fittest” principle in Darwin’s
Theory of Evolution. The main steps of the CARS procedure
are summarized below:
(1) Construct an original sample set consisting of 𝑋 and
𝑌.
(2) Using the MC technique, select 𝑛0 samples (usually

80–90% of the original sample set), and construct them into
an initialized subset 𝑉0.
(3) Develop a PLS submodel based on 𝑉0, and weight

each variable by recording its RC. Define the importance of
each wavelength variable by assigning a normalized weight as
follows:

𝑤𝑗 =
𝑏𝑗

sum (𝑏𝑗)
, 𝑗 = 1, 2, 3, . . . , 𝑝, (3)

where 𝑤𝑖 denotes the normalized weight of the jth variable,
and 𝑏𝑗 is the absolute RC of the jth variable.
(4) Remove the wavelengths with small absolute RC by

applying an exponentially decreasing function (EDF). The
number of retained variables is computed by

𝑚𝑖 = 𝑝 ⋅ 𝑟𝑖 = 𝑝 ⋅ 𝑎𝑒
−𝑘𝑖, 𝑖 = 1, 2, 3, . . . , 𝑁, (4)

where 𝑎 and 𝑘 are two constants determined by two equations
in Li et al. [30], and𝑝 represents the total number of variables.
(5) After reducing the number of wavelengths by EDF,

eliminate weakly competitive variables (those with low
weights) by adaptive reweighted sampling (ARS). The vari-
ables with dominant weights are retained for the PLS model
construction. The new set 𝑉1 containing 𝑚𝑖 variables is
considered as𝑉0 in Step (2) of the newCARS operation. Steps
(2)–(5) are looped𝑁 times, updating the initialized subset at
each iteration.

2.4.5. Operating Parameters and Process. Figure 1 is a
flowchart of the MC-UVE, RF, and CARS algorithms. All
maximum factors of PLS (A) were set to 10, and the data
processing method in the three procedures was decided as
“center.” The ratio of training to total samples in the MC-
UVE procedure was set to 0.75 (i.e., 𝑛𝑡 = 0.75n). The number
of MC simulations (N) was set to 500, sufficient for precise
stability estimates. The suitable number of principal factors
was determined by Monte Carlo cross-validation (MCCV)
with 𝐹 test methods. In this work, the mean RI values of the
variables were obtained from 100 MC-UVE iterations. The
mean RIs of all variables were ranked from highest to lowest.
Variables with RIs below a certain threshold were eliminated.

In the RF procedure, the variables 𝜃, 𝜔, and 𝜂 were set to
their default values (0.3, 3, and 0.1, resp.) [19]. The number
of simulations (N) and initialized variables (Q) were preset
to 10000 and 20, respectively. Here, the mean SP values of
each variable were obtained from 100 independent operations
of the RF procedure. Again, the mean SPs of all variables
were ranked from highest to lowest, and the SP of the 𝑛𝑗th
variablewas assigned as the threshold value.Variableswith SP
values above the threshold were retained for the PLS model
calibration.

In the present work, the number of sampling runs before
running the CARS procedure was set to 100. The RMSECVs
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Construct a original sample set containing a spectra matrix X (136 × 1500) and a corresponding
reference value matrix Y (136 × 1).

A: 10
Method: center

N: 500
Ratio: 0.75

A: 10
Method: center

N: 10000
Q: 20

A: 10
Method: center

N: 100
Fold: 5

Randomly select a subset
(136 × 0.75 samples) based on
MC technique, and build a PLS
submodel by the subset.
The procedure repeated run 500
times.

Compute a matrix  (500 × 1500)
by PLS regression.
RI value of each variable is
calculated by Eq. (1).

Rank the RI of all the variables
from the highest to the lowest.

The mean RI of each variable
is calculated by repeated
running MC-UVE 100 times.
Choose the final key variables
using proposed threshold of RI.

, , and  are set to 0.3, 3, and 0.1.

The SP value of each variable are
computed by Eq. (2).

The mean SP of each variable is
calculated by repeated running RF
100 times.

Choose the final key variables using
proposed threshold of SP.

Randomly choose an initialized subset

The number of variables is
determined by EDF method using
Eq. (4).

100) by 5-fold MCCV method.

100 RMSECV values are obtained
by 100 sampling runs of CARS.
Choose the subset with lowest
RMSECV as optimal subset of
variables.

(a) MC-UVE (b) RF (c) CARS

Initialize a subset V0 (136 × 20).

V1 = V0 V1 = V0

V0 (k × 1500) by MC technique.

Eq. (3).
Record bj, and compute wj by
Build a PLS model using V0.

V0 using ARS method.
Pick a new subset V1 (n0 × mi) from

normal distribution (20, 6):

with lower RC are eliminated.

according to RC.

by MCCV method.

as V1 with probability of

as V1.

Calculate RMSECV of Vi (i = 1, 2, . . . ,

0.1RMSECV/RMSEC６∗ .

(B) RMSEC６∗ > RMSECV; accept V∗

(A) RMSEC６∗ ≤ RMSECV; accept V∗

RMSEC６∗ and RMSECV are calculated

(C) Q∗ > 20, absent 3(Q∗ − 20) variables

(B) Q∗ < 20, redundant 20 − Q∗ variables
(A) Q∗ = 20, V∗ = V0.

Generate a subset V∗ (136 × Q∗) from

sampled by MC from V − V0

Figure 1: Flowchart of the MC-UVE, RF, and CARS algorithms.

of the 100 PLS models obtained by the 100 sampling runs of
CARS were computed by the 5-fold MCCV method. Finally,
the subset with lowest RMSECV was chosen as the optimal
subset of variables.

The MC-UVE, RF, and CARS algorithms are contained
in the libpls 1.95 toolbox, which is freely downloadable
from http://www.libpls.net/download.php. All preprocessing
procedures and theMC-UVE,RF, andCARSprocedureswere
performed in MATLAB 7.10.0 (R2010a) (Math Works Inc.,
Natick, MA, USA).

2.5. Statistical Analysis. The resulting calibration equations
between the chemical analyses and the NIR spectroscopy
were evaluated by the coefficient of determination for cali-
bration (𝑅𝑐) and the root mean square error of calibration

(RMSEC). The predictive precision was evaluated by the
coefficient of determination for prediction (𝑅𝑃) and the
root mean square error of prediction (RMSEP). The RPD,
which defines the ratio of the standard deviation (SD) in
the prediction set to the RMSEP, has been previously used
in model evaluation [31]. The coefficients of determination,
RMSE indices, and RPD are, respectively, calculated by
equations reported by Wang et al. [32].

3. Results and Discussion

3.1. Definitions of the Calibration and Prediction Sets. Based
on the reference value, the 180 samples were split by the rank-
ing method into two groups, the calibration and prediction
sets (at an approximate ratio of 3 : 1). The calibration set (136

http://www.libpls.net/download.php
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Table 1: Statistical results of calibration and prediction sets of Fuzhu quality parameters.

Quality indices Calibration set Prediction set
Number Range (%) Mean (%) SD Number Range (%) Mean (%) SD

Protein 136 40.46–50.15 46.21 2.36 44 40.92–49.49 46.18 2.30
Lipid 136 16.95–25.85 20.90 1.86 44 17.81–25.07 20.84 1.72
Moisture 136 6.43–9.39 7.81 0.61 44 6.70–9.05 7.79 0.56
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Figure 2: log(1/𝑅) spectra from (a) original data and (b) processed data by the D-WT method.

samples) was used as the original sample set for determining
the pretreatmentmethod and screening for key variables.The
prediction set (44 samples) was employed only for assessing
the final performance of the models. The statistical results
of the calibration and prediction sets are shown in Table 1.
The protein, lipid, and moisture values in the calibration
and prediction sets covered a sufficiently large range. More
importantly, the range was greater in the calibration set
than in the prediction set. These features are beneficial for
developing a stable and robust model.

3.2. Determination of Spectral Preprocessing Method. The
NIR spectral characteristics of the Fuzhu samples (Fig-
ure 2(a)) mainly represent the functional groups related to
the content of moisture, proteins, lipids, and carbohydrates
in the samples. These features commonly appear in the
NIR spectra of soy foods acquired by diffuse reflectance
techniques. For instance, they have been reported in the
spectra of soybean [33], soya bean meal [34], and soybean
flour [35]. The vibrational absorptions in NIR correspond
to the vibrational transitions between the fundamental and
higher-order energy levels and/or combination bands.

The original log(1/𝑅) spectra of intact Fuzhu samples
encode information on the effective path length and present
the consistent offsets and biases in the baseline (Figure 2(a)).
In this study, the characteristic signals were improved by
various processes (MSC, SNV, derivative, SG smoothing,
NDF, and D-WT). The RMSECV value was computed over

the whole spectral range (1000–2499 nm) by the MCCV
method, setting the number of MC simulations to 500 and
the ratio of training samples (relative to the total number of
samples) to 0.75.TheMSCand SNVyielded similar RMSECV
values (columns 3 and 4 in Table 2), indicating that both
methods reduce the particle size effects; moreover, these two
alternatives are interconvertible [8]. Judging from the results,
1D type is superior to 2D type under the current conditions.
Derivative (1D or 2D) combined with smoothing methods
(SG or NDF) slightly improved the precision of the models.
D-WT (60) achieved the lowest RMSECV values among the
tested preprocessing methods. Therefore, the D-WT method
was selected for preprocessing the Fuzhu spectra and for
variable selection andmodel development in further analysis.
After processing by D-WT (Figure 2(b)), the spectral char-
acteristic signals were highlighted in the wavelength ranges
1025–1050 nm, 1470–1590 nm, 1700–1800 nm, 1980–2140 nm,
and 2290–2360 nm. Clearly, suppressing the noise corrects
the drifting baseline and resolves the overlapping peaks.

3.3. Screening for Key Wavelengths

3.3.1. Variable Selection for Proteins. Figure 3(a) shows the
average RI of each variable in the protein dataset in the
wavelength range 1000–2499 nm, obtained by the MC-UVE
method.The average RI (ordinate value) of each variable was
computed from the absolute RIs (obtained by (1)) obtained
in 100 iterations of MC-UVE. The dotted line indicates
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Table 2: Lowest RMSECV values of quality parameters obtained by different pretreatment methods.

Quality parameters Pretreatment method
Raw MSC SNV 1D 2D 1D-SG (7, 3) 2D-NDF (5, 5) D-WT (60)

Protein 0.801 0.843 0.839 0.824 1.630 0.823 0.826 0.775
Lipid 0.728 0.687 0.687 0.833 1.390 0.796 0.793 0.681
Moisture 0.151 0.154 0.154 0.148 0.409 0.149 0.150 0.148
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Figure 3: Results of variable screening of protein dataset by (a)MC-
UVE, (b) RF, and (c) CARS.

the threshold value, determined by the lowest RMSECV
value as reported in the literature [28]. All RMSECV values
were computed by the MCCV method using the parameters
presented in the flow chart (Figure 1). Variables with RIs
below the dotted line (RI = 3.42) were eliminated, and those
with RIs above the dotted line were reserved for the PLS
calculation. A total of 357 variables were selected by MC-
UVE. The accepted variables were located around 1027, 1114,
1213, 1279, 1412, 1517, 1688, 1798, 1842, 1938, 2032, 2092, and
2113–2208 nm.

In the RF screening, the importance criterion of the
variables was the mean SP value of 100 RF runs. Most of the
variables scored below the mean SP line (see Figure 3(b)),
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Figure 4: Changing trends in (a) number of sampled variables, (b)
5-fold RMSECV values, and (c) RC of each variable as the number
of sampling runs increases. In (c), the line (marked by asterisks)
indicates the optimal point where the 5-fold RMSECV values are
minimized.

but a small number of variables exhibited SP values above
the line. The threshold value (dotted line in Figure 3(b)) was
determined as mentioned for MC-UVE. Variables with SP
values above the threshold (0.05) were regarded as the infor-
mative variables. This analysis identified 33 key variables for
protein determination, concentrated in the spectral regions
near 1021–1023 nm, 1025–1028 nm, 1031 nm, 1107 nm, 1110 nm,
1114 nm, 1212-1213 nm, 1215 nm, 1272–1286 nm, 1290-1291 nm,
1513–1524 nm, 1837–1847 nm, and 2091–2093 nm.

Figures 3(c) and 4 show the variable selection results of
the protein dataset computed by CARS. The number of sam-
pled variables changes with increasing number of sampling
runs (Figure 4(a)). The decrease is rapid in the fast selection
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stage of EDF and very slow in the refined selection stage [30].
In sampling runs 1–49, the 5-fold RMSECV values descend
slightly as the uninformative variables are eliminated. In later
sampling runs (50–72), they enter a relatively stable phase
with no obvious changes and then rapidly increase in sam-
pling runs 73–100 as useful information is lost (Figure 4(b)).
Each line in Figure 4(c) records the RC of each variable in dif-
ferent sampling runs.The CARS analysis selected 61 variables
for proteinmodeling, located in the spectral regions 1027 nm,
1031 nm, 1108–1114 nm, 1210–1215 nm, 1273–1284 nm, 1412 nm,
1515–1517 nm, 1836–1847 nm, 1938-1939 nm, 2031-2032 nm,
2090–2092 nm, 2135-2136 nm, 2394 nm, 2402–2406 nm, and
2474–2477 nm (Figure 3(c)).

Seven spectral regions around 1027, 1114, 1213, 1279, 1517,
1842, and 2092 nm (Figure 3) were selected by all three
methods (MC-UVE, RF, and CARS). The spectral regions
near 1412, 1938, and 2032 nm were chosen by both MC-UVE
and CARS. The 2402–2406 nm and 2474–2477 nm regions
were selected only by CARS, but their RIs in MC-UVE and
SP values in RF were relatively high nonetheless. The lowest
RMSECV values obtained by MC-UVE, RF, and CARS were
0.753, 0.741, and 0.723, respectively, less than that of PLS
without variable selection (0.775; see Table 2). The numbers
of selected variables observably decreased from 1500 to 357 in
MC-UVE, to 55 in RF, and to 61 in CARS. This indicates that
the variable selection methods effectively enhance the model
performance and simplify the model dimensionality.

3.3.2. Variable Selection for Lipids. Figure 5(a) shows the
meanRI of each variable in the lipid dataset in thewavelength
range 1000–2499 nm, obtained by running MC-UVE 100
times. Variables with RIs above 6.5 were considered as infor-
mative variables; other variables were eliminated from the
lipid data. A total of 134 variables concentrated in five main
spectral regions (1189–1201 nm, 1417–1429 nm, 1581–1651 nm,
1749–1775 nm, and 1849–1858 nm) were selected for lipid
modeling.

Figure 5(b) shows the average SP of each variable in the
lipid dataset in the 1000–2499 nm range, obtained by running
the FR 100 times. Variables with SP values below the dotted
line (the threshold 0.035) were viewed as uninformative
and eliminated from the lipid data; the remaining variables
were reserved for PLS calibration. Finally, the RF analysis
selected 58 variables in the spectral regions 1094–1098 nm,
1195–1206 nm, 1281–1292 nm, 1375–1385 nm, 1520–1528 nm,
1577–1594 nm, 1649 nm, and 1857–1860 nm (see Figure 5(b)).

Figure 5(c) shows themean SP of each variable in the lipid
dataset in the wavelength range 1000–2499 nm, computed
after 100 sampling runs by the CARS method. The lowest
5-fold RMSECVs were obtained from 59 sampling runs.
In total, CARS selected 31 variables for lipid modeling,
located in the spectral regions 1094–1097 nm, 1201–1207 nm,
1383–1385 nm, 1421-1422 nm, 1483-1484 nm, 1519–1524 nm,
1649–1651 nm, 1858-1859 nm, 2017 nm, and 2061 nm (Fig-
ure 5(c)).

Three spectral regions around 1195, 1649, and 1858 nm
(Figure 5) were selected byMC-UVE, RF, andCARS. Spectral
regions around the ranges 1094–1097 nm, 1201–1207 nm,
1383–1385 nm, 1520–1524 nm, 1649 nm, and 1858-1859 nm,
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Figure 5: Results of variable screening of lipid dataset by (a) MC-
UVE, (b) RF, and (c) CARS.

with relatively high RI, were selected by both RF and CARS.
These algorithms work by different principles but yield
similar results. The RMSECV values of MC-UVE (0.650),
RF (0.636), and CARS (0.628) were all lower than the
RMSECV value of PLS without variable selection (0.681; see
Table 2). Moreover, the variables in the model calibration
were drastically decreased from 1500 to 134 in MC-UVE, to
58 in RF, and to 31 in CARS.

3.3.3. Variable Selection for Moisture. Figure 6(a) shows the
mean RI of each variable in the moisture dataset in the
wavelength range 1000–2499 nm, obtained after 100 iterations
of MC-UVE. The RI, RMSECV, and threshold values were
calculated by the methods used for proteins and lipids.
Variables with RI values below the threshold (RI = 5.5 in this
case) were considered as uninformative and eliminated from
the moisture data, leaving 112 variables for the PLS model
development. These variables were concentrated in five spec-
tral regions (1222–1239 nm, 1325–1349 nm, 1644–1674 nm,
1951–1966 nm, and 2047–2068 nm; see Figure 6(a)).

Figure 6(b) shows the average SP of each variable in the
moisture dataset in the 1000–2499 nm range, obtained from
100 runs of FR. The dotted line indicates the threshold of
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Table 3: Calibration and prediction results of protein, lipid, and moisture contents in Fuzhu obtained by different PLS models.

Quality parameter Model LVs Variable number R𝐶 RMSEC R𝑃 RMSEP RPD

Protein
MC-UVE-PLS 9 357 0.955 0.698 0.953 0.692 3.32

RF-PLS 9 55 0.953 0.713 0.957 0.664 3.46
CARS-PLS 9 61 0.958 0.677 0.958 0.656 3.51

Lipid
MC-UVE-PLS 8 134 0.945 0.607 0.962 0.475 3.62

RF-PLS 10 58 0.948 0.585 0.966 0.442 3.89
CARS-PLS 10 31 0.950 0.578 0.964 0.466 3.69

Moisture
MC-UVE-PLS 10 112 0.973 0.141 0.975 0.126 4.44

RF-PLS 7 40 0.975 0.134 0.975 0.131 4.27
CARS-PLS 5 29 0.974 0.137 0.976 0.123 4.55
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Figure 6: Results of variable screening of moisture dataset by (a)
MC-UVE, (b) RF, and (c) CARS.

0.07, determined by the lowest RMSECVvalue. Variableswith
SP values below 0.07 were removed from the moisture data,
whereas those with SP values above 0.07 were reserved for the
PLS modeling. The RF analysis selected 40 key variables for
moisture modeling, in the vicinities of 1336, 1479, 1515, 1662,
1716, 1964, 2012, 2054, 2097, and 2343 nm.

Figure 6(c) shows the average SP value of each variable in
the moisture dataset in the wavelength range 1000–2499 nm,

obtained from 100 sampling runs of CARS.The lowest 5-fold
RMSECV values were obtained after 60 sampling runs. In
total, CARS selected 29 variables for moisture evaluation,
located in the spectral regions 1062-1063 nm, 1336 nm,
1479-1480 nm, 1514–1517 nm, 1658–1662 nm, 1715–1717 nm,
1905 nm, 1960-1961 nm, 1964 nm, 2015-2016 nm, 2053–
2055 nm, and 2096–2098 nm.

Four spectral regions around 1336, 1662, 1964, and
2054 nm (Figure 6) were selected by all three methods
(MC-UVE, RF, and CARS). Another four spectral regions
(near 1479, 1515, 1716, and 2097 nm) were selected by both
RF and CARS but rejected by MC-UVE because their RI
values were below 5.5. Also noteworthy is the selection
of the 1222–1239 nm region by MC-UVE alone, as well as
the selection of the 1062-1063 nm region by CARS alone.
The RMSECV values of MC-UVE (0.145), RF (0.140), and
CARS (0.141) were only slightly lower than that of PLS over
the whole spectral range (0.148; see Table 2). However, the
number of variables was largely reduced from 1500 to 112 in
MC-UVE, to 40 in RF, and to 29 in CARS.

3.4. Model Comparison and Assessment. The predictive per-
formance of the models was evaluated on the prediction set
containing 44 samples. Table 3 presents the results of theMU-
UVE-PLS, RF-PLS, and CARS-PLS modeling for protein,
lipid, and moisture of Fuzhu. The strong performance of
the developed models is attributed to the high RPD values
(3.32–3.51 for protein, 3.62–3.89 for lipid, and 4.27–4.55 for
moisture). The developed model with a larger value of RPD
(above 3.0) indicated the excellent ability of the model to
precisely predict chemical compositions in new samples [36–
38]. Comparing themodel results of the quality parameters of
intact Fuzhu, the parameters were most precisely estimated
by the CARS-PLS, RF-PLS, and CARS-PLS models, with
RPDs of 3.51, 3.89, and 4.55, for protein, lipid, and moisture,
respectively.

Table 3 confirms that the variable selection methods not
only provide satisfactory prediction accuracy, but also largely
reduce the numbers of variables. This indicates that the MC-
UVE, RF, and CARS methods both enhance the model per-
formance and simplify the model complexity. Consequently,
the best models were adopted in simultaneous determina-
tions of the protein, lipid, and moisture contents in intact
Fuzhu. Figure 7 shows the best calibration and prediction
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Figure 7: Scatter plots of predicted versus measured (a) protein, (b) lipid, and (c) moisture contents of Fuzhu.

results of proteins, lipids, and moisture obtained by the
CARS-PLS, RF-PLS, and CARS-PLS models, respectively.

4. Conclusion

The protein, lipid, and moisture contents of intact Fuzhu
were determined simultaneously by NIR spectroscopy in
diffused reflectance mode. The efficiencies of various pre-
processing methods were assessed by the RMSECV value
computed byMCCV. Among thesemethods, D-WT achieved
the optimal pretreatment. Three variable selection methods,
MC-UVE, RF, and CARS, were then compared. Appropriate

variable selection enhances the performance of a model. The
protein, lipid, and moisture contents of Fuzhu were most
precisely predicted by the CARS-PLS, RF-PLS, and CARS-
PLS models, respectively. Combined with chemometrics, the
NIR technique is suitable for quality control/evaluation of the
traditional Chinese food “Fuzhu.”
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