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Glossary 

General 

 AE  –  adverse event 
 AEC  –  absolute eosinophil count 
 AJCC – American Joint Committee on Cancer 
 CIO  –  Center for Integrated Oncology 
 CoT  –  course(s) of therapy  
 CRP  –  c-reactive protein  
 irAE –  immune related adverse event 
 LC  –  leucocyte count 
 LDH  –  lactate dehydrogenase 
 MHC  –  major histocompatibility complex 
 NA  –  not available (missing data) 
 NPV  –  negative predictive value 
 OS  –  overall survival 
 PFS  –  progression free survival 
 PPV  –  positive predictive value 
 REC  –  relative eosinophil count 
 StD  –  standard deviation 
 SEN  –  sensitivity 
 SPE  –  specificity 
 TCR  –  T cell receptor 
 TME  –  tumor microenvironment 
 TN  –  true negative 
 TP  –  true positive 
 VIF  –  variance inflation factor 
 

Laboratory anomalies 
In combination with a laboratory parameter (AEC, REC, LC, LDH, CRP) as described in Section 2.2 

HS – “half to single” – interval between half and upper reference value 
SD – “single to double” – interval between upper reference value and its twofold 
DT – “double to triple” – interval between two- and threefold upper reference value 
E – “elevation” – single elevation above upper reference value 
T – “triple” – elevation above threefold of upper reference value
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1. Introduction 

The treatment of metastatic malignant melanoma remains one of the most important 
topics within modern oncology. For many years there has been almost no progress in 
the treatment of metastatic melanoma as traditional chemotherapy has long been shown 
incapable of improving survival rates (Eigentler et al. 2003). With the introduction of tar-
geted therapy and immunotherapy in several tumor entities, these innovations have 
brought new perspectives especially to the therapy of American Joint Committee on Can-
cer (AJCC) stage IV melanoma. However, with those new approaches new challenges 
arose: Whereas in targeted therapy the development of resistant tumor cells towards the 
inhibitors is the main concern (Mai et al. 2015), the major issue in immunotherapy is a 
new variety of immune-related adverse events (irAEs), the pathogenesis of which is 
closely linked to the very effect mechanisms of the agents (Inno et al. 2017).  
Early recognition of these irAEs plays an essential role in controlling them and thus pre-
venting severe complications including death (Weber et al. 2016). While much research 
has been conducted concerning treatment, only few authors focused on early recognition 
of irAEs. This study aims to uncover one or multiple biomarkers that function as early 
warning signals of upcoming irAEs in patients with metastasized or unresectable mela-
noma at the Center for Integrated Oncology (CIO) in Cologne.  

1.1. Epidemiology of the malignant melanoma 

Before delving into the therapy of metastasized melanoma, the present trends of epide-
miology in Germany and other countries will be presented. This is necessary to compre-
hend its proportions. 
In 2012, melanoma ranked fifth among the most common new cancer cases in Germany 
(Robert Koch Institut (Publ.) et al. 2015) and sixth within developed countries (Erdmann 
et al. 2013). Melanoma is also the third most common cause for brain metastasis 
(Sampson et al. 1998), indicating a poor prognosis of 4-5 months of survival at the point 
of diagnosis (Fife et al. 2004; Gibney et al. 2012).  
The lasting trend towards sun tanning with UV light exposure remains the major factor 
to drive the increase of melanoma incidence in the last decades in the German popula-
tion (Leitlinienprogramm Onkologie 2016) as well as worldwide (Erdmann et al. 2013). 
The additional reluctance especially of the young to take protective measures, such as 
using sunscreen or wearing long sleeved clothes or a hat, induce a possible, further 
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aggravating effect on incidence levels (Görig et al. 2017). It can be expected that mela-
noma will remain an increasingly frequent diagnosis for dermatologists to deal with, 
which grants necessity for intensive and continuous research on this topic. 
Despite the efforts of governments and professional societies (see for example Cancer 
Council Australia 2016; Deutsche Krebshilfe & Deutsche Krebsgesellschaft (Publ.) 2015; 
European Association of Dermato Oncology 2017; G-BA 2008), the rates of melanoma 
classified T4 at the initial diagnosis have not changed particularly in Germany. Since 
2008, they remain at 8% for women and 10% for men. This most important prognostic 
factor of tumor classification at the time of diagnosis (Balch et al. 2001) leads to the slight 
but steady increase of the absolute fatality count due to metastasized melanoma since 
1998 (Robert Koch Institut (Publ.) et al. 2012, 2013, 2015).  

1.2. Treatment options of metastasized melanoma 

As shown, dermatooncologists will have to face a growing number of patients affected 
by unresectable or metastasized melanoma. This section will give a short overview on 
the most important treatment options for these patients in order to provide a good under-
standing of the role of immunotherapy in modern dermatooncology. 

1.2.1. Surgery 
As suggested in the German S3-Guideline for diagnostics, therapy and aftercare, clini-
cians should always consider the excision of the tumor if R0 resection can be reached. 
This counts for stage IV melanoma as well, given that complete excision is almost the 
only treatment that can provide definitive cure (Leitlinienprogramm Onkologie 2016). 
Wevers et al. (2013), however, state that patients who can be treated in this manner are 
rare among those with metastasized melanoma. This relates in particular to metastases 
of the brain, which were shown to correlate with the worst outcome compared to pulmo-
nary and intestinal metastases (Wevers et al. 2013). These unresectable stages of mel-
anoma therefore clearly demonstrate the limits of surgical therapy. 

1.2.2. Radiotherapy 
Radiotherapy as one of the pillars of therapy in modern oncology can be used to treat 
the tumor where surgery cannot reach it. It is a good option especially for brain or spinal 
metastases in a palliative setting of metastasized melanoma therapy 
(Leitlinienprogramm Onkologie 2016). It also shows good response in satellite and dis-
tant metastases (Chadha et al. 1990; Overgaard et al. 1986) and has proven effective in 
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local tumor control, e.g. after lymph node dissection (Burmeister et al. 2012; Creagan et 
al. 1978). Its ubiquitous reach, however, comes at the cost of sometimes severe damage 
to the collateral tissue, several sensitive organs and the immune system (Radvansky et 
al. 2013). 
With the uprise of immunotherapy, the abscopal effect of radiotherapy recently gained 
importance: It describes the effect of localized radiation leading to a systemic antitumor 
immune response, which in the past 50 years was rare and most frequently observed 
with immunogenic tumors (Hu et al. 2017). With immunotherapy, reports of the abscopal 
effect have become more frequent and a synergistic effect is continuously being dis-
cussed (Franceschini et al. 2016).  

1.2.3. Chemotherapy 
Chemotherapy used to be the traditional therapeutic approach to treat stage IV mela-
noma. After extensive literature review, the German S3-Guideline concludes that no ex-
tension of survival could be proven for any of the available chemotherapeutics. The most 
frequently used substance is dacarbazine (DTIC) (Leitlinienprogramm Onkologie 2016), 
with temozolomid and fotemustin having equal response rates (Avril et al. 2004; Middle-
ton et al. 2000; Patel et al. 2011). 
With the introduction of signal transduction inhibitors and immune checkpoint blockers, 
chemotherapy takes a subordinate role. It is recommended in case these modern thera-
pies lead to tumor progression (Leitlinienprogramm Onkologie 2016). 

1.2.4. Signal transduction inhibitors  
The first BRAF inhibitor, vemurafenib, of this rather new therapy was first approved in 
2011 in the USA (FDA 2011) and in 2012 in the EU (EMA 2012). The most important 
substances are effective only in a subset of 35-50% of patients with melanoma, bearing 
a mutation in the BRAF pathway relevant for its carcinogenesis (Cancer Genome Atlas 
Network 2015). There are also inhibitors available for the rare c-KIT mutation, which are 
effective in the small proportion of patients that have this kind of mutation (Carvajal et al. 
2011; Guo et al. 2011).  
Treatment with the BRAF inhibitors dabrafenib or vemurafenib alone has proven very 
effective (Hauschild et al. 2012; McArthur et al. 2014), even more so in combination with 
a MEK-inhibitor like trametinib or cobimetinib: These combinations caused response 
rates between 64-69% in randomized clinical trials (Larkin et al. 2014; Long et al. 2015; 
Robert et al. 2015a). 
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As this combination could prolong progression free survival (PFS), the development of 
tumor resistance against these agents in the course of treatment is common and in gen-
eral no durable response can be reached (Mai et al. 2015). 

1.2.5. Immunotherapy 
The introduction of the immune checkpoint inhibitors ipilimumab, an anti-CTLA-4 anti-
body approved in the EU in 2011 (EMA 2011), and the anti-PD-1 antibodies pembroli-
zumab and nivolumab, approved in 2015 (EMA 2015a, 2015b), brought significant im-
provement to the therapy of metastasized melanoma for the first time in many years. 
This relates to response rates, PFS and overall survival (OS) as well as high grade ad-
verse events (AEs) compared to chemotherapy (Robert et al. 2015c, 2015b). 
Considering therapeutic success, ipilimumab has shown durable response with a plateau 
in survival reached after 3 years (Maio et al. 2015; Schadendorf et al. 2015).  
Anti-PD-1 antibodies, however, were shown to induce better response and survival rates 
with decreasing rates of AEs (Larkin et al. 2015; Schachter et al. 2017) and are therefore 
preferred over monotherapy with ipilimumab (Leitlinienprogramm Onkologie 2016).  
The newer concept of combining ipilimumab with nivolumab, approved in the EU in 2016, 
further enhanced response rates and survival, yet raising the occurrence of high grade 
irAEs to 55%, which led to discontinuation of therapy in almost 30% of patients in a 
randomized phase 3 study. This was more than three times the AE rate of nivolumab 
and two times the rate of ipilimumab in the same study (Larkin et al. 2015). 
These findings clearly indicate that further research is needed to gain better understand-
ing of this special set of irAEs in order to improve their detection and management. This 
is necessary to avoid therapy discontinuation and impairment of the patient’s quality of 
life. In sequence, a brief overview will show the effect mechanisms of immunotherapeutic 
agents and the current knowledge on how the pathogenesis of irAEs is linked to them. 

1.3. Immune checkpoints and the side effects of their inhibition 

The irAEs are different to AEs of chemotherapy and directly linked to the effect mecha-
nisms of immunotherapy (Inno et al. 2017). This section will give a brief overview on 
tumor immunogenicity and the two immune checkpoints targeted in immunotherapy to 
give an understanding on how and why irAEs emerge. Because this is a vast topic in the 
field of immunology with a detailed elaboration reaching far beyond the scope of this 
dissertation, there is an exclusive focus on the general mechanisms involved in the effect 
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of the anti-CTLA-4 antibody ipilimumab and the anti-PD1-antibodies nivolumab and pem-
brolizumab, all of which are frequently used in the CIO Cologne. 

1.3.1. Cancerogenesis and T cells 
The immune system in general and T cellular immunity in particular play a vital role in 
engaging foreign elements in the human body. This counts as well for preventing a can-
cer from growing. The mechanisms a cancer utilizes to escape the immune system are 
not yet fully understood. Schreiber et al. (2011) postulate a cancer immunoediting hy-
pothesis that consists of the following three phases, as depicted in Figure 1: 

- Elimination: The immune system recognizes and destroys existing tumor cells. 
- Equilibrium: Few tumor cells escape destruction by the immune system, dormant 

and unable to proliferate. This phase can last over decades until additional mu-
tation eventually leads to the escape phase. 

- Escape: Tumor cells escape immunologic control, now capable of growing and 
spreading throughout the host. Schreiber et al. (2011) therein highlight the loss 
of tumor antigen expression and the tumor induced immunosuppressive state as 
main contributors. 

 
Figure 1: Cancer immunoediting 

The latter of those two ways of immunoediting, the induced immunosuppression, is par-
ticularly interesting to target in immunotherapy. Especially so if the immunosuppressive 

or from damaged tissues (such as hyaluronan
fragments) as solid tumors begin to grow in-
vasively (30 ). A third potential mechanism may
involve stress ligands such as RAE-1 and H60
(mouse) or MICA/B (human) that are frequently

expressed on the surface of tumor cells. Such lig-
ands bind to activating receptors on innate im-
mune cells, leading to release of pro-inflammatory
and immunomodulatory cytokines, which in turn
establish a microenvironment that facilitates the

development of a tumor-specific adaptive im-
mune response (31). Although in some experi-
mental systems, activation of innate immunity
can protect against tumor development, in most
systems effective cancer immunosurveillance re-
sponses require the additional expression of tu-
mor antigens capable of propagating the expansion
of effector CD4+ and CD8+ Tcells. Thus, coordi-
nated and balanced activation of both innate and
adaptive immunity is needed to protect the host
against a developing tumor. If tumor cell destruc-
tion goes to completion, the elimination phase
represents an endpoint of the cancer immunoedit-
ing process.

The elimination phase has not yet been di-
rectly observed in vivo, but its existence has been
inferred from the earlier onset or greater pene-
trance of neoplasia in mice lacking certain im-
mune cell subsets, recognition molecules, effector
pathways, or cytokines and by studies comparing
tumor initiation, growth, and metastases in wild-
type versus immunodeficient mice [reviewed in
(18 )]. These studies have revealed that the im-
mune components required for effective elimina-
tion of any given tumor are dependent on specific
characteristics of the tumor, such as how it orig-
inated (spontaneous versus carcinogen-induced),
its anatomic location, and its rate of growth.

Equilibrium. Rare tumor cell variants may
survive the elimination phase and enter the equi-
librium phase, in which the adaptive immune
system prevents tumor cell outgrowth and also
sculpts the immunogenicity of the tumor cells.
We envisage equilibrium to be the longest phase
of the cancer immunoediting process—perhaps
extending throughout the life of the host. As
such, it may represent a second stable endpoint
of cancer immunoediting. In equilibrium, the im-
mune system maintains residual tumor cells in
a functional state of dormancy, a term used to
describe latent tumor cells that may reside in
patients for decades before eventually resuming
growth as either recurrent primary tumors or dis-
tant metastases (32 ). Equilibrium thus represents
a type of tumor dormancy in which outgrowth
of occult tumors is specifically controlled by
immunity.

An early suggestion that the immune system
couldmaintain tumor cells in a dormant/equilibrium
state came from tumor transplantation experi-
ments in which mice were primed with a trans-
plantable tumor and then rechallenged with the
same tumor in order to induce tumor latency (33).
However, stronger evidence for the existence of
an immunologically mediated equilibrium phase
came from primary tumorigenesis experiments
showing that immunocompetent mice treated
with low-dose carcinogen [3′-methylcholanthrene
(MCA)] harbored occult cancer cells for an ex-
tended time period even when the mice did not
develop any apparent tumors (34 ). When the
immune system of these mice was ablated [by
administeringmonoclonal antibodies (mAbs) that
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mechanisms have failed. In its most complex form, cancer immunoediting consists of three sequential
phases: elimination, equilibrium, and escape. In the elimination phase, innate and adaptive immunity
work together to destroy developing tumors long before they become clinically apparent. Many of the
immunemolecules and cells that participate in the elimination phase have been identified, but more work
is needed to determine their exact sequence of action. If this phase goes to completion, then the host
remains free of cancer, and elimination thus represents the full extent of the process. If, however, a rare
cancer cell variant is not destroyed in the elimination phase, it may then enter the equilibrium phase, in
which its outgrowth is prevented by immunologic mechanisms. T cells, IL-12, and IFN-g are required to
maintain tumor cells in a state of functional dormancy, whereas NK cells and molecules that participate in
the recognition or effector function of cells of innate immunity are not required; this indicates that
equilibrium is a function of adaptive immunity only. Editing of tumor immunogenicity occurs in the
equilibrium phase. Equilibriummay also represent an end stage of the cancer immunoediting process and
may restrain outgrowth of occult cancers for the lifetime of the host. However, as a consequence of
constant immune selection pressure placed on genetically unstable tumor cells held in equilibrium, tumor
cell variants may emerge that (i) are no longer recognized by adaptive immunity (antigen loss variants or
tumors cells that develop defects in antigen processing or presentation), (ii) become insensitive to
immune effector mechanisms, or (iii) induce an immunosuppressive state within the tumor microenvi-
ronment. These tumor cells may then enter the escape phase, in which their outgrowth is no longer blocked
by immunity. These tumor cells emerge to cause clinically apparent disease. [Figure adapted from (18)]
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state is achieved by manipulating the response of T cells, which play a major role in the 
immune response to tumors (Suarez-Almazor et al. 2017).  
T cell mediated immunity involves multiple steps including clonal selection of antigen-
specific cells, activation and proliferation, infiltration of the respective tissue, engagement 
of targeted cells, and mediation of further immune response through cytokines - with 
each step being controlled by a fine balance of up- and downregulating signals provided 
by immune checkpoints (Pardoll 2012). These immune checkpoints are essential to pre-
vent autoimmunity, maintain self-tolerance and avoid collateral tissue damage (Pardoll 
2012).  
As a tumor exploits these inhibitory immune checkpoints to downregulate and escape its 
respective immune response, the blockade of the respective checkpoints mediated by 
antibodies has shown to improve antitumoral immune response (Ribas 2015). 
For immunotherapy, antibodies targeting the pathways of CTLA-4 and PD-1 do just that. 
They have therefore become very important for the therapy of metastasized melanoma 
and in the next sections, some of their functionalities will be described.  

1.3.2. The CTLA-4 pathway 
The ‘cytotoxic T-lymphocyte-associated protein 4’ (CTLA-4, also known as CD152) is a 
membrane protein receptor localized on CD8+ T effector cells. It is part of a physiologi-
cally well-balanced feedback loop involving the T cell co-stimulating receptor CD28, 
which influences T cell activation after a cognate antigen has been presented to the T 
cell receptor (TCR) (Rudd et al. 2009; Schwartz 1992).  
Both receptors CTLA-4 and CD28 share the same ligands CD80 (also known as B7.1) 
and CD86 (also known as B7.2), with CTLA-4 having a higher overall affinity to both 
ligands (Grohmann et al. 2002). When CD28 connects to one of its ligands after occur-
rence of antigen recognition, it promotes T cell activation signaling induced by the TCR 
(Pardoll 2012).  
Depending on the intensity of these signals, CTLA-4 – which until then remained seques-
tered in intracellular vesicles – is transported to the cell surface to reduce T cell activation 
(Chikuma 2017; Egen et al. 2002). This is shown in Figure 2. The main function is the 
avoidance of an overreaction of the immune system in terms of autoimmunity. It does so 
by sending inhibitory signals within the T cell (Parry et al. 2005; Schneider et al. 2006) 
and actively removing CD80 and CD86 from the antigen presenting cell’s membrane. 
This reduces activation of its counterpart CD28 by depriving it from its ligands (Qureshi 
et al. 2011). 
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Additionally, CTLA-4 effects CD4+ T cells by downregulating helper T cell activity and 
upregulating immunosuppressive activity of Treg cells (Lenschow et al. 1996; Wing et al. 
2008), enabling a broad inhibition of immune responses. The vast influence of CTLA-4 
on moderating immunologic responses was illustrated in CTLA-4 knockout mice that ex-
perienced lethal grades of immune hyper activation (Tivol et al. 1995; Waterhouse et al. 
1995). 

 
Figure 2: The CTLA-4 pathway 

1.3.3. The PD-1 pathway 
Similar to CTLA-4, the T cell membrane protein receptor ‘programmed cell death protein 
1’ (PD-1, also known as CD279) plays an important role in limiting T cell activity and 
preventing autoimmunity (Freeman et al. 2000; Nishimura et al. 2001). With the matching 
antigen contacting the TCR, PD-1 expression begins (Ishida et al. 1992). After T cell 
migration it acts directly in the respective tissue of the tumor (Blank et al. 2004; Dong et 
al. 2002). This is shown in Figure 3. 
 
The expression of PD-1 is induced at the activation state of a T cell (Ishida et al. 1992) 
inhibiting T cell activation associated kinases (Freeman et al. 2000) on contact with its 
ligands. These ligands, which are induced by inflammatory cytokines (Keir et al. 2008), 
are PD-L1 (also known as B7-H1 and CD274) and PD-L2 (also known as B7-DC and 
CD273) (Dong et al. 1999; Latchman et al. 2001). PD-1 can also be found on Treg cells, 
where it promotes their proliferation on contact to abovementioned ligands (Francisco et 
al. 2009). It is additionally located on B lymphocytes, reducing antibody production, and 
natural killer cells, which PD-1 activity inhibits (Fanoni et al. 2011; Terme et al. 2011). 
The respective checkpoint inhibition would therefore enhance both cellular and humoral 
immune activity (Velu et al. 2009). 

(Pardoll 2012, p. 279) 
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Figure 3: The PD-1 pathway 

Chronic antigen exposure in chronic infections or tumor disease can lead to increased 
PD-1 expression. This leads to a stagnation of needed immune response that PD-1 
blockade can partially reactivate (Barber et al. 2006). 
In melanoma especially the presence of PD-L1 on the surface of tumor cells was shown 
to influence the effectivity of PD-1 inhibition: Strong presence of PD-L1 suggested strong 
immunosuppressive activity through the PD-1 pathway, thus correctly indicating higher 
effectivity of PD-1 inhibitors in patients with high PD-L1 concentrations in tumor tissue 
(Abdel-Rahman 2016).  

1.3.4. Immune related adverse events 
Knowing about the pathways of PD-1 and CTLA-4 enables basic understanding of how 
a tumor can utilize those pathways and how blocking them can induce antitumor immune 
response. It also demonstrates how depriving the immune system of one or more of its 
downregulating checkpoints via specific antibodies can lead to a vast variety of immune 
related adverse events that ultimately are manifestations of acute autoimmunity.  
Because of similar effect mechanisms of PD-1 and CTLA-4 antibodies, irAEs in general 
manifest themselves quite similar across the different immunotherapies. Due to the up-
regulation of a broad spectrum of immune responses, every organ can be affected by 
irAEs. They are frequent and often severe, sometimes even fatal (Chen et al. 2015; 
Michot et al. 2016). 
To date, there exists a large and growing number of publications on the different irAEs, 
their onset timing, pathogenesis and management (see for example Champiat et al. 
2016; Iglesias 2017; Stucci et al. 2017; Suarez-Almazor et al. 2017; Tarhini 2013). The 
authors propose differentiated approaches depending on symptoms, severity and af-
fected organ system. To properly reflect on all of these approaches would extend far 
beyond the scope of this dissertation. Thus, there is a focus on general epidemiology 
and pathogenesis as well as basic approaches concerning irAE management. 

(Pardoll 2012, p. 279) 
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Epidemiology 
Despite the advantages of immunotherapy concerning therapy outcome, irAEs remain a 
considerable downside. This is mainly due to their frequency: irAEs of any grade occur 
in up to 90% of patients with anti-CTLA-4 therapy (Hodi et al. 2010), 70% of patients with 
anti-PD-1 or anti-PD-L1 treatment (Brahmer et al. 2012; Topalian et al. 2012) and 96.8% 
of combination therapy (Callahan et al. 2017). IrAEs of grades 1 or 2 mostly affect the 
skin and the bowel, whereas severe irAEs are mainly prevalent in the digestive tract 
(Topalian et al. 2014; Weber et al. 2013). Severe irAEs occurred in 40.4-55% of patients 
receiving combination therapy (Callahan et al. 2017; Postow et al. 2015; Wolchok et al. 
2013), as opposed to 16-34.9% in monotherapy with anti-PD-1 (Weber et al. 2017; 
Wolchok et al. 2013) and 24-27% in monotherapy with anti-CTLA-4 antibodies, respec-
tively (Postow et al. 2015; Wolchok et al. 2013). The occurrence of irAEs sometimes lead 
to a discontinuation of treatment (Michot et al. 2016). 
IrAE onset generally takes place within 3-6 months of anti-CTLA-4 therapy (Topalian et 
al. 2014; Weber et al. 2013) or anti-PD-1 therapy (Topalian et al. 2014; Weber et al. 
2017), while late toxicity is uncommon (Callahan et al. 2017). Dose dependency of irAEs 
has been observed with anti-CTLA-4 but not with anti-PD-1 treatment (Maker et al. 2006; 
Topalian et al. 2014; Wolchok et al. 2010). 
 
Generally, irAE profiles of anti-CTLA-4 and anti-PD-1/PD-L1 treatments are very similar 
although those of the latter are less frequent and severe (Cousin et al. 2016). There are, 
however, some differences besides the onset frequencies in different organ systems to 
be affected. For example, irAEs deriving from anti-CTLA-4 treatment mostly affect the 
skin (44% of cases), mainly papular rashes and pruritus, and the gastrointestinal tract 
(35%) predominantly in the term of colitis (Bertrand et al. 2015). In anti-PD-1 therapy, 
the most common toxicity is fatigue/asthenia (16-34%) followed by loss of appetite (5-
19%), rash (16%) and diarrhea (14%) (Larkin et al. 2015; Weber et al. 2015, 2017). 
Overall, immunotherapy can affect every organ system including the endocrine, with hy-
pophysitis and thyroiditis being the most common (Iglesias 2017). Immunotherapy also 
sometimes leads to exacerbations of pre-existing autoimmune diseases such as vitiligo, 
rosacea or alopecia (Bertrand et al. 2015). 
While irAEs in general were more frequent in combination therapy compared to 
anti-CTLA-4 therapy and more frequent in the latter than in anti-PD-1 therapy, in some 
cases exceptions of this trend were reported. For example, Sjögren’s syndrome seems 
to be more frequent in anti-PD-1 treatment (Topalian et al. 2012), thereby suggesting 
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that the differences between each immunotherapy concerning irAEs might not be limited 
to frequency and intensity alone. 

Pathogenesis 
Not much is known about the pathogenesis of irAEs other than it being a result of the 
general increase in immunologic activity, leading to antitumor and autoimmune re-
sponses, as described in Section 1.3 (Stucci et al. 2017; Ueda et al. 2003).  
Several authors describe phenomena linked to the onset of one group of irAEs or the 
other thereby taking an individual approach for each group of irAEs. Some examples will 
be presented in sequence: 
Biopsies of irAEs affecting the skin showed edema and occasionally perivascular lym-
phocytic infiltrates (Attia et al. 2005). Immunohistochemical analyses identified CD4+ and 
melan-A-specific CD8+ T cells close to melanocytes (Weber et al. 2012), which was in-
terpreted as the effect of anti-CTLA-4 antibody induced immune response directly 
against melanocytes and linked to vitiligo (Tarhini 2013). Gastrointestinal irAEs, as an-
other example, have been associated with an expansion of Th17 cells and serum IL-17 
elevation (Callahan et al. 2011) and Iglesias (Iglesias 2017) reviewed individual patho-
genetic theories for many endocrinopathic irAEs.  
Although reviewing available theories about the pathogenesis of irAEs would go beyond 
the scope of this study, it becomes clear that despite CTLA-4 and PD-1 blockade leading 
to a general increase of immunologic response, the aspects that ultimately cause the 
onset of each individual irAE seem to be less universal.  

Treatment 
When reviewing the different recommendations on irAE management in literature, an 
individual approach for each affected organ system, while mostly independent of the 
respective immunotherapy, is being suggested. Again, elaborating on all different sets of 
irAEs would exceed the scope of this thesis. However, all suggestions basically follow 
the same principles of organ specific treatment in the sense of symptomatic treatment in 
mild cases. In more severe cases, they are augmented with immunosuppression and 
eventual therapy discontinuation, thereby following a more causal therapy approach (see 
e.g. Champiat et al. 2016; Iglesias 2017; Stucci et al. 2017; Suarez-Almazor et al. 2017; 
Tarhini 2013). 
 
Outlined using the review of Stucci et al. (2017) as example, the causal intervention is 
very similar in each group of irAEs: For irAEs grade ≥ 2, a delay of the next dose of 
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immunotherapy is suggested. If the symptoms persist, a systemic corticoid should be 
administered. In case of an irAE grade ≥ 3, a permanent discontinuation of immunother-
apy is suggested combined with a higher dose of the systemic corticoid and a close in-
ward follow-up. In case the irAE worsens or persists, the administration of another im-
munosuppressant like infliximab is recommended, which mostly resolves the irAE.  
 
The principles of the organ specific treatment will be explained looking at the examples 
of immune related rash, pneumonitis and colitis as proposed by Stucci et al. (2017). 
Causal aspects in all cases are as described above and will be left out here. 
A maculopapular rash, for example, can be treated supportively from grade 1 with anti-
histamines, topical steroids, or a combination of both.  
Concerning the irAE pneumonitis, grade 1 should only be monitored, whereas in grades 
2-4 the consideration of a biopsy is recommended to rule out differential diagnoses that 
might contraindicate a steroid intervention. 
If the irAE is a colitis, in grade 1 the supportive care would include oral fluids and anti-
motility agents. In grade ≥ 3, a lower gastrointestinal endoscopy is recommended to ver-
ify the diagnosis, comparably to as it is recommended with pneumonitis. 
 
Such organ specific approach balancing symptom control and causal treatment com-
pletes the algorithm of irAE treatment in general. To obtain more detailed information on 
irAE treatment, please refer to Stucci et al. (2017) or one of the other abovementioned 
publications. 

1.4. Biomarkers in immunotherapy 

The previous sections shed light on the significance of irAEs in immunotherapy. Yet, 
many patients do not respond to immunotherapy. Furthermore, some reports exist on 
cases of hyperprogression, an accelerated progression phenomenon (Champiat et al. 
2017), which emphasizes the necessity of risk-benefit assessment prior to therapy. This 
section focusses on biomarkers described in literature for both outcome and risk of irAEs. 

1.4.1. Biomarkers for outcome 
While it lies in the nature of targeted therapy that identifying a specific mutation in the 
tumor cells yields a valid biomarker for therapy response, it is not that simple for immu-
notherapies. Given the complexity of the immune system itself, few or even a single 
biomarker capable of making valid predictions on therapy outcome are unlikely – a large 
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number of different biomarkers with interactions reflecting those of the physiologic im-
mune system seem far more probable. Axelrod et al. (2017) postulate four general im-
munologic conditions for a successful immune response to immunotherapy: 

- The ability of T cells to infiltrate tumor microenvironment. 
- The ability of T cells to be activated by immune checkpoint inhibitors. 
- The capability of neoantigens to be presented to, and recognized by, T cells. 
- The capability of T cells to effectively mount a cytotoxic response. 

There are several areas of biomarkers being investigated in the context of immune 
checkpoint inhibitors that involve these four conditions. Although this study focuses par-
ticularly on biomarkers in the peripheral blood, other areas will be introduced as well in 
order to provide a proper overview on the topic.  

Melanoma genomics 
The most important genetic melanoma subtypes BRAF (35-50% prevalence), NRAS (10-
25% prevalence) and NF1 (14% prevalence) (Cancer Genome Atlas Network 2015) have 
shown different potential as biomarkers for therapy outcome in immunotherapy. While 
the BRAF mutation seems to have no impact on tumor response (Shahabi et al. 2012; 
Sznol et al. 2014), NF1 mutations were described to be associated with higher response 
rates to anti-PD-1 treatment (Johnson et al. 2016b). Although generally associated with 
inferior prognosis, NRAS mutations may be associated with higher response rates to 
ipilimumab and anti-PD-1 therapy (Johnson et al. 2015, 2016c). 

Tumor microenvironment 
The tumor microenvironment (TME) includes surrounding blood vessels, immune cells, 
fibroblasts and the extracellular matrix, which communicate with the tumor cells and in-
fluence its growth (Axelrod et al. 2017). Given the main effect of the CTLA-4 pathway 
being activated in lymphoid tissue during T cell priming as described in Section 1.3.2, 
TME is more intensively researched in the context of anti-PD-1 treatment. 
Especially immune cells in the TME caught the attention of researchers. For example it 
has been shown that higher CD8+ T cell density at the tumor margin as opposed to the 
tumor center is associated with higher response rates to immunotherapy (Daud et al. 
2016; Tumeh et al. 2014). However, the immunophenotype seems to influence response 
rates as well: In the study of Daud et al. (2016), patients with > 20% CTLA-4hi PD-1hi of 
the CD8+ tumor infiltrating lymphocytes showed a significantly longer PFS (31.6 months) 
compared to those with a share of < 20% (9.6 months) in anti-PD-1 treatment.  
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The expression of immune checkpoints in T cells of the TME as biomarkers for outcome 
are also discussed in literature. Van Allen et al. (2015), for example, show a significant 
association of CTLA-4 and PD-L2 expression in melanoma patients with higher response 
rates to ipilimumab.  
The PD-L1 expression as a biomarker for anti-PD-1 blockade in tumor cells is controver-
sially discussed in literature and the results yet remain inconclusive – despite the seem-
ingly obvious theoretical connection between the presence of checkpoint activators on 
tumor cells and the success of its blockade. This is due to several reasons that cannot 
all be accounted for in this study’s scope, eventually leading to a lack of comparability 
between the findings. For example, there were different thresholds used to define PD-
L1-positive cells in different studies and different binding antigens utilized in immuno-
histochemistry. For further reading, Axelrod et al. (2017) provide a more detailed review 
on this topic. 

Tumor cell signaling 
As reviewed in Section 1.3, tumors learn to evade the immune system in the course of 
their development. Oncogenic cell signaling pathways are an important aspect in the 
immunosuppression induced by a cancer and thus also in the topic of immune checkpoint 
inhibition.  
Alterations in the Ras-MAPK signaling, for example, were shown to be associated with 
lower tumor infiltrating lymphocytes in triple negative breast cancer (Loi et al. 2016). This 
implies the utilization of the corresponding MEK inhibitors, which also play an important 
role in prolonging the response in targeted therapy of the melanoma (see Section 1.2.4) 
in combination with PD-L1/PD-1 inhibition. This led to improved response rates in mouse 
models (Ebert et al. 2016; Loi et al. 2016).  
Another example is PTEN, a tumor suppressant lipid phosphatase that dampens the 
activity of the PI3K pathway. PI3K is responsible for several cellular processes among 
which are the promotion of proliferation and survival. According to Peng et al. (2016), the 
loss of PTEN seems associated with worse response to anti-PD-1 therapy in a mouse 
model, likely due to the mediation of immunosuppressive cytokines. Treatment of af-
fected mice with a selective PI3Kβ inhibitor led to improved response rates of both 
anti-PD-1 and anti-CTLA-4 treatment. 
 
Given the vast amount of possible mutational and transcriptional alterations, their value 
as practical biomarkers will probably remain inferior to their value for the theoretical un-
derstanding of tumor-immune interactions. 
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Mutational burden and neoantigens 
Using whole exon sequencing, it has been shown that a high mutational burden is asso-
ciated with clinical benefit in anti-CTLA-4 (Snyder et al. 2014) and anti-PD-1 treatment 
(Le et al. 2015). This is possibly due to the high rate of neoantigens induced by the high 
mutation rates, thereby increasing the chance for the immune system to recognize the 
tumor and mount a response. Concurringly, patients with low intra-tumoral heterogeneity 
of neoantigens and a large amount of clonal neoantigens showed improved OS in an 
anti-CTLA-4 treatment study (McGranahan et al. 2016).  
These results could be confirmed using less expensive next generation sequencing 
anti-PD-1 and anti-PD-L1 treatment (Johnson et al. 2016b). 

Antigen presentation 
The expression of major histocompatibility complex (MHC) II, but not of MHC I, was 
shown to be associated with improved response rates and OS in anti-PD-1 therapy 
(Johnson et al. 2016a, 2017). It may therefore prove to be a viable biomarker to be con-
sidered when deciding between the different immunotherapies. 
Other defects of antigen presentation have also shown to be associated with anti-PD-1 
therapeutic resistance. Those are pre-existing or acquired mutations in JAK1 or JAK2, 
ultimately leading to antigen presentation defects, loss of PD-L1 expression and thera-
peutic resistance (Shin et al. 2017; Zaretsky et al. 2016). Another example is the loss of 
β-2 microglobuline, necessary in the assembly of MHC I. Its lack was also associated 
with anti-PD-1 resistance (Zaretsky et al. 2016). 

Cytotoxic T cell response  
A final step of an antitumor immune response is the cytotoxic T cell response. Therein 
perforin and granzyme transcripts were high particularly in patients who responded to, 
and long-term survivors of, ipilimumab (Allen et al. 2015).  
As a more general promotor not only for cytotoxic T cells, IFN-γ plays an important role 
as well. For anti-CTLA-4 therapy, the loss of the IFN-γ pathway appears associated with 
therapeutic resistance (Gao et al. 2016), whereas Herbst et al. (2014) postulate higher 
response rates in anti-PD-1 therapy to be associated with higher pretreatment expres-
sion of IFN-γ and IFN-γ inducible genes. 
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Clinical biomarkers 
Clinical characteristics as biomarkers for response to immunotherapy represent a more 
practical alternative to those reviewed in the last subsections, because they usually are 
either obvious and require no further testing or are raised as part of routine diagnostic. 
For example, patients who received therapy prior to the respective immunotherapy had 
inferior response rates to anti-PD-1 treatment in a large phase-I study (n = 655) (Ribas 
et al. 2016).  
Other researchers published studies about the association of tumor burden and locali-
zation with response to immunotherapy and found that, for example, high tumor burden 
can be associated with a lack of clinical response even despite immune response being 
present and measurable in terms of induced CD8+ proliferation (Huang et al. 2017). Other 
authors emphasize the predictive value of distribution of metastases, especially the pres-
ence of liver metastases being associated with inferior response to anti-PD-1 therapy 
(Tumeh et al. 2017). Weide et al. (2016) find the absence of metastases other than soft-
tissue/lung to be associated with favorable OS. 
A completely different biomarker that seems associated with anti-PD-L1 response in-
volves intestinal microbiota. Sivan et al. (2015) identified the presence of bifidobacterium 
to promote antitumoral response and enhance response to anti-PD-L1 treatment in mice. 
This biomarker has the additional advantage of the possible application as a therapeutic 
intervention in melanoma treatment and immunotherapy enhancement. 
Especially interesting in the scope of this study are irAEs as biomarker for clinical re-
sponse. It seems consequential that irAEs being a sign of an immunotherapy induced 
immune response would correlate with clinical antitumor response. In fact, studies have 
shown not only an association of irAE occurrence with antitumor response during 
anti-PD-1 treatment (Judd et al. 2017), but also a dependence on irAE frequency. Pa-
tients suffering from ≥ 3 irAEs had a significantly longer OS compared to those who had 
one or no irAE (p < 0.001) (Freeman-Keller et al. 2016). These findings suggest a strong 
correlation between the occurrence of irAEs and clinical response. 

Peripheral blood biomarkers 
Biomarkers for antitumor response to immunotherapy in the peripheral blood represent 
an easily accessible option, especially when possessing predictive value in longitudinal 
monitoring. Thereby, assessments of early therapy response are additionally enabled 
that could help to decide about alterations in the therapy regime.  
LDH has been established as a prognostic biomarker for general melanoma progression. 
Consequently, higher levels were also associated with worse outcome compared to 
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lower levels both in anti-CTLA-4 and anti-PD-1 treatment (Diem et al. 2016; Martens et 
al. 2016a). For this, Weide et al. (2016) propose a threshold value of the 2.5-fold eleva-
tion at baseline, which will also be utilized in this study. In anti-PD-1 treatment, Diem et 
al. (2016) additionally suggest that an LDH mean decrease during treatment seems to 
be associated with better response compared to patients experiencing an LDH mean 
increase. 
Other blood markers were described to be associated with therapy response as well. 
Among them is a relative lymphocyte count of > 10.5% that correlates with a 1-year 
survival rate of 40.8%, compared to counts < 10.5%, in anti-CTLA-4 treatment (Martens 
et al. 2016a). Martens et al. also found other markers such as low absolute and relative 
eosinophil count to correlate with favorable outcome. Weide et al. (2016) state that a 
relative eosinophil count below 1.5% and a relative lymphocyte count ≥ 17.5% are linked 
to superior OS. In another study, Martens et al. (2016b) propose an increase of absolute 
lymphocyte count and shares of CD4+ and CD8+ T cells during therapy as an indicator 
of favorable survival. Most of these parameters are being measured regularly during 
therapy follow-up and are therefore generally easily accessible for the attending derma-
tooncologist. 
A more specific biomarker of the peripheral blood is circulating tumor DNA. A study of 
Lee et al. (2017) suggests strong correlation between the absence of measurable circu-
lating tumor DNA and response to anti-PD-1 treatment. This correlation to superior re-
sponse rates includes patients with tumor DNA that is not measurable in the peripheral 
blood at baseline (72% clinical response) as well as those who reached undetectable 
levels within the first 12 weeks of therapy (77%) compared to those who did not (6%). 
 
It can be concluded that there are various biomarkers available and more are being re-
searched for therapy outcome of immunotherapy, most of which require additional tests 
and only involve an assessment at baseline. Only clinical biomarkers and those of the 
peripheral blood are widely and easily accessible and can therefore be assessed during 
the course of treatment. 

1.4.2. Biomarkers for adverse events 
Compared to biomarkers for response to immunotherapy, biomarkers for irAEs have 
been less thoroughly investigated (Hopkins et al. 2017). There are, however, some note-
worthy findings that will be reported in this section. 
An increase of irAE occurrence likelihood depending on the presence of prior autoim-
mune disorders has been reported. Yet, this increase relates mostly to low grade irAEs 
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and was found to be no contraindication for anti-CTLA-4 or anti-PD-1 treatment (Johnson 
et al. 2016d; Menzies et al. 2017), thereby presenting itself as a viable baseline indicator 
of low grade irAEs. 
Another baseline antecedent for irAEs was found by Daly et al. (2017), they used analy-
sis of CT imagery to correlate body composition parameters with ipilimumab toxicities. 
The authors found sarcopenia and low muscle attenuation to be associated with high 
grade irAEs. As discussed in the previous section, Roy et al. (2017) state an association 
of microbiota with antitumor and immunological activity to be connected to irAEs as well. 
Thus, another biomarker has been added that, although mainly researched in mice, may 
be utilized as an additional approach for treatment. 
Other authors name various further aspects to be linked to irAE occurrence, such as 
tumor infiltration and location, viral infections like HIV or hepatitis, or medication with 
agents that are known for autoimmune toxicities of their own; namely antiarrhythmics, 
antibiotics, anticonvulsants or antipsychotics (Champiat et al. 2016; Manson et al. 2016). 
 
Concerning parameters of the peripheral blood, there has also been progress in re-
search. In anti-CTLA-4 treatment, Fong et al. (2016) and Oh et al. (2017) suggest T cell 
diversification in CD4+ and CD8+ within the first two weeks to be associated with irAE 
occurrence. They found patients with irAEs to have a higher grade of CD4+ / CD8+ diver-
sification during therapy, thus introducing an indicator of interaction between patient and 
therapy. Although measurements of CD4+ and CD8+ usually do not count as laboratory 
routine parameters in immunotherapy, this biomarker is comparably easily accessible. 
Similar holds true for increased levels of circulating IL-17 at baseline, which seems to be 
associated with gastrointestinal toxicity (Hopkins et al. 2017; Tarhini 2013). Schindler et 
al. (2014) researched the immunologically related absolute and relative eosinophil 
counts at baseline, four and seven weeks after anti-CTLA-4 therapy start for their corre-
lation with irAEs and OS. They found associations of absolute and relative eosinophil 
continuous values with irAE occurrence at week four and seven, but not at baseline. 
Additionally, the respective changes from baseline to week four and from baseline to 
week seven reached statistical significance in their correlation with irAE occurrence. 
 
Concluding, there are much fewer antecedents known to predict the outcome than the 
occurrence of irAEs. Most of them, much like predictors of therapy response, are base-
line biomarkers and can therefore not be used as red flags for irAE occurrence. 
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1.4.3. Research gap 
Immune checkpoint inhibitors are a new and promising option for cancer therapy, not 
only for the malignant melanoma. As such, they are subject to a vivid field of research 
with frequent new publications and approaches for every aspect of therapy. Most au-
thors, however, focus on the aspect of therapy response. But as this form of therapy 
comes of age and more is known about its efficacy, severe “[…] adverse events highlight 
the urgent need to develop suitable biomarkers for patient risk-benefit management” 
(Axelrod et al. 2017, p. 2).  
To date, such biomarkers are mostly limited to assessment at baseline and therefore 
rather vague in their predictive value concerning irAE onset. The only approaches to-
wards a biomarker that can be used during therapy, as opposed to before, concern early 
T cell differentiation, circulating IL-17, and relative as well as absolute eosinophil count, 
as reviewed in the previous section. They have not yet been researched for both 
anti-PD-1 and anti-CTLA-4 treatment. An assessment of more blood parameters has 
been conducted by Khoja et al. (2016a) – however, those were again measured at base-
line and no reliable antecedent was found for irAEs among several blood count param-
eters for anti-CTLA-4 treatment.  
It is still unknown whether there are any reliable biomarkers warning in real time against 
an upcoming irAE – and which they might be. Although such a biomarker would not 
necessarily contribute to a risk-benefit assessment before an immunotherapy, it could 
very well help the dermatooncologist with therapy management and the patient with life 
quality: Early recognition and treatment are considered the most important aspects of 
preventing irAEs to become severe.  

1.5. Objectives of this study 

“Critical to the successful management of select AEs is early recognition” 
–  (Weber et al. 2017, p. 790) 

The primary objective of this study is to give clinicians a new and easily available tool for 
irAE surveillance in immunotherapy and to contribute to closing the research gap de-
scribed in the previous section. This was pursued by analyzing several possible ante-
cedents concerning their individual and combined predictive values using a multilevel 
logistic regression approach augmented by descriptive methods. This section will pro-
vide an overview on which main antecedents were investigated. In sequence, this study’s 
goals will be defined. 
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1.5.1. Red flags for adverse events 
Biomarkers that can be used to predict any or severe irAEs are scarce in literature. Even 
harder to find are those that can be used as a real time red flag against an upcoming 
irAE, hence parameters that must be measurable on a regular basis, such as those in 
the peripheral blood. Those that were published followed the logic of the irAE pathogen-
esis to be a result of general inflammation due to immunotherapy. They were inflamma-
tion parameters like T cell differentiation, circulating IL-17 or eosinophil granulocytes, as 
reviewed in Section 1.4. 
In this study, those laboratory parameters that are measured as a routine in every cycle 
of therapy and reflect immunologic activity were investigated for their ability to predict 
upcoming irAEs. In the data available, these parameters were relative and absolute eo-
sinophil count (REC & AEC) as well as leucocyte count (LC), grouped as the leucocyte 
group1, C-reactive protein (CRP), and lactate dehydrogenase (LDH). There were several 
threshold values defined for biomarkers in each parameter, which will be explained in 
Section 2.2. 

1.5.2. Demographics as a risk factor for adverse events 
In addition to the possible predictive power of laboratory parameters, two other variables 
were available and of interest for the purpose of this study: Gender and age at the be-
ginning of the course of therapy (CoT). As shown in Section 1.4, the scarce knowledge 
on risk factors for irAEs expands to these demographics as well. When looking at other 
immunogenic diseases, however, some have shown to be associated with a certain age 
or gender: Bechterew’s disease typically afflicts young males, more elderly patients suf-
fer from arteritis temporalis and especially the female get Basedow’s disease (Renz-
Polster et al. 2013). Additionally, Khoja et al. (2016b) state that, among others, female 
gender as well as toxicity during anti-CTLA-4 treatment is associated with better PFS. If 
it was assumed that irAEs are associated with better outcome, as Judd et al. (2017) 
suggest, the association of female gender with better PFS theoretically might be in fact 
an association of female gender with irAEs.  
For these reasons, a possible risk of irAE depending on gender and age will be added 
to the final regression models.  

 
1 The reasons for this grouping are due to requirements of the method and will be explained in Section 2.3.2 
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2. Methods 

This study is a monocentral, retrospective, longitudinal study to investigate temporal re-
lations primarily between laboratory parameters and the occurrence of irAEs in immuno-
therapies of the metastatic melanoma. Existing data of the University Hospital of Cologne 
were used of patients with metastasized or unresectable malignant melanoma who re-
ceived immunotherapy as treatment.  
Predominantly five routine laboratory tests with various threshold values were analyzed 
concerning possible heralding of upcoming therapy related AEs. In the following sec-
tions, the process of sampling will be described, the relevant parameters explained and 
developed, and the selected methods of regression and supplementary analysis derived 
and illustrated. 

2.1. Sampling 

Eligible patients had metastasized, unresectable melanoma and received at least one 
dose of any of the following immunotherapies: 

- Ipilimumab: 3 mg / kg every 3 weeks for 4 doses 
- Pembrolizumab: 2 mg / kg every 3 weeks 
- Nivolumab: 3 mg / kg every 2 weeks 
- Combination therapy: 1 mg nivolumab and 3 mg ipilimumab / kg every 3 weeks 

for 4 doses, subsequently 3 mg nivolumab / kg every 2 weeks 
 
The different treatment groups will further be referred to by their target receptors as PD-1 
treatment group (pembrolizumab / nivolumab), CTLA-4 treatment group (ipilimumab) and 
combination therapy group. Data of patients receiving one of the two PD-1 antibodies 
were pooled in this study because of the same effect mechanism. All therapies were 
conducted as long as patients continued to benefit from them. 
To maximize efficacy, not individual patients but individual Courses of Therapy (CoT) 
were investigated, i.e. the timeframe from the first until the last administration of one of 
the abovementioned agents. By that method, CoT could be harnessed of patients who 
had received various immunotherapies: If one patient had a first successful therapy lead-
ing into a prolonged therapy-free period of more than six months followed by progression 
and another CoT with the same drug, they were as well separated into two different CoT. 
This was done twice in this study. 
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Major exclusion criterion was an uncompleted first cycle of therapy for any other reason 
than death or AEs. There were no limitations concerning the number or kind of previous 
treatments.  

2.2. Parameters 

The parameters for the study were collected from the hospital information system of the 
University Hospital of Cologne. Every target parameter was collected at the beginning of 
each cycle of therapy, including baseline. The advice of the Ethics Committee of the 
University of Cologne has been implemented and approval followed in November 2016 
under the sign 16-239. 

2.2.1. Timeframe for data collection 
The day of the first dose of immunotherapy was defined as baseline. A cycle was defined 
as the timespan from one dose to the next. The last day of the last cycle after the last 
dose was chosen according to the documented dates of patient visits and the standard 
length of cycles of therapy (21 days, except nivolumab: 14 days). Deviations from the 
standard length were tolerated from half to double of the standard length. This was cho-
sen in order to be able to document any irAEs that occurred after the last dose and might 
have caused therapy discontinuation. If the last cycle did not fit the abovementioned 
requirements (e.g., no information given after the last dose), it was not taken into con-
sideration and the last cycle was considered the one before the last dose. 
If at the date of treatment administration no laboratory tests were documented (e.g., in 
case of a common cold leading to a delay of treatment administration by one week, but 
tests were conducted on the day of planned treatment), it was matched with the closest 
documented tests before the therapy. Up to half of the average cycle length time differ-
ence was tolerated. If there were no laboratory results documented matching these re-
quirements, they were marked as not available (NA). 
This study’s focus on irAEs in a longitudinal design made adaptions necessary concern-
ing follow-up because the common definition of follow-up from the first dose to the last 
visit could not be applied here. For example, a patient of the CTLA-4 treatment group, 
whose last visit took place a year after the first dose, has a follow-up of one year when 
following the common definition. For the abovementioned requirements of this study, 
however, the timespan that irAEs would be documented in on a sufficiently regular basis 
is naturally limited to the duration of the four cycles of therapy. A similar problem arises 
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if a therapy break lasted until the end of data collection. This is why follow-up was defined 
as the timespan from the first dose to the end of the last cycle as described above. 

2.2.2. Laboratory results 
All laboratory results were obtained from the central laboratory of the University Hospital 
in Cologne and were retrospectively compiled for each cycle of therapy. The tests were 
conducted at the day of the first dose of immunotherapy for baseline and afterwards 
every day of planned immunotherapy administration.  
Standard parameters were chosen that were routinely sampled at the beginning of each 
cycle of immunotherapy, in particular such parameters that may be associated with the 
occurrence of irAEs in the experience of attending dermatooncologists. They had to be 
routine tests not only because of the retrospective setup but also to maximize the poten-
tial benefit of this study. In case a suitable biomarker was detected, clinicians ideally 
should become aware of it merely by looking at their routine diagnostics without the need 
to use extra tests, which might not be available for financial or other constraints. The 
laboratory parameters chosen were c-reactive protein (CRP), leucocytes (LC), relative 
eosinophil count (REC), absolute eosinophil count (AEC) and lactate dehydrogenase 
(LDH) in blood.  
To recognize whether a laboratory parameter was a suitable marker for irAEs, threshold 
values were defined for every laboratory parameter to be considered an anomaly. For 
that the relevant upper reference value of the Institute of Clinical Chemistry of the Uni-
versity Hospital of Cologne was used. The upper reference values were defined as fol-
lows: 

- CRP:  5 mg/l 
- LDH:  250 U/l 
- LC:  11.3 x1E9/l 
- REC:  7.6% 
- AEC:  59 x1E7/l 

 
Based on these thresholds, several markers were defined consisting of one-sided thresh-
olds and intervals. One of the thresholds for each parameter was chosen to be the above-
mentioned upper reference value. They will further be referred to as “E” (Elevation), 
noted after the respective parameter (for example: CRP E for CRP > 5 mg/l).  
For REC and LDH, an additional respective threshold was defined based on the findings 
of Weide et al. (2016): The authors found four predictors that, if apparent at baseline, 
would indicate a favorable OS. Among them were ≥ 1.5% REC and ≤ 2.5-fold elevation 
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of LDH. These thresholds were adopted and will further be referred to as “W” (Weide) 
after the respective parameter. 
Additionally, several intervals were defined for each parameter that, based on the above-
mentioned upper reference value, would  
a) reach from half the upper reference value to a single elevation (HS). 
b) include the single elevation reaching up to double of the upper reference value (SD). 
c) include the double elevation and reach up to triple of the upper reference value (DT). 
 
As the last threshold, the threefold of the reference value was added, which will further 
be referred to as “T” (Triple).  
In the following table, all definitions of one-sided and interval thresholds are listed: 
 
Relative eosinophil count  Lactate dehydrogenase 
REC W:  ≥ 1.5% LDH W:   > 625 U/l 
REC E:   > 7.6% LDH E:  > 250 U/l  
REC HS: > 3.8 – 7.6% LDH HS: > 125 – 250 U/l 
REC SD: > 7.6 – 15.2% LDH SD: > 250 – 500 U/l 
REC DT: > 15.2 – 22.8% LDH DT: > 500 – 750 U/l 
REC T:   > 22.8% LDH T:  > 750 U/l 
 
Absolute eosinophil count Leucocytes 
AEC E:  >  59 x1E7/l LC E:  > 11.3 x1E9/l 
AEC HS: > 29.5  – 59 x1E7/l LC HS: > 5.65  – 11.3 x1E9/l 
AEC SD: > 59  – 118 x1E7/l LC SD: > 11.3  – 22.6 x1E9/l 
AEC DT: > 118  – 177 x1E7/l LC DT: > 22.6  – 33.9 x1E9/l 
AEC T:   > 177 x1E7/l LC T:  > 33.9 x1E9/l 
 
C-reactive protein  
CRP E:   > 5 mg/l 
CRP HS2:  > 3 – 5 mg/l  
CRP SD:  > 5  –  10 mg/l 
CRP DT:  > 10  –  15 mg/l 
CRP T:   >  15 mg/l 

 
2 Because in most cases the lowest CRP value measurable by the laboratory was 3 mg/l, it was not expedi-
ent to define CRP HS as 2.5 – 5 mg/l and an exceptional adaption of the interval was made to enable 
measurements below the HS interval. 
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For each of these thresholds, dichotomous dummy variables were created for each 
measurement. They were set “True” if the condition defined by the respective one-sided 
or interval threshold was met. In addition to that, either the measurement had to be taken 
at baseline, and therefore had to have no preceding measurement, or the measurement 
of the preceding cycle had to be below this threshold or interval. When these conditions 
are not met, the dummy variable’s value for the respective cycle is set to “False”.  
This way, every “True” value represents the very first of a possible series of measure-
ments matching the respective threshold or interval of a parameter. This will further be 
referred to as laboratory anomaly. An illustration of this principle using an exemplary 
course of CRP values can be reviewed in Figure 4. 

 
Figure 4: Laboratory anomalies constructed from an exemplary course of CRP 
The requirement of CRP HS in this example is met only at baseline. Hence, only then its value is “True”. In 
the fifth cycle it is “False”, although the value is between 3 and 5 mg/l because the previous value was above 
5 mg/l. CRP E conditions are met twice in the second and the last cycle. CPR SD is “True” in the second 
cycle only because between the sixth and the last cycle there was no measurement with a value from 5 to 
10 mg/l. It is the same reason for which CRP DT is only “True” in the last cycle and not in the second or 
third, too. A first value above 15 mg/l is only given in the third cycle. Hence, only then is CRP T “True”. 

The utilization of such dummy variables was considered superior compared to analyzing 
the actual values of the parameters: In many cases when a laboratory value rose in the 
context of an irAE, it stayed elevated for several cycles after the irAE onset and some-
times resolved long after or before the irAE. With these dummy variables it was possible 
to enable statistical comparability to actual onsets of irAEs for validation. Additionally, 
these possible biomarkers were suitable to stand out in clinical practice. 
 

CRP HS  True False False False False False False False 
CRP E False False True False False False False True 
CRP SD False False True False False False False False 
CRP DT False False False False False False False True 
CRP T False False False True False False False False 
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Owed to this method, laboratory anomalies occurring at baseline are of a different nature 
as compared to later occurrence: At baseline it cannot be determined whether the pa-
rameter was elevated long before or whether this elevation is acute, because there is no 
earlier measurement available. Additionally, this anomaly cannot be caused by direct 
interaction of the immune system with the respective immunotherapy, whereas anoma-
lies during therapy might. Thus, possible predictive values of laboratory anomalies differ 
depending on their onset at baseline or during therapy. For this reason, all main analyses 
were conducted on three different groups of baseline considerations: The complete da-
taset including baseline measurements and subsets in which baseline was either ex-
cluded or exclusively analyzed.  

2.2.3. Adverse events 
Data on AEs were extracted from the routine documentations by physicians during doc-
tor-patient conversations and assessments at the CIO in Cologne. They were catego-
rized as follows: fatigue, pruritus, neuritis, alopecia, dermatitis, thyroiditis, hepatitis, coli-
tis, pneumonitis, hypophysitis, nephritis, arthritis, pancreatitis, myalgia, angioedema, sto-
matitis, encephalitis, lupus-like appearance and unspecific infectious appearance. 
Based on the information given in the documentations, only AEs that were probably im-
munotherapy-related were included. This was considered to be the case if …  

- there had been an assessment of the AE documented concluding that it was 
therapy-related. 

- the attending physician noted his opinion of a likely therapy-relation. 
- the AE occurred shortly after a dose and was a common irAE according to guide-

line (Leitlinienprogramm Onkologie 2016). 
- the AE was a common irAE without a likely alternative diagnosis. 

 
Additionally, irAE grades were categorized in accordance with the CTCAE v4.0 (U.S. 
Department of Health and Human Services 2010), modified to suit the study design:  

Grade 1: Mild - Clinical or diagnostic observations only, intervention not needed. 
Grade 2: Moderate - Minimal, local or noninvasive intervention sufficient. 
Grade 3: Severe - Hospitalization or prolongation of hospitalization necessary. 

 
The original grades 3 and 4 had to be combined because retrospectively it was hard to 
differentiate whether a condition was life-threatening, hence CTCAE grade 4, or not. 
Thus, all life-threatening irAEs were integrated into grade 3. Because no death occurred 
due to therapy, there was no need for an analogue of CTCAE grade 5. 
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However, for the purpose of this study, there is a lack of differentiation within grade 2. 
For example: Whenever there is any non-invasive treatment indicated, the irAE would 
be classified as grade 2. This holds true for the moderate pruritus that is intense enough 
to prescribe antihistamines as well as for the potentially lethal encephalitis that was de-
tected early and could be controlled with infusions of corticosteroids. To solve this issue, 
another attribute was added to the grades indicating the necessity of corticosteroid-treat-
ment at any point during the course of the irAE. 
The presence and grade of every irAE was classified for each cycle of therapy. However, 
especially in cases of low grade, irAEs follow-up was not always complete; for example, 
the presence of pruritus would not have been specifically documented for every cycle 
despite prevailing for months. Therefore, these gaps were closed if, in the context of the 
documentation, one prolonging irAE was considered more likely than two onsets of the 
same irAE shortly after each other. 
 
Analogously to the dummy variables describing the onset of laboratory anomalies as 
described in Section 2.2.2, there was a dummy variable for the onset of each irAE. The 
default value of these dichotomous variables was “False” but was set “True” to mark the 
irAE onset in every cycle in which an irAE was first described. If several cycles after the 
offset of an irAE the same symptoms returned, it was possible that there was more than 
one onset of the same irAE in one CoT. Additionally, the highest grade reached in the 
course of the respective irAE was added to the dummy variable as well as information 
on whether corticosteroids were necessary. This way, it became possible to differentiate 
the irAE onsets by their severity. Statistically analyzing the laboratory anomalies sepa-
rately for every grade would go beyond the scope of this thesis and likely not yield rele-
vant results. Therefore, the main regression analyses were limited to two groups of irAEs 
having the highest clinical relevance: Any irAE and irAE with steroid intervention. This 
way, it could be analyzed if there were any respective antecedents for any and severe 
irAEs – and if so, which they were. Due to its probable requirement of intervention and 
intensive care, it is especially the latter that needs to be recognized and treated as early 
as possible (Weber et al. 2016). 
To reach this goal, the 18 dichotomous irAE dummy variables were condensed into the 
two variables of any and severe irAE onsets. For example, a “True” value in the severe 
irAE variable would mark the cycle of onset of any irAE requiring treatment with steroids. 
This way, it became possible to directly analyze statistical relationships between the on-
set of laboratory anomalies and irAE onsets in the subsequent cycle of therapy. The 
approach is illustrated exemplary in Figure 5. 
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Figure 5: Exemplary demonstration of irAE dummy variable construction 
The severe hypophysitis is first documented in the second cycle and lasts until the last cycle. Because it is 
severe and hence needs treatment with steroids, both dummy variables’ values in the second cycle are 
“True”. The mild pruritus, only treated with antihistamines, begins in the third cycle. Because it needs no 
steroid intervention, only the any irAE dummy variable’s value is “True” in this cycle. The same counts for 
the mild thyroiditis, which begins in the fourth cycle and is treated with Levothyroxin. The severe colitis, 
which begins in the fifth cycle and requires steroid intervention, causes both dummy variables’ values to be 
“True” in the fifth cycle. In every other cycle, no irAE onset occurs, hence both variables’ values are “False”. 

2.3. Regression analyses 

The main methods used in this study to statistically investigate relationships between the 
abovementioned laboratory anomalies and the onset of irAEs were multilevel and ordi-
nary logistic regression models. A total of 159 regressions were conducted on the six 
different subsets of the dataset. This section will explain the choices of methods made 
and provide detailed insight into how the analyses were conducted. Finally, an additional, 
descriptive method will be introduced, which will help to better relate the value of the 
regressions’ results to clinical practice. 

2.3.1. Choice of methods 
This section will explain the reasons that led to the choice of multilevel and ordinary 
logistic regression as the main statistical methods of this thesis. It will then describe the 
different subsets to which these methods were applied to. 

Multilevel logistic regression 
Multiple regression in general is capable of establishing a model to predict the outcome 
depending on the combination and distinctive prioritization of several independent vari-
ables, which is ultimately the goal of this study. This goes beyond the capabilities of 
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correlation analysis, which can only describe the variables’ status and how they do or do 
not align (Field et al. 2012).  
In single linear regression it does so by using the method of least squares to build a 
straight that best predicts the value of one dependent variable depending on one inde-
pendent variable. Hence, the regression output basically follows a modified equation of 
a straight: 

!" = $ × &" + ( 

In this formula, dv is the dependent variable that can to a certain degree be predicted 
by the independent variable, iv. Its influence on the development of the dependent var-
iable is defined by its regression coefficient B, acting as the slope in the equation, and 
the y intercept I. This equation can be extended in multiple regression by adding further 
dependent variables with their respective regression coefficient (Field et al. 2012). 
Yet, if the dependent variable is categorical, as the dichotomous irAE dummy variables 
used in this study, the linear regression method is not suitable because the assumption 
of a linear relationship between the dependent and independent variables is violated: 
There can be no linear relationship to a variable that only has two expressions (Berry 
1993). Using the logarithmic transformation of the regression equation to express a non-
linear relationship in a linear way, this assumption violation can be avoided (Berry et al. 
1985). Hence, a kind of logistic regression had to be used for the analyses at hand. 
During the process of logarithmic transformation, the regression coefficient B of linear 
regression is replaced in its function by the estimate in logistic regression. For more 
information on this transformation, please refer to Field et al. (2012) or Berry et al. (1985). 
Conventional logistic regression, much like the linear regression, assumes the independ-
ence of errors. This assumption will be violated if, for example, the general tendency of 
a patient towards eosinophil levels above average biases the prediction model as it in-
fluences multiple measurements of the predictor variables. To avoid this violation, a mul-
tilevel approach of logistic regression is required. The principle of this method is to add 
another level of hierarchy to the regression model, in this case the CoT, which is defined 
as random intercept. This means that in principle, an individual logistic regression is con-
ducted on the data of every single CoT. This way, the model could consider the multiple 
measurements of one CoT as an entity independent of the other CoT, thereby making 
the errors independent again. By adding this additional level, it could also be achieved 
that varying durations of therapy between CoT did not bias the model. For further infor-
mation on the topic, please refer to Field et al. (2012).  
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The analyses were conducted with the statistical software R using the glm() function of 
the “stats” package (R Core Team 2017) for logistic regression and the glmer() function 
of the “lme4” package (Bates et al. 2015) for multilevel logistic regression. 

Forced entry method 
When building a multiple regression model, there are several methods of dealing with 
the independent variables to conclude the final model. They can be roughly divided into 
hierarchical, stepwise and forced entry methods (Field et al. 2012). 
The hierarchical method depends on preexisting knowledge on the importance of the 
dependent variables to predict the outcome. Based on this knowledge, the most im-
portant factor is to be entered first into the model followed by the second important until 
the least important (Field et al. 2012). As shown in Section 1.4.3, there is insufficient 
information in literature on antecedents of irAE in each immunotherapy to be able to use 
this method. 
The stepwise methods all rely on the principle of either adding or removing an independ-
ent variable from a pool of variables if the inclusion or exclusion will significantly improve 
the model. Methods would use either, combine both or try all possible combinations of 
independent variables to come up with a model built only from antecedents with a signif-
icant contribution to the model. It is therefore especially useful if there are many different 
independent variables, of which only the relevant ones shall be included into the model, 
and if there are no cues to further narrowing them down. However, some researchers 
state that stepwise methods provide results with low retest replicability and suggest the 
forced entry method as the only appropriate method for theory testing (Field et al. 2012; 
Studenmund et al. 1987). Additionally, as will be shown in Section 2.3.2, due to the as-
sumptions of regressions, the amount of laboratory dummy variables was reduced to 
three, creating no special need for further reduction of variables. 
In the forced entry method, much unlike in the stepwise method, all independent varia-
bles are forced into the model simultaneously. Similar to the hierarchical method, the 
selection of these predictors must be justified. Yet, the order, in which they are entered 
into the model, is of no importance (Field et al. 2012). The forced entry method is there-
fore the one conducted in this study in every case of multiple regression, as there are 
not many independent variables and no sufficient data is given for a definitive hierarchical 
order. The selection process of the independent variables used for these models is de-
scribed in Section 2.3.2. 
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Subsets 
Section 2.2.2 showed the probable necessity of a distinctive consideration of laboratory 
results raised at baseline and later on. Analogously to the subdivision conducted for 
medication, a three-fold subdivision was conducted for baseline consideration: One over-
all group making no distinction, one group considering only baseline parameters and one 
group excluding baseline. This way, if no differences between possible antecedents in 
the groups excluding baseline and baseline only would be found for an antecedent, the 
overall group would be the most suitable for interpretation due to its higher number of 
cases. 
It is noteworthy that in the baseline only subset each CoT has only one measurement 
per variable. Therefore, a multilevel approach is not necessary and conventional logistic 
regression will be applied here. 
 
The next subdivision bases on the two different kinds of dependent variables: Regres-
sions predicting the occurrence of irAE of any grade formed one group, those that pre-
dicted irAEs necessitating steroid intervention the other.  
 
As discussed in the sampling Section 2.1, the dataset this study relies on is designed to 
include patients receiving either PD-1 or CTLA-4 antibodies or a combination of both. 
Assuming that because of the similarities in irAEs between the two kinds of antibodies 
there were no difference in possible antecedents for irAEs, it would be possible to ana-
lyze the whole dataset as one with no differentiation in the medication received. This 
would additionally have the benefit of yielding a high number of cases and raise the 
chances for statistical significance in case an antecedent should exist. However, this 
assumption is not supported in literature and risky, given the differences of effect mech-
anisms as described in Section 1.3. It was therefore necessary to add a distinctive anal-
ysis of the three medications that would show differences in antecedents if present. If 
there are none, the overall analysis, which does not differentiate between the different 
medication groups, is favorable with regard to the number of cases and can be assumed 
valid. This results in a further four-fold distinction of the dataset.  
Multiplying all necessary subdivisions of three baseline considerations, two outcome pa-
rameters and four medication considerations resulted in a total of 24 subsets the final 
regression analysis was to be applied to. These are illustrated in Figure 6. 
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Figure 6: Subset tree 

2.3.2. Selection of laboratory anomalies 
Not every combination of laboratory analyses may be implemented in one regression 
model. It is another assumption that must be met for all independent variables in a model 
not to correlate too strongly with each other, which is the assumption of perfect multicol-
linearity. As a computer assesses a model of independent variables to predict the out-
come, it calculates their individual influence on the model depending on how much vari-
ance of the actual outcome can be explained by that variable. If two or more antecedents 
correlate too strongly with each other, it cannot be determined which of the two variables 
actually explains the variance. According to Field et al. (2012), this assumption violation 
can lead to three-fold biasing of the model including the assessment of the importance 
of antecedents. Given that finding the most important antecedents of irAEs and irAEs 
with steroid intervention is the main goal of this study, it has been taken great care to 
avoid violating this assumption, not only by testing for the variance inflation factors (VIF) 
of the predictors later on. Following the logic of the problems arising from perfect multi-
collinearity it seems plausible that for example combining two different REC dummy var-
iables would lead to a model, in which they, although depending on different thresholds, 
would partially explain the same variance of the outcome. This would lead to the inde-
pendent variables consequentially weakening each other and the model. For instance, 
the first measurement of 16% REC would cause a “True” value in the dummy variables 
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REC W, REC E and REC DT. Additionally, in the case of the three leucocyte variables 
LC, REC and AEC, a high value of one variable might cause a high value of the other, 
again leading to two variables explaining the same variance of outcome in a model when 
implemented together.  
For these reasons, the 24 final models had to have only three laboratory antecedents: 

- LDH 
- CRP 
- One of the three leucocyte parameters REC, AEC and LC 

 
To accomplish the reduction of the antecedents’ count, it was necessary to identify those 
with the best chances of yielding the most meaningful results. Therefore, for each of the 
27 laboratory dummy variables, one logistic regression in the baseline only, overall and 
excluding baseline were conducted, respectively. Only applying the different baseline 
considerations thereby assured comparability of the final results between the different 
treatment groups.  
In the next step, for each of the abovementioned three groups of possible antecedents 
the resulting levels of significance were used to find the statistically most significant 
dummy variable of one group.  
Because of the many factors involved in a multilevel regression, Kreft and de Leeuw 
(1998) state that creating a meaningful directive concerning a minimum sample size is 
impossible, but point out that it increases with each level added to a model. The method 
consulting of the University of Zurich (2016) suggests a minimum of 25 cases for logistic 
regression in every group created by a categorical variable. Hence, if the most significant 
dummy variable would not reach 25 cases even in the overall treatment group, it was 
replaced by the next best variable meeting the requirement. 

2.3.3. Main analysis 
The previously described intense subdivisions had to be considered in main analysis as 
well. Each of the six combinations of three baseline and two outcome considerations had 
a corresponding combination of predictors that were applied to all subordinated treat-
ment groups, as determined in the last section. Ultimately, 24 regressions were con-
ducted for the main analysis, with 6 combinations of laboratory predictors.  
Additional to the laboratory predictors, the demographic variables discussed in Section 
1.5.2 were also implemented, resulting in a total of five predictors per regression model. 
As described before, the six regressions conducted in the baseline only group do not 
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require a multilevel approach and where therefore executed using ordinary logistic re-
gression. The remaining 12 regressions were conducted using the multilevel logistic re-
gression with the additional level of CoT as random intercept. 
The odds ratios (OR) of each predictor were calculated in sequence. They are the expo-
nentials of the coefficients and a suitable effect size for logistic regression (Field et al. 
2012). Every predictor’s coefficient and their confidence intervals were calculated using 
R’s confint() function on the coefficients of each predictor, followed by the exp() function 
to exponentiate each coefficient and its confidence intervals (Field et al. 2012). Both 
functions belong to the “stats” package (R Core Team 2017).  

Expected issue: Subdivisions 
Given the intensive subdivisions it had to be anticipated that some subsets would not 
meet the requirements to yield valid results because of the case count. Considering the 
fairly recent uprise of combination therapy, for example, until the end of the sampling 
process it was likely that only a small number of cycles could be included into the study, 
which would further be narrowed down subsequently, e.g. when only considering base-
line data. When analyzing these data with a predictor that has proven to be the best 
predictor of its group and has > 25 cases in the overall group (see Section 2.3.2) but only 
few “True” entries, it could still be insufficient. This is due to the possibility that there may 
remain no “True” entry after excluding all cases from the predictor that are not baseline 
or combination therapy. It follows that with such a low number of cases, statistical signif-
icance consequentially is unlikely, but it must be considered during analysis and could 
cause the need for a corrective post-hoc regression depending on the regression output. 
Especially when there is no “True” value in a predictor of a regression model in a subset, 
establishing a model with this predictor is not possible. Consequently, in such cases the 
model has to be built without that respective predictor. 

Expected issue: Convergence errors 
Calculating a regression model with R is a repetitive approximation process, in which the 
computer tries in several iterations to approximate a model of differently weighted pre-
dictors that best fits the data it is based upon. Sometimes the default number of iterations 
is not enough to render such a model or building a model with a specific set of predictors 
is not possible. This is oftentimes due to one or more predictors disturbing it, which can 
either be solved by leaving them out of the model or rarely by increasing the number of 
iterations (Field et al. 2012). Because there were no specific reasons found in literature 
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demanding the testing of any of the predictors at question, it was decided to solve this 
issue by identifying and leaving out the respective responsible predictor. 

2.4. Supplementary evaluation as diagnostic tests 

As the abovementioned regression methods are the proper way to evaluate predictive 
values and ORs of the laboratory and demographic parameters analyzed in this study, it 
is interesting to gain even more insight on their informative value. This especially refers 
to laboratory anomalies that have shown statistical significance in regression. An addi-
tional descriptive approach has been chosen to provide a more holistic comprehension 
of the results that were shown to possess at least a statistical tendency towards a pre-
dictive value. 

2.4.1. Concept 
Unlike age or gender, laboratory anomalies ideally would serve as biomarkers indicating 
an imminent irAE and should therefore be interpreted as diagnostic tests. A value of 
“True” in a dummy variable means a positive test result, whereas an irAE is the event 
the test is to predict. This approach requires the calculation of true and false positive (TP, 
FP) as well as true and false negative (TN, FN) predictions, which can ultimately be used 
to calculate sensitivity (SEN), specificity (SPE), positive and negative predictive value 
(PPV, NPV) (Fletcher et al. 1996).  
The results gained by this method are of descriptive nature: They basically are relative 
frequencies of four different scenarios. In the setup of this study, …  

- SEN described the relative frequency of a correct prediction of an irAE by the 
laboratory variable in all cases that an irAE occurred in. 

- SPE described the relative frequency of when there correctly was no irAE pre-
dicted by the laboratory variable in all cases when no irAE occurred. 

- PPV described the relative frequency of the correct positive predictions in all pos-
itive test results. 

- NPV described the relative frequency of the correct negative predictions in all 
negative test results. 

Considering this descriptive nature of the method and its lacking ability to consider the 
level of CoT for the independence of errors, it becomes clear that it can only be inter-
preted cautiously and in combination with the respective regression results. 
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Additionally, implemented functions of regression in R, such as identification of cases 
compromised by NA data, subset analyses, or the methods to calculate confidence in-
tervals must be done manually here. The next section will explain these manual calcula-
tions and elaborate on how TN, FN, TP and FP for each subset and predictor of interest 
were calculated. 

2.4.2. Algorithm of analysis 
For each dummy variable on all laboratory anomalies, as well as the two types of irAEs 
with and without necessary steroid intervention as described in Section 2.2, a list was 
created of all cases in which the dummy variable was set “True”. In these lists, each case 
was made uniquely identifiable by adding the patient ID and the cycle of the case as well 
as its respective treatment group. It was ensured that two or more irAEs occurring during 
the same cycle would be merged into one entry to prevent them from being counted 
twice. Figure 7 illustrates the algorithm developed to calculate TP, FP, TN and FN. R 
was used to automatize this algorithm to provide minimal human error in this repetitive 
procedure and to maximize replicability of results. 
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Figure 7: Algorithm for diagnostic test properties calculation 

Depending on the required analysis, the correct lists out of the 27 laboratory lists and 
two irAE lists were chosen. As the regression analysis before, this analysis must as well 
be dividable into the subsets of the different therapies and baseline considerations de-
scribed in Section 2.3.1. This was achieved by filtering all cases with the non-matching 
treatment or cycle from the lists. After that, the filtered laboratory-list contained all cases 
with the chosen laboratory anomaly that are considered as positive test results (P). 
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However, when the list of Positives and the AE-list are compared, there still is the issue 
of missing data in the laboratory parameters not being reflected in the AE-list. To solve 
this issue, every entry in the irAE-list was compared with the database to find and mark 
those irAE entries that had NA data in the corresponding cycle of the analyzed laboratory 
parameter. After that, the AE-list reflected the correct listing of cases of irAE illness (I), 
so that TPs and FPs could be calculated.  
To calculate TNs and FNs, however, a third list reflecting the negative test results (N) 
was required. It was created only out of those cases that were set “False” in the respec-
tive laboratory dummy variable. After the same filtering processes as were conducted on 
the laboratory- and AE-list the list of negatives was completed. 
To calculate each of the four parameters FN, TN, TP and FP, two of the three lists N, P 
and I were selected and compared to create a third list containing matching cases. The 
cases had to meet the following requirements to be passed on to the respective list: 
 TN: Listed among the negatives (N) but not among the ill (I). 
 TP: Listed among the positives (P) and among the ill (I). 
 FN: Listed among the negatives (N) but not among the true negatives (TN). 
 FP: Listed among the positives (P) but not among true positives (TP). 
The number of cases contained in each list reflected the actual value of its parameter.  

Adjustment of algorithm: Combinations of predictors 
To calculate diagnostic test properties of a combination of laboratory anomalies, the lists 
containing the positives of each anomaly (see Figure 7) had to be merged into a new 
one. Only those entries would be accepted in the new list which were present in every of 
the single positives lists of each anomaly to be combined. This way, the new list only 
contained cycles in which all laboratory parameters had an entry that met the require-
ments of the respective laboratory anomaly.  
Likewise, the lists containing the registered irAEs were merged. This was necessary to 
account for NA entries: irAEs would only then be taken into account if all laboratory pa-
rameters were available in the matching cycle and no value was missing. Proceeding 
with the negatives list calculations from here on could be conducted as usual. 

Adjustment of algorithm: Negative coefficients 
In the case of an antecedent significantly predicting lower probability of irAE occurrence, 
the list containing the entries of irAE occurrence would no longer stand for the event the 
test aimed to predict but for the opposite. Therefore, the definitions would switch: TN 
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became FN and vice versa, FP became TP and vice versa. In sequence, calculations 
could be proceeded. 

2.4.3. Calculation of target parameters 
To calculate SEN, SPE, PPV and NPV for each predictor-subset combination, the fol-
lowing equations were used (Fletcher et al. 1996): 
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In this case, too, confidence intervals were necessary to reflect the statistical significance 
of each parameter. The standard approach would be to define an interval around the 
calculated parameter using a multiple of the standard error. This might however prove 
inaccurate in some cases with very small subsets. Altman et al. (2011) suggest another 
approach for calculations with small numbers and even zeros, which was used in this 
study to ensure valid results. The author’s equations were adapted to calculate the 95% 
confidence interval: 
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In these equations, n is the sample size, r is the number of cases observed with the 
feature, p is the observed proportion of cases per sample size p = r / n and q = 1 - p. 
This approach therefore utilizes the characteristic of SEN, SPE, PPV and NPV all being 
relative frequencies of different features. SEN for example describes the proportion of 
the feature of true positive predictions in the sample of all patients that got ill from irAEs. 
It follows that in this case r = TP, n = I and p = SEN. All confidence intervals were calcu-
lated adapting this principle to the respective parameter.  
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3. Results 

3.1. Patients / courses of therapy  

This section will elaborate on the descriptive statistics of patients and their respective 
CoT analyzed in this study. It begins with the description of the characteristics of the 
sampling process. The treatment groups will then be described regarding gender, age, 
cycles of therapy received, duration of follow-up and experienced irAEs to give a distinc-
tive overview on the population. 

3.1.1. Sample 
208 patients who received immunotherapy between 05/2011 and 05/2017 were assigned 
to the study. Following the method explained in section 2.1, 51 additional CoT could be 
harnessed where two different immunotherapies were conducted separately on the 
same patient. Furthermore, four patients received three therapies, thereby adding eight 
CoT, and two patients received the same therapy twice, but with ≥ 6 months of therapy-
free period in-between. They were hence counted separately adding up to a total of 269 
CoT, as can be reviewed in Figure 8.  

 
 Figure 8: Process of sample inclusion 

From this cohort, 11 CoT had to be excluded for an uncompleted first cycle of therapy 
not due to death or irAEs as well as two others because of simultaneous therapy with 
bevacizumab or vemurafenib, yielding a total of 195 patients with 256 CoT. 
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This total could be divided in 129 CoT (50%) with PD-1 antibodies, 108 CoT (42%) with 
the CTLA-4 antibody ipilimumab and 19 CoT (7%) with combination therapy. The PD-1 
treatment group consisted of 95 treatments (37%) with pembrolizumab and 34 treat-
ments (13%) with nivolumab.  

3.1.2. Previous therapy 
Of 256 CoT, 141 (55%) were preceded by any previous treatment, 115 (45%) were treat-
ment naïve. Of the patients who were not treatment naïve 44 (17%) received more than 
one previous therapy, 39 (28%) had chemotherapy, 39 (28%) targeted therapy and 63 
(45%) were administered another immunotherapy prior to their respective CoT. The 
mean timespan between previous therapy and the respective CoT was 18.6 weeks (me-
dian = 5.1) with a standard deviation (StD) of 43.4 weeks. 
Concerning the PD-1 treatment group, other treatment was conducted prior to 65 CoT 
(50%), 64 (50%) began treatment naïve. There were multiple previous treatments con-
ducted in 28 cases (22%), chemotherapy in 19 (15%), targeted therapy in 17 (13.2%) 
and another immunotherapy in 28 cases (22%). 23.9 weeks (median = 9.4) passed on 
average from the end of the last treatment to the beginning of the first cycle measured in 
this study. The StD was 38.1 weeks. 
The CTLA-4 treatment group contained 63 CoT (58%) that were preceded by previous 
treatment and 45 (42%) that were not. These treatments were multiple in 11 cases (10%) 
and included chemotherapy 35 times (32%), targeted therapy 19 times (18%) and an-
other immunotherapy eight times (7%). The mean period of time between the last treat-
ment and the beginning of the respective CoT was 12.0 weeks (median = 4.7) with a StD 
of 43.5 weeks. 
There were 19 patients who received combination therapy in this study, 13 of which 
(68%) received prior treatment and 6 (32%) were treatment naïve. Of these 13 patients, 
five (38%) had more than one preceding therapy, two (15%) had chemotherapy, seven 
(54%) received targeted and eight (62%) another immunotherapy. In this treatment 
group, the timespan between the previous and the treatment regarded in this study was 
21.2 weeks (median = 2.9) with a StD of 63.7 weeks. 
The distribution of CoT with no, one or more than one previous therapies can be reviewed 
in Figure 9. The timespan between the previous therapy and the respective CoT is illus-
trated in Figure 10. 
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Figure 9: Therapy naïvety 

 
Figure 10: Time elapsed since last systemic treatment 

3.1.3. Gender 
Gender distribution was nearly equal in the overall population, with 133 (52%) CoT of 
male and 123 CoT (48%) of female patients.  
This applies to the PD-1 treatment group as well, which consisted of 62 CoT (47%) of 
male and 67 CoT (52%) of female patients. 
Slightly unequal was the distribution of gender in the CTLA-4 treatment group. It con-
sisted of 62 CoT (57%) of male and 46 CoT (43%) of female patients. 
The combination treatment group was also evenly distributed, with nine male (47%) and 
10 female (53%) patients’ CoT.  
Generally, gender was evenly distributed over all treatment groups, with the moderate 
exception of the CTLA-4 treatment group, in which men were slightly overrepresented. 
Gender distribution of the different subsets are illustrated in Figure 11. 
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Figure 11: Gender distribution 

3.1.4. Age 
In the overall population, the mean age at the beginning of a CoT was 62.7 (median = 
62). It ranged from 20 to 96 years with a StD of 14.3 years. 
The mean age of the PD-1 treatment group was 64.0 (median = 62) with the youngest 
patient beginning the treatment at the age of 26 and the oldest at the age of 96. The StD 
was 13.8 years.  
The CTLA-4 treatment group consisted of CoT starting at the mean age of 62.9 (median 
= 63.5) with a StD of 14.2 years. At the beginning of treatment, the youngest patient was 
26 years old and the oldest 89. 
The small group of CoT with ipilimumab and nivolumab combined started their treatment 
at the mean age of 52.7 years (median = 52). The age ranged from 20 to 67 with a StD 
from the mean of 14.2 years. See Figure 12 for a comparing illustration. 

 
Figure 12: Age distribution 

In general, age did not differ much across the overall, the PD-1 and the CTLA-4 treatment 
groups regarding their mean and quartile values. However, CoT in the combination ther-
apy group started at younger age, which can be due to the small number of CoT meas-

15

25

35

45

55

65

75

85

95

Overall PD-1 CTLA-4 Combination Therapy

Ye
ar

s

47% 53% 57% 
43% 48% 52% 52% 48% 

CTLA-4 PD-1 Overall Combination Therapy 

52
% 

48
% 

Male Female



Results 

 
 

50 

ured. An alternative explanation might be that clinicians with the first few patients to re-
ceive combination therapy may tend to prefer younger, fitter patients for gaining therapy 
experience; they may also be assumed more resilient against the severe irAEs that must 
be expected in the CoT. 

3.1.5.  Cycles 
For this study, 1,507 cycles of therapy were eligible, with parameters measured in each 
cycle as described in Section 2.2. In each treatment, a mean of 5.9 cycles (median = 4) 
were conducted in the overall population ranging from zero, meaning the patient died 
before the second cycle, to 45 cycles. StD was 6.6 cycles. 
The PD-1 treatment group accounted for the majority of cycles with a count of 1,092 
cycles (72%) and a mean of 8.5 cycles (median = 5) per treatment. It ranged from zero 
to 45 cycles with a StD of 8.4. 
In the CTLA-4 treatment group, a total of 359 (24%) cycles of therapy were conducted, 
with a mean of 3.3 (median = 4) ranging from zero to four cycles per treatment. The StD 
was small with 0.9 cycles of therapy. 
A total of 59 (4%) cycles of therapy were conducted in the combination therapy group. 
The mean value was 3.0 (median = 2), with a StD of 2.1 ranging from one to nine cycles.  
The distributions of cycles across the medication groups is illustrated in Figure 13, the 
distribution of cycles per treatment can be reviewed in Figure 14. 

 
Figure 13: Distribution of cycles  Figure 14: Cycles per treatment 
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The mean duration of PD-1 treatment was 25 weeks (median = 15) with a StD of 22.0 
weeks ranging from zero to 110. The CTLA-4 treatment group had a mean duration of 
11.0 weeks (median = 12) per CoT and a StD of 3.6. It ranged from zero to 8 weeks 
again due to the therapeutic regime. Combination therapy lasted an average of 10 weeks 
(median = 7.1) with one week being the shortest and 36 weeks being the longest dura-
tion. The StD was 8.4 weeks.  
The distribution of weeks of therapy over the different medication groups can be 
reviewed in Figure 15, the distribution of weeks per treatment is illustrated in Figure 16. 

 
Figure 15: Distribution of weeks of therapy  Figure 16: Weeks per treatment 
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treatment group it becomes clear that the body of measurement data is unevenly distrib-
uted despite the similar count of CoT. However, 359 measurements will still likely be 
sufficient for the analyses to be conducted. 
This may not hold true for the much smaller combination therapy group, which is why the 
respective analyses’ results should be interpreted with caution. 
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Figure 17 on page 53 provides an overview on each laboratory dummy variable catego-
rized as described in Section 2.2. It shows the distribution of the three possible parameter 
manifestations (True, False, NA).  
Understandably, in many cases the higher the threshold value or interval the lower was 
the number of times it was met. An exception was the CRP. This is not much surprising 
as it often rose beyond the reference threshold value’s triple, which was the highest gen-
eral threshold condition posed in this study. 
However, in some cases the condition was not met often or even once. Variables with 
few or no positives violate the distinctive purpose of the categorization and hence might 
compromise the regression analysis conducted in the next sections. The University of 
Zurich proposes a minimal size of 25 cases for each group created by a categorical 
variable (Universität Zürich 2016). This was not reached several times and must be con-
sidered when moving forward with the regressions by disregarding the respective varia-
bles. 
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Figure 17: Laboratory parameters and their distribution of manifestations 

50% 

60% 

70% 

80% 

90% 

100% 

W E HS SD DT T E HS SD DT T E HS SD DT T W E HS SD DT T E HS SD DT T

50% 

60% 

70% 

80% 

90% 

100% 

W E HS SD DT T E HS SD DT T E HS SD DT T W E HS SD DT T E HS SD DT T

50% 

60% 

70% 

80% 

90% 

100% 

W E HS SD DT T E HS SD DT T E HS SD DT T W E HS SD DT T E HS SD DT T

50% 

60% 

70% 

80% 

90% 

100% 

W E HS SD DT T E HS SD DT T E HS SD DT T W E HS SD DT T E HS SD DT T

REC AEC LC LDH CRP

REC AEC LC LDH CRP

REC AEC LC LDH CRP

REC AEC LC LDH CRP

0% 
10% 
20% 
30% 
40% 
50% 
60% 
70% 
80% 
90% 

100% 

W E
H

S
S

D D
T T E

H
S

S
D D
T T E

H
S

S
D D
T T W E

H
S

S
D D
T T E

H
S

S
D D
T T

False True NA

Overall

PD-1 Treatment Group

CTLA-4 Treatment Group

Combination Therapy Group



Results 

 
 

54 

3.1.8. Adverse events 
A total of 282 irAEs were recorded in 160 CoT (63%). In 96 treatments (38%), no irAE 
occurred. With a mean of 1.1 irAEs per treatment (median = 1) and a StD of 1.2, the 
highest count in one treatment was eight irAEs. In 91 cases (32%) treatment with steroids 
was indicated, the highest grade reached was grade 1 in 125 (44%), grade 2 in 126 
(45%) and grade 3 in 31 cases (11%). On average, the onset began at 3.8 cycles after 
the first dose (median = 2), with a StD of 5.3 reaching from cycle 1 to 41. Most frequent 
irAE was colitis (22%), followed by pruritus (21%) and fatigue (18%). 
Concerning the PD-1 treatment group, 145 irAEs were counted in 72 CoT (56%), with 
patients experiencing none in 57 cases (44%). The average appearance was 1.1 per 
treatment (median = 1), with a StD of 1.4. There were up to eight irAEs counted in one 
CoT. Steroid intervention was required for 31 irAEs (21%), grade 1, as highest grade 
reached, occurred 76 times (52%), grade 2 occurred 58 times (40%) and grade 3 oc-
curred 11 times (8%). The mean onset of irAEs was after 5.5 cycles of therapy (median 
= 3), with a StD of seven, reaching from cycle 1 to 41. Fatigue was the most common 
diagnosis for irAEs (23%), followed by pruritus (22%) and colitis (16%). 
In the CTLA-4 treatment group, patients suffered from a total of 108 irAEs in 71 CoT 
(55%), 37 (29%) developed no irAEs. Mean and median was 1 irAE per treatment, with 
a maximum of 3 and a StD of 0.9. 46 times (43%) steroids were administered as a re-
sponse to severe irAEs. The highest grade reached was grade 1 in 39 (26%), grade 2 in 
58 (54%) and grade 3 in 11 cases (10%). On average, irAEs appeared after 2.1 cycles 
of therapy (median = 2), with a StD of 1 and reaching from cycle 1 to 4, the last cycle of 
a completed treatment with ipilimumab. Colitis occurred most frequently (31%), followed 
by dermatitis (25%) and pruritus (20%). 
Patients of the combination therapy group experienced a total of 29 irAEs in 17 CoT 
(89%). Despite the short average duration of therapy in this treatment group, only 2 pa-
tients (11%) experienced no irAEs. The mean was 1.5 irAEs per treatment (median = 1), 
the StD was 0.9, with the highest count being 3 irAEs. Administration of steroids was 
necessary in 14 cases (48%), grade 1 was the highest grade reached in 10 cases (34%), 
another 10 times it was grade 2 (34%) and nine times grade 3 (31%). On average, the 
onset of irAEs occurred 1.7 cycles after therapy started (median = 2), with a StD of 0.8 
and reaching up to 4 cycles after the first dose of therapy. Colitis was the most common 
irAE (21%), followed by fatigue (17%) and pruritus (14%).  
In the following, Figure 18 illustrates the distribution of treatments with and without irAEs 
occurring, Figure 19 and Figure 20 give an overview on the distribution of irAE occur-
rence in the different medication subsets. Figure 21 visualizes the timing of irAE onsets. 
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The distribution of irAEs by means of their grades is demonstrated in Figure 22, whereas 
an illustration of the incidence of the most frequent irAEs can be reviewed in Figure 23. 

 
Figure 18: Distribution of treatments with and without irAEs 

 
Figure 19: Distribution of irAEs  Figure 20: irAEs per treatment 

 
Figure 21: Onset of irAEs 
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Figure 22: Distribution of irAE grades 

 
Figure 23: Types of adverse events 
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shown that combination therapy induces better results but at the expense of higher rates 
of severe irAEs compared to monotherapy (Larkin et al. 2015). 

3.2. Selection of laboratory parameters 

As described in Section 2.3 a selection process was conducted to find the most suitable 
laboratory parameter of each of the three groups leucocyte (REC, AEC, LC), LDH and 
CRP. This was done six times to evaluate the best setup for every combination of treat-
ment and baseline considerations, adding up to a total of 162 single regressions. This 
section will only document the relevant results. For the complete analysis including the 
R output, please refer to Appendix 1. 

3.2.1. Subset: Including baseline 
Using the whole dataset with no distinctive consideration of baseline data, several sta-
tistically significant results were obtained.  
Looking for the best predictors of irAEs of any grade, the antecedents listed in Table 1 
were selected3. All predictors were estimated to have a positive influence on the appear-
ance of irAEs of any grade. The smallest group created by the categorical dummy vari-
able of REC W consisted of 263 “True” entries. LDH HS had 142 “True” entries in the 
smallest group and CRP T 153. Following the protocol derived in Section 2.3.2, every 
primary choice was accepted. 

Table 1: Chosen predictors (including baseline, any irAE) 

Predictor Estimate p OR 

REC W 0.810 2.32 x10-6 *** 2.25 

LDH HS 1.117 8.59 x10-8 *** 3.06 

CRP T 0.626 0.004 ** 1.87 
Significance codes:   ***  p < 0.001   |   **  p < 0.01   |   *  p < 0.05   |   .  p < 0.1 

Analyzing the best predictors in the overall dataset for irAEs that required steroid inter-
vention the predictors listed in Table 2 were selected. REC DT yielded the best results 
(Estimate = 1.58, p = 0.099) of the leucocyte group but had to be disregarded due to its 
smallest group consisting of only 10 entries. Instead, AEC HD was chosen, which had a 
smallest group size of 137. LDH E and CRP T had smallest group sizes of 212 and 153, 
respectively. Of the three groups of predictors, only CRP with its triple elevation threshold 

 
3 Each row of all tables in this section contains the relevant regression results of a singular regression. The 
combined significance of the predictors chosen in this section is not reflected here and will be evaluated in 
Section 3.3. 
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showed a highly significant predictive value, tripling the odds of occurrence of irAEs with 
steroid intervention – different from the chosen predictors for irAEs of any grade, where 
all groups had at least one significant predictor. 

Table 2: Chosen predictors (including baseline, steroid irAE) 

Predictor Estimate p OR 

AEC HS -0.643 0.202 2.25 

LDH E 0.358 0.252 1.43 

CRP T 1.169 1.00 x10-4 *** 3.22 
Significance codes:   ***  p < 0.001   |   **  p < 0.01   |   *  p < 0.05   |   .  p < 0.1 

3.2.2. Subset: Baseline only 
When exclusively considering laboratory anomalies measured at the beginning of the 
first cycle of therapy, much less significant results were noted.  
Looking for predictors of irAEs of any grade, only REC HS showed statistical significance 
with the smallest categorical group size being 54, almost doubling the odds of irAE oc-
currence when “True”. LDH E had a sufficiently large smallest group size of 102 as the 
best representative laboratory anomaly of its group but did not reach statistical signifi-
cance. CRP HS (smallest group size: 27) was not the best representative of its group 
and inferior to CRP DT, when considering statistical significance only. This anomaly, 
however, did not reach the required minimal group size of 25 and had to be disregarded. 
The final selection of predictors for this subset can be reviewed in Table 3. 

Table 3: Chosen predictors (only baseline, any irAE) 

Predictor Estimate p OR 

REC HS 0.690 0.030 * 1.99 

LDH E -0.410 0.149 0.66 

CRP HS -0.329 0.476 0.72 
Significance codes:   ***  p < 0.001   |   **  p < 0.01   |   *  p < 0.05   |   .  p < 0.1 

The evaluation of predictors for irAEs with steroid intervention yielded no statistically 
significant antecedent. Only CRP T showed a statistical tendency toward doubling the 
odds of steroid irAE occurrence. Of the leucocyte group, three predictors prior to the final 
choice of REC W had to be disregarded due to smallest group sizes of only three “True” 
entries in AEC SD (Estimate = 2.95, p = 0.018), four in AEC E (Estimate = 2.25, p = 
0.028) and seven in REC SD (Estimate = 1.32, p = 0.126). The smallest group size of 
REC W was 159, 142 of LDH HS and 59 of CRP T. The most suitable representative 
predictor of each group is listed in Table 4. 
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Table 4: Chosen predictors (only baseline, steroid irAE) 

Predictor Estimate p OR 

REC W -0.586 0.168 0.56 

LDH HS -0.511 0.220 0.66 

CRP T 0.786 0.071 . 2.19 
Significance codes:   ***  p < 0.001   |   **  p < 0.01   |   *  p < 0.05   |   .  p < 0.1 

3.2.3. Subset: Excluding baseline 
This section is about the search of the best antecedents of irAEs after the start of therapy.  
Analyzing predictors of irAEs of any grade, cases in which the AEC E conditions were 
met (smallest group size: 56), showed a tendency of higher odds of irAE occurrence. 
Similar held true for the CRP group with its triple elevation threshold (smallest group size: 
94). The representative variable of the LDH group, LDH SD (smallest group size: 107), 
did not yield such results. Concerning p, it was the third best predictor of the LDH group. 
Lower p values were attributed to LDH W (Estimate = -1.13, p = 0.28), with a smallest 
group size of 19, and to LDH T (Estimate = -0.94, p = 0.376), with a smallest group size 
of 16. See Table 5 for the final selection of predictors for main analysis of this subset. 

Table 5: Chosen predictors (excluding baseline, any irAE) 

Predictor Estimate p OR 

AEC E 0.684 0.054 . 1.98 

LDH SD 0.116 0.699 1.12 

CRP T 0.525 0.070 . 1.69 
Significance codes:   ***  p < 0.001   |   **  p < 0.01   |   *  p < 0.05   |   .  p < 0.1 

The predictors chosen for the model to predict steroid irAEs during therapy are listed in 
Table 6. Of these, only CRP T (smallest group size: 94) showed a high significance pre-
dicting this kind of irAEs with an OR of 3.8. REC DT also showed a statistical tendency 
(Estimate = 2.11, p = 0.061) but had to be disregarded due to its low smallest group size 
of nine “True” entries. Its successor LC HS had a smallest group size of 115. LDH E 
(smallest group size: 110) is a replacement as well, in this case for LDH DT, which had 
a smallest group with only 22 “True” entries. The ORs of every chosen predictor with its 
confidence interval are illustrated in Figure 24. 
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Table 6: Chosen predictors (excluding baseline, steroid irAE) 

Predictor Estimate p OR 

LC HS -1.123 0.167 0.33 

LDH E -0.037 0.946 0.96 

CRP T 1.343 0.003 ** 3.83 
Significance codes:   ***  p < 0.001   |   **  p < 0.01   |   *  p < 0.05   |   .  p < 0.1 

 
Figure 24: ORs of all selected laboratory parameters 
 (incl. = including; excl. = excluding; b. = baseline) 
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Each subsection will provide tables containing all relevant results of the regressions. At 
the end of this chapter, Figure 28 on page 70 will illustrate diagnostic test properties of 
all single antecedents with p < 0.1. 

3.3.1. Assumption testing 
The assumption of multicollinearity was checked for each of the six overall treatment 
groups by testing for VIF and the tolerance statistic (= 1/VIF). Myers (1990) suggests the 
VIF to be below 10, whereas according to Menard (1995) its reciprocal should be above 
0.2. Both VIF and its reciprocal resulted in values around 1 in each subset, suggesting 
that the assumption has been met.  
The whole R output of the regressions including the tests for multicollinearity and every 
calculated OR can be reviewed in Appendix 2. 
 
As anticipated, some problems emerged with predictors preventing the model from con-
verging, which consequently had to be eliminated. These problems will be discussed in 
the last section of this chapter.  

3.3.2. Subset: Including baseline 
The analysis of all data including baseline measurements yielded ten statistically signif-
icant results - the majority among the three baseline consideration subsets, which is 
possibly due to the larger number of cases. Table 7 and Table 8 contain the results of all 
regressions concerning this baseline-subset, whereas Figure 25 on page 64 illustrates 
the results’ effect sizes. 
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Significance codes:   ***  p < 0.001   |   **  p < 0.01   |   *  p < 0.05   |   .  p < 0.1 

Overall:  

LDH HS, REC W and CRP T predicted higher incidence of any irAE occurrences. 
CRP T also predicted higher incidence of steroid irAE occurrence when 
considering no baseline-differentiation. 

Including all treatment groups all three selected laboratory anomalies showed significant 
predictive value for irAEs of any grade. LDH HS highly significantly (p < 0.001) increased 
the odds of irAEs occurrence by 2.39. It detected 20.2% of all irAEs (SEN), with 34.5% 
of its predictions being correct (PPV). SPE was at 93.6%, the absence of irAEs in the 
next cycle was predicted correctly in 87.6% of cases (NPV). 
CRP T almost doubled the odds highly significantly (p = 0.002), with a SEN of 16.4% and 
a PPV of 22.0%. Its SPE shows a coverage of 90.4% of all cycles without irAE onset, 
correctly predicting them in 86.7% of cases. 
REC W significantly (p = 0.012) increased the odds by the 1.64-fold, covering 29.8% of 
all irAEs (SEN). 26.4% of its predictions correctly indicated an upcoming irAE (PPV), 
while it correctly predicted none in 87.8% of cases (NPV). SPE was at 85.8%. 
If both anomalies REC W and CRP T occurred simultaneously, their OR would be at 
3.23. They covered 4.5% of irAEs combined (SEN) and predicted an irAE occurrence 
correctly in 29.7% of cases (PPV). SPE was at 98.2%, while 86.3% of negative predic-
tions were correct (NPV).  
REC W and LDH HS combined reached an OR of 3.92 and a SEN of 15.5%. Positive 
predictions were true in 38.1% of cases, SPE was at 95.9% and NPV reached 87.5%. 

	 Estimate p Lower OR Upper
Overall

Intercept -2.04 <	0.001	***
LDH	HS 0.87 <	0.001	*** 1.50 2.39 3.79
REC	W 0.50 0.012	* 1.11 1.64 2.40
CRP	T 0.68 0.002	** 1.27 1.97 3.01
Sex:	Female 0.16 0.363 0.83 1.18 1.68
Age - - - - -
Combination	Therapy	

Intercept -0.14 0.903
LDH	HS 1.19 0.212 0.52 3.27 24.99
REC	W -0.01 0.987 0.22 0.99 3.92
CRP	T 0.96 0.150 0.69 2.62 10.16
Sex:	Female 0.68 0.315 0.43 1.97 7.90
Age -0.02 0.441 0.93 0.98 1.03

PD-1	Antibody	Therapy
Intercept -2.87 <	0.001	***
LDH	HS 1.01 0.003	** 1.40 2.75 5.36
REC	W 0.64 0.021	* 1.09 1.89 3.22
CRP	T 0.45 0.166 0.81 1.56 2.87
Sex:	Female 0.00 0.988 0.62 1.00 1.60
Age 0.01 0.371 0.99 1.01 1.03

CTLA-4	Antibody	Therapy
Intercept -1.90 0.002	**
LDH	HS 0.53 0.102 0.89 1.71 3.22
REC	W 0.18 0.543 0.67 1.20 2.11
CRP	T 0.51 0.130 0.85 1.67 3.20
Sex:	Female 0.50 0.046	* 1.01 1.65 2.69
Age 0.01 0.472 0.99 1.01 1.02

95%	CI	for	odds	ratio
	 Estimate p Lower OR Upper

Overall
Intercept -3.47 <	0.001	***
CRP	T 1.24 <	0.001	*** 1.83 3.47 6.41
AEC	HS -0.62 0.224 0.18 0.54 1.33
LDH	E -0.02 0.945 0.48 0.98 1.86
Sex:	Female 0.29 0.335 0.74 1.34 2.47
Age - - - - -
Combination	Therapy	

Intercept -2.18 0.157
CRP	T 0.59 0.488 0.31 1.81 10.57
AEC	HS -0.29 0.816 0.03 0.75 6.87
LDH	E 0.06 0.951 0.15 1.06 5.43
Sex:	Female -0.65 0.470 0.05 0.52 2.83
Age 0.02 0.510 0.96 1.02 1.10

PD-1	Antibody	Therapy
Intercept -5.07 <	0.001	***
CRP	T 1.88 <	0.001	*** 2.71 6.52 15.67
AEC	HS -0.91 0.384 0.05 0.40 3.10
LDH	E 0.12 0.82 0.39 1.13 3.24
Sex:	Female 0.14 0.734 0.52 1.15 2.55
Age 0.02 0.335 0.98 1.02 1.05

CTLA-4	Antibody	Therapy
Intercept -3.42 <	0.001	***
CRP	T 0.62 0.181 0.71 1.86 4.45
AEC	HS -0.76 0.227 0.11 0.47 1.39
LDH	E -0.40 0.419 0.23 0.67 1.67
Sex:	Female 0.83 0.020	* 1.15 2.30 4.71
Age 0.02 0.243 0.99 1.02 1.04

95%	CI	for	odds	ratio

Table 7: Results (including baseline, any irAE) Table 8: Results (including baseline, steroid irAE) 
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Combining CRP T and LDH HS led to an OR of 4.71. When both anomalies occurred 
simultaneously, they covered 3.3% of irAEs (SEN) and predicted them correctly in 53.3% 
of cases (PPV). 99.5% of the cycles without irAE onset were correctly recognized (SPE); 
86.3% of the negative predictions were true (NPV). 
When all three antecedents were present, they reached a combined OR of 7.72 and 
correctly predicted irAEs in 66.7% of cases (PPV), thereby covering 2.5% of irAEs (SEN). 
SPE was at 99.8%, whereas negative predictions were true in 86.1% of cases (NPV). 
Gender had no significant influence on irAE occurrence and age had to be excluded from 
the model due to causing a convergence error (see Section 3.3.5). 
 
To predict irAEs with steroid intervention, only one predictor showed significant influence 
on steroid irAE occurrence. CRP T significantly increased the odds of occurrence by the 
3.5-fold, which is an increase of its predictive value in OR and significance (p < 0.001) 
compared to its predictive value for any irAEs. Its SEN increased as well, covering 26.9% 
of steroid irAE and correctly predicting them in 11.5% (PPV). SPE remained similar at 
90.2%, while NPV increased by 10 percent points to 96.3%. All other predictors did not 
lead to significant results; again, age had to be left out due to convergence issues (see 
Section 3.3.5). 

PD-1 treatment group 

LDH HS and REC W predicted higher incidence of any irAE occurrences. CRP T 
predicted higher incidence of steroid irAE occurrence when considering no 
baseline-differentiation. 

Two antecedents showed significant predictive values concerning the occurrence of any 
irAEs in the PD-1 treatment group. The OR of LDH HS (p = 0.003) was calculated to be 
2.75, covering 17.3% of occurred irAEs. 30.6% of the positive predictions were correct 
(PPV), reaching a SPE of 95.3%. Negative predictions were made correctly in 90.6% of 
cases. 
REC W (p = 0.021) showed an OR of 1.89 in this subset. SEN was at 27.3% and PPV 
at 21.9%. In 91.0%, cycles with no irAE onset were correctly predicted (NPV), covering 
88.2% of cycles without an onset (SPE). 
If both laboratory anomalies occurred simultaneously, the OR would be 5.20. They would 
cover 13.6% of irAEs combined, correctly predicting them in 32.7% of cases. Negative 
predictions were true in 90.5% of cases (NPV), SPE was at 96.7%. 
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All other predictors, including CRP T, had no significant influence on the occurrence of 
irAE of any grade. 
When predicting steroid irAEs, however, CRP T was the only antecedent to reach statis-
tical significance (p < 0.001). It was calculated to increase the odds of an upcoming irAE 
that ultimately needed steroid intervention by the 6.5-fold in this subset, correctly pre-
dicting them in 8.9% of cases (PPV) and covering 33.3% of steroid irAEs (SEN). Of the 
cycles that contained no steroid irAE onset, 92.2% were covered (SPE) and correctly 
predicted in 98.4% of cases (NPV). 
All other antecedents of this model showed no significant predictive value for steroid irAE 
occurrence. 

CTLA-4 treatment group 

Female gender predicted higher incidence of any and steroid irAE occurrences 
when considering no baseline-differentiation. 

The only significant predictor in both analyses of predictors of irAEs of any grade as well 
as those with required steroid intervention was gender. Female patients had significantly 
higher odds to develop irAEs of any grade (p = 0.046, OR = 1.65) and even more so 
concerning irAEs with necessary steroid intervention (p = 0.020, OR = 2.3). Other than 
that, no significant antecedents were found. LDH HS (p = 0.102) was on the margin of a 
statistical tendency (p < 0.1) to increase the probability of any irAEs to occur. 

 
Figure 25: Odds ratios of predictors (Subset: Including baseline) 
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3.3.3. Subset: Baseline only 
Analyzing the predictive value of laboratory measurements exclusively at baseline 
yielded only few results worth mentioning, with only one reaching statistical significance. 
Table 9 and Table 10 show the results of the main regressions of this subset. Figure 26 
on page 66 illustrates their ORs as a measure of effect size. 

  

  
Significance codes:   ***  p < 0.001   |   **  p < 0.01   |   *  p < 0.05   |   .  p < 0.1 

Overall 

At baseline, REC HS showed a trend to predict a higher incidence of any irAE 
occurrence. 

The highest level of significance in the group including all therapies was reached by REC 
HS (p = 0.064) in terms of a tendency to indicate a probability increase of an irAE onset 
of any grade with an of OR 1.86. SEN reached was at 30.4%, PPV was 44.4%. Negative 
predictions were true in 71.5% of cases, covering 82.1% of cycles without irAE onset. 
In the model to predict steroid irAEs, only CRP T (p = 0.101) came close to a statistical 
tendency. All other predictors of both any and steroid irAEs showed no noteworthy pre-
dictive power. 

PD-1 treatment group 

At baseline, LDH E predicted lower incidence of any irAE occurrence. 

In the PD-1 treatment group, only the LDH elevation above 250 U/l showed a significant 
predictive value for irAEs of any grade not to occur (p = 0.034). It is the only significant 

	 Estimate p Lower OR Upper
Overall

Intercept -0.34 0.614
REC	HS 0.62 0.064	. 0.96 1.86 3.59
LDH	E -0.38 0.208 0.38 0.68 1.23
CRP	HS -0.64 0.201 0.38 0.68 1.23
Sex:	Female 0.40 0.166 0.85 1.48 2.61
Age -0.01 0.385 0.97 0.99 1.01
Combination	Therapy	

Intercept 1.55 0.434
REC	HS -0.27 0.863 0.04 7.66 15.90
LDH	E 0.37 0.742 0.16 1.44 12.88
CRP	HS 17.47 0.994 0.00 >	100 >	100
Sex:	Female 0.73 0.515 0.23 2.07 18.55
Age -0.04 0.351 0.89 0.96 1.04

PD-1	Antibody	Therapy
Intercept -2.24 0.048	*
REC	HS 0.70 0.137 0.79 2.02 5.07
LDH	E -1.05 0.034	* 0.13 0.35 0.90
CRP	HS -0.29 0.651 0.19 0.75 2.49
Sex:	Female -0.06 0.885 0.39 0.94 2.24
Age 0.02 0.178 0.99 1.02 1.06

CTLA-4	Antibody	Therapy
Intercept 0.22 0.848
REC	HS 0.71 0.198 0.69 2.02 5.98
LDH	HS -0.27 0.575 0.29 0.76 1.94
CRP	HS -1.55 0.167 0.01 0.21 1.36
Sex:	Female 0.75 0.096	. 0.88 2.13 5.26
Age -0.02 0.244 0.95 0.98 1.01

95%	CI	for	odds	ratio 	
	 Estimate p Lower OR Upper

Overall
Intercept -1.86 0.109
CRP	T 0.82 0.101 0.84 2.27 6.02
REC	W -0.50 0.267 0.25 0.61 1.48
LDH	HS -0.06 0.905 0.37 0.94 2.49
Sex:	Female 0.15 0.729 0.49 1.17 2.81
Age -0.01 0.721 0.96 0.99 1.03
Combination	Therapy	

Intercept -231.60 0.999
CRP	T 143.38 0.999 0.00 >	100 >	100
REC	W -66.30 0.999 0.00 0.00 >	100
LDH	HS -72.87 1.000 0.00 >	100 >	100
Sex:	Female -126.32 0.999 0.00 0.00 >	100
Age 3.40 0.999 0.00 29.90 >	100

PD-1	Antibody	Therapy
Intercept -2.67 0.202
CRP	T 0.39 0.639 0.25 1.48 7.40
REC	W 0.00 0.997 0.23 1.00 5.30
LDH	HS -0.40 0.608 0.14 0.67 3.12
Sex:	Female -0.22 0.755 0.18 0.80 3.29
Age 0.01 0.845 0.95 1.01 1.06

CTLA-4	Antibody	Therapy
Intercept -2.47 0.162
CRP	T 1.21 0.120 0.69 3.36 15.66
REC	W -0.46 0.503 0.16 0.63 2.48
LDH	HS 0.41 0.581 0.37 1.51 7.31
Sex:	Female 1.28 0.087	. 0.90 3.59 18.29
Age -0.01 0.667 0.94 0.99 1.04

95%	CI	for	odds	ratio

Table 9: Results (only baseline, any irAE) Table 10: Results (only baseline, steroid irAE) 
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predictor in the subset only baseline, and one of only two antecedents predicting a lower 
probability of irAE occurrence in the whole analysis. Its OR was calculated to be at 0.35, 
correctly predicting the absence of irAE in 83.0% of cases (PPV), thereby covering 
46.8% of all cycles without irAE onset (SEN). In 32.4% of cases when the anomaly was 
not present, the irAE occurred (NPV), covering 72.7% of irAE (SPE). 
Other than that, no tendentious or significant predictive values were found in this treat-
ment group. 

CTLA-4 treatment group 

At baseline, female gender tendentiously showed a trend to predict a higher 
incidence of any and steroid irAE occurrence. 

The results yielded in this baseline subset were similar to the ones of the overall subset: 
The highest predictive value was expressed as a tendency of the female gender to in-
crease the occurrence of irAEs of any grade (p = 0.096, OR = 2.13). Even more so 
concerning steroid irAEs (p = 0.087, OR = 3.59). Besides this, no antecedent showed 
significant predictive value. 

 
Figure 26: Odds ratios of predictors (Subset: Only baseline) 

3.3.4. Subset: Excluding baseline 
Compared to the subset that exclusively analyzed baseline parameters, the excluding 
baseline subset yielded more significant results but also convergence issues in three 
regression models. 
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Table 11 and Table 12 summarize the results of the regressions conducted. Figure 27 
illustrates the respective ORs. 

  

  
Significance codes:   ***  p < 0.001   |   **  p < 0.01   |   *  p < 0.05   |   .  p < 0.1 

Overall 

During therapy, AEC E predicted higher incidence of any irAE occurrence. CRP T 
especially predicted higher incidence of steroid irAE occurrence during therapy. 
LC HS showed a trend to predict lower steroid irAE occurrence. 

Similar to the subset including baseline, CRP T proved predictive value. For irAE of any 
grade, significance was of a statistical tendency (p = 0.058, OR = 1.73) to increase the 
odds of occurrence. SEN was at 11.5%, SPE was at 92.2%. Positive predictions were 
true in 15.7% of cases (PPV) and negative ones were true in 89.2% (NPV). 
Effect size and level of significance for the same anomaly were higher for irAE with ster-
oid intervention (p = 0.002, OR 4.58). It covered 21.2% of steroid irAEs (SEN), correctly 
predicting them in 9.1% of cases (PPV). 97.0% of negative predictions were true (NPV), 
covering 92.2% of cycles without steroid irAEs (SPE). 
Additionally, for both irAE types the leucocyte group proved valuable, in this case rather 
to predict any grade irAE than those with required steroid intervention. AEC E (p = 0.032) 
more than doubled the odds of any irAE occurrence, predicting 7.8% of irAEs (SEN) in 
predictions that were correct in 20.6% of cases (PPV). NPV was at 88.9% and covered 
96.1% of cycles without steroid irAEs (SPE). 

	 Estimate p Lower OR Upper
Overall

Intercept -2.03 <	0.001	***
CRP	T 0.55 0.058	. 0.96 1.73 3.01
AEC	E 0.76 0.032	* 1.03 2.13 4.18
LDH	SD 0.09 0.759 0.59 1.10 1.93
Sex:	Female 0.08 0.709 0.72 1.08 1.63
Age - - - - -
Combination	Therapy	

Intercept 1.04 0.655
CRP	T -0.34 0.786 0.03 0.71 7.92
AEC	E - - - - -
LDH	SD -0.31 0.843 0.02 0.74 13.68
Sex:	Female 0.90 0.447 0.13 2.45 83.02
Age -0.04 0.412 0.82 0.96 1.06

PD-1	Antibody	Therapy
Intercept -2.72 <	0.001	***
CRP	T 0.38 0.355 0.66 1.46 3.24
AEC	E 1.25 0.015	* 1.28 3.50 9.61
LDH	SD 0.25 0.515 0.61 1.28 2.71
Sex:	Female 0.02 0.926 0.63 1.02 1.66
Age 0.01 0.550 0.99 1.01 1.02

CTLA-4	Antibody	Therapy
Intercept -2.45 0.001	**
CRP	T 0.47 0.293 0.64 1.60 3.80
AEC	E 0.12 0.803 0.41 1.12 2.71
LDH	SD -0.30 0.551 0.25 0.74 1.88
Sex:	Female 0.38 0.215 0.80 1.46 2.69
Age 0.02 0.133 1.00 1.02 1.04

95%	CI	for	odds	ratio
	 Estimate p Lower OR Upper

Overall
Intercept -4.34 <	0.001	***
CRP	T 1.52 0.002	** 1.78 4.58 11.77
LC	HS -1.55 0.088	. 0.04 0.21 1.26
LDH	E -0.22 0.698 0.26 0.80 2.48
Sex:	Female 0.44 0.328 0.64 1.56 3.79
Age 0.00 0.962 0.97 1.00 1.03
Combination	Therapy	

Intercept -0.96 0.753
CRP	T -0.02 0.994 0.02 0.98 48.44
LC	HS -1.79 0.453 0.00 0.17 17.79
LDH	E 0.96 0.621 0.06 2.62 118.81
Sex:	Female 0.19 0.913 0.04 1.21 37.55
Age 0.00 0.947 0.88 1.00 1.13

PD-1	Antibody	Therapy
Intercept -5.71 <	0.001	***
CRP	T 2.20 <	0.001	*** 2.99 9.04 23.36
LC	HS - - - - -
LDH	E 0.20 0.794 0.18 1.23 4.67
Sex:	Female 0.40 0.788 0.56 1.49 5.33
Age 0.02 0.396 0.98 1.02 1.06

CTLA-4	Antibody	Therapy
Intercept -3.90 <	0.001	***
CRP	T 0.40 0.504 0.40 1.50 4.53
LC	HS -0.97 0.363 0.02 0.38 2.06
LDH	E -0.84 0.286 0.06 0.43 1.65
Sex:	Female 0.73 0.082	. 0.92 2.08 4.82
Age 0.02 0.131 0.99 1.02 1.06

95%	CI	for	odds	ratio

Table 11: Results (excluding baseline, any irAE) Table 12: Results (excluding baseline, steroid irAE) 
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LC HS, on the other hand, showed more of a tendency (p = 0.088) to lower the odds of 
new steroid irAE occurrence to a fifth. When this laboratory anomaly was present, it was 
followed by steroid irAEs in 9.9% of cases (PPV), covering 9.3% of them (SEN). NPV 
was at 37.8%, SPE was at 96.2%. 
When occurring simultaneously, the laboratory anomalies CRP T and AEC E reached 
an OR of 3.68 to predict the onset of any irAE, theoretically. In this subset, however, the 
simultaneous presence of both anomalies occurred rarely and did not lead to no true 
positive prediction, making the diagnostic test statistics uninterpretable.  
When CRP T and the absence of LC HS occurred simultaneously, their OR reached 
21.84. They covered 19.2% of steroid irAEs, predicting them correctly in 9.9% of cases. 
SPE was at 93.6% and negative predictions were true in 97.0%. 
Besides that, no significant predictive value could be determined. The predictor age 
caused a convergence error in the model for any irAEs (see Section 3.3.5). 

PD-1 treatment group 

During therapy, AEC E predicted higher incidence of any irAE occurrence. CRP T 
predicted higher incidence of steroid irAE occurrence. 

In this treatment group, there is again some difference between the model predicting any 
irAE and the one predicting steroid irAE. Although CRP T is the only and highly significant 
predictor, which increases steroid irAE occurrence by a nine-fold (p < 0.001, SEN = 
35.3%, SPE = 93.9%, PPV = 8.5%, NPV = 98.9%), it seems to play no relevant role 
when predicting irAEs of any grade. Here, only AEC E proved statistical significance by 
raising the odds of occurrence by a 3.5-fold (p = 0.015), thereby covering 6.3% of irAEs 
(SEN), being predicted correctly in 22.2% of cases (PPV). Its predictions covered 97.8% 
of cycles without irAE onset (SPE), correctly predicting them in 91.4% of cases (NPV). 
LC HS caused a convergence error in the model for steroid irAEs (see Section 3.3.5). 
  

 
4 The OR of the absence of LC HS was calculated as J

KL
 because of the negative estimate.  
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CTLA-4 treatment group 

During therapy, female gender showed a trend to predict higher incidence of 
steroid irAE occurrence. 

Regression analysis yielded no significant results in this treatment group. Only a ten-
dency of female gender to positively influence the odds of occurrence of steroid irAEs 
could be shown (p = 0.082).  

 
Figure 27: Odds ratios of predictors (Subset: Excluding baseline)  
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 Figure 28: Diagnostic test properties5  

 
5 All listed predictors had at least a statistical tendency towards predicting irAE in the respective regression 
models. All but two predicted higher probability of occurrence. LDH E (only baseline subset to predict any 
irAE occurrence in the PD-1 treatment group) and LC HS (excluding baseline subset to predict steroid irAE 
occurrence in the overall treatment group) predicted a lower probability of irAE occurrence. 
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3.3.5. Convergence issues 
As discussed in Section 2.3.3, convergence errors can become an issue when working 
with a set of predictors with previously unknown association to the dependent variable. 
In such cases, it was decided to identify and exclude the predictor responsible for the 
error. This was done five times in total. 
 
The demographic variable age was responsible for convergence errors in the regres-
sions of the following three subsets: 

- Including baseline and all treatment groups to predict any irAEs, 
- Including baseline and all treatment groups to predict steroid irAEs, 
- Excluding baseline but including all treatment groups to predict any irAEs. 

It is noteworthy that in every other regression age achieved ORs close to 1, reflecting a 
low or non-existent predictive value. This low predictive value has probably disturbed the 
model building too much and had therefore to be removed. 
 
Two other variables caused convergence errors and had to be removed from their mod-
els:  

- AEC E in the subset that excluded baseline and analyzed only the combination 
therapy group to predict any irAEs, 

- LC HS in the subset that excluded baseline and analyzed only the PD-1 treatment 
group to predict steroid irAEs. 

The removal of AEC E was probably necessary due to the relatively low number of cases 
in the combination therapy group, which made the model more vulnerable to conver-
gence errors. LC HS, however, prevented convergence despite a large subset. The most 
likely explanation for the convergence error might therefore be the bad predictive perfor-
mance of this predictor in this particular subset, similar to the issues experienced with 
the variable age.  

3.4. Post-hoc analyses 

Because of the many laboratory anomalies to be tested as antecedents for irAEs, only 
the best of each group was included in the final regression models. It follows that not all 
anomalies that were significant in one subset would be included in a model in another 
subset. However, for interpretability it might be interesting to know how certain anomalies 
would have performed under different circumstances. Therefore, two additional post-hoc 
tests were conducted in this study.  
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LDH HS was not analyzed with baseline excluded despite significantly (p = 0.003) pre-
dicting any irAEs in the PD-1 treatment group when including baseline. This additional 
combination was analyzed post-hoc. The same was done with LDH E, which in the only 
baseline subset was a significant (p = 0.034) marker for a lower irAE onset probability.  
In both cases, regression yielded no significant results. Even when excluding age and 
gender, which previously led to convergence issues, the inclusion of both LDH HS and 
E led to convergence errors in the new model. Their significant predictive values may not 
be applied to the excluding baseline subset subsequently. For the full R output, please 
refer to Appendix 3.  
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4. Discussion 

In this section, the focus is on recognition of possible limitations for the interpretability of 
these results. They will in sequence be applied to all subsets in order to create a sum-
mary of the conclusions that may be drawn from this study. Finally, future perspectives 
for further research will be suggested. 

4.1. Limitations 

There are some limitations that must be considered when interpreting the results of this 
study. These limitations will be reported in this section. 

4.1.1. Sample 
This study compares four of the most common groups of immunotherapies. Their differ-
ences, however, were not only in the antibodies applied but also in different application 
modalities as described earlier. This led to every patient with ipilimumab treatment being 
represented by a maximum of four measurements, so late onset irAEs could not be cov-
ered. This has to be considered when comparing therapy regimens where there was no 
general limitation concerning the number of measurements. 
A different issue is to be considered concerning the different anti-PD-1 agents nivolumab 
and pembrolizumab, the cycles of which differ in their duration as stated earlier. Although 
this might inflict comparability within a unified treatment group, in this dataset patients 
developed irAEs usually a few days after an infusion of immunotherapy. Therefore, this 
difference was regarded as tolerable. 
 
Combination therapy as the newest therapy regime of the four immunotherapies investi-
gated was represented in this study by 19 patients with a total of 59 cycles of therapy. 
They reflected 4% of the investigated cycles in this study. Although this included all cy-
cles of combination therapy that were ever administered at the University Hospital in 
Cologne until the end of data collection, this number of measurements was too small to 
yield definitive results, especially for a multilevel regression. Since recent information on 
this new and uprising therapy with its high potential for irAE is highly appreciated, data 
were included disregarding the low number of cases. Caution should be applied when 
using the associated statistical analyses. 
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4.1.2. Adverse events 
AEs were recorded retrospectively by reviewing documented doctor-patient conversa-
tions. IrAEs would be recognized when noted by the attending physician. This probably 
worked more accurately with higher grade irAEs. Low grade irAEs have a tendency to 
become less frequently noted, in particular if patients show a higher than normal degree 
of indolence, which may vary widely. Consequently, analyses of low grade irAE may be 
inaccurate because of their actual incidence probably being higher. 
Additionally, not all kinds of irAEs are easy to detect even if asked for and sometimes 
may have other causes but immunotherapy. This holds true for AEs such as fatigue, a 
very common mostly grade 1 irAE, which can be due not only to immunotherapy but for 
example to cancer in general (Hofman et al. 2007).  
All this holds especially true for low grade irAEs. Because of their treatment relevance, 
severe irAEs were screened more thoroughly. Therefore, especially high grade irAEs, 
which were focused on in particular in this study, were not affected as much. 

4.1.3. Threshold values 
Definition of laboratory anomalies are based upon threshold values that refer to the ref-
erence values of the laboratory, which furnishes the results. In this study, data were used 
that where provided by the Institute of Clinical Chemistry of the University Hospital of 
Cologne (Institut für Klinische Chemie der Uniklinik Köln). Generally, every laboratory 
defines its own reference values according to the method of assessment they use (Renz-
Polster et al. 2013). This is a common limitation to all research relying on laboratory 
parameters. 
Another potential issue to affect the results is the choice of intervals. For each parame-
ter’s laboratory anomalies, the same steps of intervals were used relative to the upper 
reference values: half, single, double- and three-fold. This was done regardless of the 
parameter’s typical behavior during an episode of elevation. While three-fold elevations 
were quite common with CRP, for example, REC elevations of the threefold were far less 
common. This limits comparability between intervals and thresholds of different param-
eters, they should therefore be interpreted independently. 

4.1.4. Method  
Employing various tests comes at a risk. Statistical significance is based upon a signifi-
cance level ⍺, which is to be defined prior to the test at question and is often set to 5%. 
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It describes the probability of the type I error, the incorrect rejection of a true null hypoth-
esis (Field et al. 2012), which is basically the probability of a statistical test to show an 
association when in truth its appearance in the population occurred by chance. It follows 
that conducting a large number of statistical tests, as it was done in this study, increases 
the risk of a result to be declared significant although it is not. This has to be kept in mind 
when considering the different results of the conducted regressions. It emphasizes the 
importance of interpreting the given results in the context of independent subsets and of 
the additional descriptive analysis (CRP T, for example, was a significant predictor in 
multiple independent subsets and has therefore low probability of being falsely declared 
significant). In doing so, this inflation of type I errors becomes acceptable. 

4.2. Biomarkers for immune related adverse events 

Various laboratory anomalies reached statistical significance in some subset combina-
tions. This section will evaluate the found biomarkers and discuss their potential use in 
clinical practice. The difference found in the subsets of baseline consideration will be 
interpreted as well – therein, it should be remembered that including baseline can be 
considered the subset with the most general and least specific analyses, and results 
found in the only baseline subset contain information of irAEs of the first cycle only. The 
subset excluding baseline, however, contains the analyses with the greatest impact on 
daily clinical practice as it is the very subset that analyzes only measurements and irAEs 
that were monitored during therapy and after the first cycle. 

4.2.1. Timing 
Although it has not been tested as a biomarker, the aspect of timing deserves some 
consideration in the context of this topic. In the population analyzed in this study, all 
medication groups showed similar behavior of irAE onset, as Figure 21 on page 55 illus-
trates. Most irAEs developed during the first cycle of therapy, followed by the second 
cycle. After that, irAE onsets became far less frequent and late onsets were uncommon, 
which concurs with the findings of Callahan et al. (2017).  
This was not analyzed any further in this study because of the different focus chosen 
and also because of the results of other authors regarding irAEs in a more distinctive 
way, for example by differentiation according to organs and types of irAE entities. This 
seems to represent an important differentiation concerning the timing of irAE onsets 
(Champiat et al. 2016; Iglesias 2017). 
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4.2.2. Leucocyte group 
In the leucocyte group, there was a lot of variance concerning what anomaly would reach 
the highest level of significance in the preselection step described in Section 2.3.2. This 
makes it difficult to determine an anomaly that definitively has the best test properties. 
However, the anomalies that reached statistical significance to predict higher irAE onset 
probability in the next cycle of therapy were REC W and AEC E. They both were statis-
tically significant in the overall treatment group of the respective baseline consideration 
and besides were only significant in the PD-1 treatment group. This suggests that these 
biomarkers might only be valid for anti-PD-1 therapy and should not be utilized for 
anti-CTLA-4 treatment.  
Additionally, significance was not reached by any leucocyte parameter when predicting 
steroid irAEs. This suggests that REC W and AEC E should only be considered for gen-
eral irAE surveillance with no focus on severe irAEs.  
Considering the threshold values of both antecedents, it seems there is no definite inter-
val that is typical for an irAE in development. Furthermore, the association of relative 
eosinophils ≥ 1.5% at baseline with a superior outcome proposed by Weide et al. (2016) 
seems to be translatable to irAE onset in a longitudinal setup. This result may back up 
the assumption of irAE occurrence being linked to therapy outcome. However, because 
of its threshold value far below the upper reference value of 7.6%, REC W might be 
deemed unsuitable as a red flag because it includes a large amount of values considered 
normal in daily clinical practice. For the same reason, it scored higher in SEN compared 
to AEC E simply because a true positive prediction is more likely when more positive 
predictions are made. 
In the excluding baseline subset, the subset best reflecting immunotherapy surveillance 
in clinical practice, AEC E reached a higher level of significance than REC W in the 
including baseline subset. A new elevation of absolute eosinophils > 59 x1E7/l may 
therefore be the preferable biomarker as it is easier to recognize and raises the proba-
bility of any irAE to occur by the 3.5-fold. Although this laboratory anomaly in the data at 
hand only correctly predicted an irAE in 22.2%, only 2.2% of irAEs occurred in its ab-
sence. Therefore, it has a good predictive value for no irAEs to occur in its absence. 
 
Not only was none of the leucocyte group a significant predictor of an upcoming steroid 
irAE, but LC HS even showed a tendency of lowering the occurrence probability in the 
overall treatment group of the subset excluding baseline. This is both interesting and 
surprising because low values of leucocyte parameters, as in REC W, seemed to do the 
opposite when predicting irAEs of any grade. A possible interpretation would be that low 
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values of LC are associated with low risk of irAEs. This could not be confirmed in the 
PD-1 treatment group when excluding baseline in a post-hoc test because LC HS caused 
convergence issues – possibly due to bad model fit – and had to be excluded.  

4.2.3. LDH 
The universal marker for increased cell damage, LDH, which has also been associated 
with melanoma activity (Martens et al. 2016a; Weide et al. 2016), showed an interesting 
association with irAEs of any grade. LDH HS was a highly significant predictor of in-
creased any irAE risk in the including baseline subset of the overall and PD-1 treatment 
groups, correctly predicting 34.5% and 30.6% of any irAEs. LDH E, however, significantly 
predicted a decrease to a third of the universal risk of any irAE to occur in the only base-
line subset of the PD-1 treatment group. These results suggest a tipping point near 
250 U/l: Values below this threshold signal low tumor activity, but seemingly for high 
immunologic activity in the manifestation of irAEs as well. Values above this value may 
rather be an indicator of high tumor activity and low immunologic activity. 
When considering the results of Martens et al. (2016a), Weide et al. (2016) and others 
who established LDH as a prognostic marker for melanoma, it seems possible that pri-
marily the weakened immune system leads to the loss of tumor control. Tumor growth 
then leads to high levels of LDH which indicate bad prognosis even within immunother-
apy. One possible explanation for these findings may be that the weakened immune 
system, not anymore capable of a proper antitumor response, is also unable to induce 
an irAE. In this concern, further research is required, and this interpretation is limited by 
the fact that neither LDH E nor LDH HS yielded interpretable results in the excluding 
baseline subset in post-hoc tests. 
 
Concluding, LDH also seems to be an antecedent validly applicable only to anti-PD-1 
treatment and irAEs of any grade, although insignificant results in some of the other 
subsets point towards a similar direction.  

4.2.4. CRP 
Of the CRP anomalies, CRP T was predominantly calculated to have the best biomarker 
characteristics. This unspecific, IL-6 induced acute phase protein (Renz-Polster et al. 
2013) reached statistical significance predominantly when predicting steroid irAEs, the 
only exception was the overall treatment group in the subset including baseline. CRP T 
did not significantly predict irAEs in the only baseline subset and performed best in the 
PD-1 treatment group of the excluding baseline subset best reflecting the situation of 
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irAE surveillance during treatment. In this subset, CRP T highly significantly predicted a 
nine-fold probability increase for steroid irAEs to occur. Correlation analysis showed that 
this biomarker’s predictions with the available data, although covering 35.3% of irAEs, 
were only correct in 8.5% of cases. This suggests that CRP increased above 15 mg/l far 
too often to be a helpful antecedent for a steroid irAE on its own. The CRP elevations 
above 15 mg/l that were not associated with irAE onsets were probably associated with 
different inflammations. Therefore, when other possible causes like an infection can be 
ruled out in case of such a CRP elevation, or when an irAE manifests itself shortly after 
the measurement, the attending dermatooncologist can now assume that this irAE might 
very well require eventual steroid intervention. Figure 29 illustrates a recommended de-
cision tree for dermatooncologists facing a new CRP elevation above 15 mg/l. 

 
 Figure 29: Decision tree for new CRP elevation > 15 mg/l in anti-PD-1 treatment 

In addition to that, the found antecedents could be useful the other way around: CRP is 
elevated beyond the three-fold upper reference value frequently, presumably for many 
different reasons – and so it also increases almost always shortly before an upcoming 
steroid irAE and there is rarely any steroid irAE with no preceding threefold elevation of 
CRP. Therefore, if clinical symptoms arise that could be due to a severe irAE but CRP 
was below 15 mg/l right before it occurred, the diagnosis of a severe irAE and the sub-
sequent need of steroid administration should be considered less likely.  
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It is therefore surprising that this antecedent almost did not become significant for irAEs 
of any grade as well. It can be assumed that for mild irAEs with therefore mild underlying 
inflammations CRP did not always rise beyond the triple threshold and consequently did 
not build an association strong enough to be significant against the many other events 
of CRP to rise. It then makes sense that only in the largest subset for irAEs of any grade 
CRP T reached statistical significance, suggesting an underlying trend that needs a large 
number of cases to reach statistical significance.  

4.2.5. Predictive value of antecedent combinations 
Because multiple combinations of biomarkers were rare, the comparison of such ante-
cedent combinations is questionable, and SEN is generally very low in all observed com-
binations (0 - 15.5%). Yet, combined biomarkers in regression sometimes had very high 
ORs with values of up to 21.8, thereby promising strong improvements of each individual 
predictor’s PPV. When looking at the diagnostic test characteristics, this was not always 
reflected in the data. When comparing the PPV, the frequency of irAEs to actually follow 
a biomarker, of all combinations of found antecedents in their respective subset, a gen-
eral increase compared to the single predictors could be noted.  
 
Mainly combinations predicting any grade irAE in the including baseline subset of the 
overall treatment group yielded interpretable results. However, not always was the in-
crease of PPV proportionate to the consequential decrease of SEN. For example, CRP 
T had a PPV of 22.0% and a SEN of 16.4%, while REC W had a PPV of 26.4% and a 
SEN of 29.8%. Its combination led to a marginal increase of the highest PPV from 26.4% 
(REC W) to 29.7% combined at the expense of a major decrease from the lowest SEN 
of 16.4% (CRP T) to 4.6% combined. Given that SEN even before combination was a 
relatively low rated test characteristic among the found predictors for irAEs, this makes 
clear that a model of antecedents jointly predicting irAEs is not to be recommended, their 
use very limited. Clinicians may keep their predictive power in mind for the rare events 
of occurrence. Because then with the combinations LDH HS + REC W + CRP T and 
CRP T + LDH HS, in the next cycle of therapy there occurred any irAEs in 66.7% and 
53.3% of cases, concurring with their increased ORs of 7.72 and 4.71. 
 
When combining the two antecedents of the PD-1 treatment group LDH HS and REC W 
in the including baseline subset, ORs raised from 2.8 and 1.9, respectively, to 5.2 com-
bined. However, PPV only increased marginally compared to the highest individual PPV 
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of 30.6% (LDH HS) to 32.7%, whereas SEN only decreased mildly as well from the low-
est individual SEN of 17.3% (LDH HS) to 13.6% combined. The result of the regression 
analysis for the combination to have an OR of 5.2 should therefore be seen critical for it 
found no concurring reflection in the data. 
 
The next combination of the antecedents CRP T and AEC E in order to predict any irAE 
in the excluding baseline subset of the overall treatment group yielded completely differ-
ent results in the correlation analysis: Whenever both anomalies occurred simultane-
ously, not a single irAE followed, leading to zero true positive predictions. While this 
means that the combined OR was not at all reflected in the data, it also means that the 
potential of these two antecedents may not lie in their simultaneous occurrence. How-
ever, when either the one or the other antecedent occurs, their SEN adds up to 19.3% 
and their PPV to 36.3%. This may be a promising approach because CRP T has shown 
to be especially applicable for steroid irAEs. It underlines that when AEC E is true, a low 
grade irAE is more likely to occur, whereas if CRP T is true, a high grade irAE is more 
likely to occur. 
 
The last possible combination of antecedents found in one subset is CRP T and LC HS 
to predict steroid irAEs in the excluding baseline subset of the overall treatment group. 
Because LC HS in occurrence tendentiously predicted the absence of steroid irAEs, a 
combination of both antecedents to predict the onset of a steroid irAE would be the one 
of CRP T plus the absence of LC HS. However, this combination is not only difficult to 
utilize in daily clinical work, its predictions also were correct in only 9.9% of cases (PPV). 
For these reasons the combination CRP T + (- LC HS) does not seem to yield practical 
improvements of predictive value compared to the predictors being separated.  

4.2.6. Predictive value of the demographic variables 
Complementary to the laboratory parameters, which were assessed longitudinally, two 
additional variables were implemented in the regression models that had the character-
istics of baseline biomarkers: Age and gender performed differently as antecedents for 
irAEs.  

Age 
Age showed no association with the occurrence of irAEs within each subset. This lack of 
association was not only shown by age never reaching statistical significance but by the 
fact that it never reached statistical significance despite its very small confidence interval 
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as illustrated in Figure 25, Figure 26 and Figure 27. The graphs show that the ORs of 
age only varied little around 1 in every subset. Age therefore is very likely to have no 
association at all with the occurrence of irAEs.  

Gender 
Female gender reached statistical significance or tendency to be associated with higher 
irAE probability only in the CTLA-4 treatment group. It did so in almost every subset of 
this group, regardless of different considerations of baseline measurements. The asso-
ciation does not seem to be very strong with estimated ORs reaching from 1.46 to 3.59, 
only reaching p < 0.5 in the including baseline subset, where more data led to smaller 
confidence intervals. Additionally, the association seems strongest with steroid irAEs and 
with those occurring after the first dose of ipilimumab. This association with the first dose 
may again be due to the high density of irAEs in the first cycle (see Figure 21 on page 
55), leading to smaller data in all other cycles, thereby likely affecting confidence inter-
vals. Alternatively, it could reflect a slightly stronger association of female gender with 
early irAEs. It seems, however, as if women generally have a higher potential to develop 
irAEs especially of higher grades when receiving ipilimumab. 

4.2.7. Consideration of baseline measurements 
As the conducted analyses suggest, considering baseline measurements separately 
made a difference. It indeed seems like predictive values of baseline measurements and 
those during treatment vary - especially if they are inflammation parameters. It is some-
what surprising that regression analysis yielded only few significant results in the base-
line only subset, although most of the irAEs occurred right after the first dose of immu-
notherapy (see Figure 21 on page 55) and so a lack of data should not have been an 
issue. It seems like inflammation parameters should only be interpreted in their dynamics 
when interacting with immunotherapy. This might be one reason why Khoja et al. (2016a) 
did not find any biomarker for irAEs in the blood count in ipilimumab treated patients. It 
implicates that the immunologic potential of a patient to develop irAEs cannot be found 
in the investigated inflammation parameters and that research should focus on longitu-
dinal studies to find applicable biomarkers.  
It is, however, remarkable that LDH E did indeed reach statistical significance in the PD-1 
treatment group of the only baseline subset to predict any irAE not to occur. This concurs 
with the hypothesis proposed in Section 4.2.3, in which high measurements of LDH might 
be an indirect indicator of low immunologic potential concerning both antitumor response 
and irAEs.  
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4.2.8. Consideration of treatment 
The data underline that treating the different immunotherapies as one is not legitimated 
in terms of irAE antecedents despite the many similarities also concerning irAEs that 
anti-CTLA-4 and anti-PD-1 therapies share, as reviewed in Section 11. Therefore, leav-
ing the overall treatment group aside, no predictor reached statistical significance in more 
than one treatment group. It seems like in anti-PD-1 treatment, there is a variety of an-
tecedents to choose from associated with real time irAE onset risk, both of any grade 
and of those with necessary steroid intervention. In contrast, in anti-CTLA-4 treatment, 
there is none but the baseline predictor of female gender that can predict a higher risk 
especially for steroid irAEs independently of baseline considerations. 
This diversity in the differently targeted immunotherapies makes it very hard to draw 
implications for antecedents from the analyses conducted on the combination therapy 
group. Not a single antecedent reached statistical significance. It seems like this is not 
only due to the low number of cases but also to the divergent antecedents found in the 
monotherapies: It might be assumed that a potential mutually significant predictor in both 
the PD-1 and the CTLA-4 treatment groups would reach low p-values in the combination 
therapy group as well because of the synergistic statistical effect and despite the low 
number of cases. However, because there were no mutually significant predictors, this 
synergistic effect did not occur.  
Because of both monotherapies being used in combination therapy, it is a logical as-
sumption that each of the different antecedents does indeed possess a certain predictive 
value for those irAEs induced by their respective agent. As such, female gender was 
among the antecedents with the lowest p-values in the combination therapy group. Ad-
ditionally, LDH H and CRP T were comparably low when predicting any irAE in the in-
cluding baseline subset – the same subset in which these antecedents reached very high 
statistical significance (p < 0.001 & p = 0.002) in the overall treatment group. Although 
these indications are circumstantial and conclusions must be drawn very cautiously, it 
seems plausible that predictors for irAEs in monotherapies translate to combination ther-
apies as well. This is despite them probably possessing even less predictive value, as 
the predictors will only count for a certain subset of irAEs occurring during combination 
therapy.  

4.3. Conclusion 

Many steps of analysis have been conducted in this study, with many results shedding 
light on the different onset dynamics of irAEs in the various subsets. This section will 
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conclude the most relevant findings, evaluate the overall contributions of this study to 
theory and practice and make suggestions on the deriving perspectives for future re-
search. 

4.3.1. Summary 
A main result of this study is that there have been statistically significant antecedents 
found for irAEs in immunotherapy. Of these, the most important are:  

- An elevation of absolute eosinophils above 59 x1E7/l significantly (p = 0.015) 
predicts the onset of any irAEs in anti-PD-1 treatment when excluding baseline. 
(SEN = 6.3%, SPE = 97.8%, PPV = 22.2%, NPV = 91.4%) 

- An elevation of CRP above 15 mg/l significantly (p < 0.001) predicts the onset of 
severe irAEs in anti-PD-1 treatment when excluding baseline (SEN = 35.3%, SPE 
= 93.9%, PPV = 8.5%, NPV = 98.9%) 

- An elevation of LDH above 250 U/l at baseline indicates a significantly (p = 0.034) 
lower probability of any irAE to occur in anti-PD-1 treatment. (SEN = 46.8%, SPE 
= 72.7%, PPV = 83.0%, NPV = 32.4%) 

- Female gender is significantly associated with higher probability of any (p = 
0.046) and severe irAE (p = 0.020) to occur in anti-CTLA-4 treatment regardless 
of the baseline consideration. 

- Age seems to be irrelevant for irAE onset prediction. 

Another important finding is that these antecedents cannot be used interchangeably de-
spite all similarities between irAEs of anti-CTLA-4 and anti-PD-1 treatments: It seems 
like there was a fundamental difference in the dynamics of irAE onset between those two 
treatment groups or at least how they are reflected in laboratory inflammation parame-
ters. This also makes the translation of the found antecedents to irAEs of combination 
therapy difficult, for there is no common antecedent to be used but only antecedents that 
would at least theoretically account for an undefinable subset of irAEs in combination 
therapy.  
It has also been found that, at least for the researched laboratory parameters, the con-
sideration of baseline parameters is relevant. Neither AEC nor CRP were a statistically 
significant predictor for the first cycle of therapy, and the antecedents found statistically 
significant in the subset including baseline were not found to be significant in any of the 
other subsets. This limits the interpretability of these antecedents, although the combi-
nation of the three parameters LDH HS, REC W and CRP T for any irAE in the overall 
subset showed a combined PPV of 66.7% (SEN = 2.5%, SPE = 97.8%, NPV = 91.4%). 
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It is, however, at least suggested that there is an association between these high-normal 
LDH, REC ≥ 1.5%, CRP > 15 mg/l and irAEs of any grade – although it was not replicable 
in more specific subsets. 

4.3.2. Contributions to clinical practice 
What is needed most by clinicians is an antecedent that specifically warns of an upcom-
ing irAE requiring eventual treatment. Although an AEC elevation generally is a marker 
for more specific inflammation than CRP (Renz-Polster et al. 2013) and predicted irAEs 
correctly more frequently (in 22.2% of cases) in anti-PD-1 treatment, its predictive capa-
bilities seem limited to irAEs of any grade. AEC E might help to identify an upcoming 
symptom as an irAE but does not indicate its severity. 
The threefold elevation of CRP was shown to do just that in anti-PD-1 treatment. How-
ever, CRP itself is a parameter whose elevation occurs in many different sorts of inflam-
mation and is therefore not very specific towards irAEs. Hence, it is not surprising that 
an elevation of CRP > 15 mg/l, although significantly associated with severe irAE onset, 
was only followed by an irAE that eventually needed steroid intervention in 8.5%. By 
ruling out differential diagnoses in case of a new threefold CRP elevation, this lack of 
specificity towards irAEs can be coped with. The according decision tree can be reviewed 
in Figure 29 on page 78. 
In addition to that, the found antecedents could be useful the other way around: The high 
specificity found means that only few irAEs occur without the elevation of the predictor. 
Therefore, if clinical symptoms arise that could be due to a severe irAE, yet CRP was 
below 15 mg/l right before it occurred, the diagnosis of a severe irAE and the subsequent 
need of steroid administration should be considered less likely.  
Clinicians should also be encouraged to routinely keep on measuring laboratory param-
eters every cycle, which is due to the fact that all inflammatory blood parameters were 
without predictive power when measured at baseline. Dynamic changes in inflammatory 
blood parameters have the highest predictive power over an imminent irAE. This, too, 
can support early recognition and help to ensure the patients’ awareness to come for-
ward when irAEs occur6. 
 

 
6 In the population of this study, some severe irAEs started with patients not reporting symptoms of irAEs 
when they occurred. They waited until the next scheduled appointment or until the symptoms became too 
severe, thereby preventing early treatment and enforcing therapy disruptions. 



Discussion 

 
 

85 

Considering the preceding choice of therapy, two implications can be derived from this 
study. First, females are more likely to develop irAEs than males in anti-CTLA-4, but not 
in anti-PD-1 treatment, which makes the latter favorable for female patients. 
Second, when discussing treatment options, patients with high LDH are considered to 
have a high tumor burden and therefore to profit from the combination therapy. Its higher 
effectivity and faster response comes at the expense of a far higher risk of irAEs com-
pared to monotherapies. This study implies that at least with PD-1 blockade this risk is 
reduced when LDH is high at baseline. As nivolumab is an anti-PD-1 antibody used in 
combination therapy, it may be assumed that this effect in anti-PD-1 treatment at least 
partially translates into combination therapy. Therefore, this study supports the practice 
of offering combination therapy to patients with high LDH at baseline, although this im-
plication will have to be confirmed by further research with a higher number of cases with 
combination therapy. 

4.3.3. Contributions to research 
This study allows new insights contributing to a better understanding of the genesis of 
irAE. In particular, it underpins the extent to which antecedents differ depending on the 
treatment. It is now very clear that irAEs of anti-PD-1 and anti-CTLA-4 therapy, although 
very similar in many aspects, must be analyzed separately: Not only are there no labor-
atory antecedents significant for anti-CTLA-4 therapy while for anti-PD-1 therapy there 
are, but also gender influences anti-CTLA-4 therapy irAEs, although it has no influence 
on irAEs of anti-PD-1 therapy.  
 
Another relevant finding for research is the importance of baseline considerations con-
cerning laboratory biomarkers for irAEs. It could be shown in this study that highly sta-
tistically significant antecedents measured after the first dose of immunotherapy may not 
be even close to being significant when measured at baseline. This concurs with the 
findings of Schindler et al. (2014), who found significant correlation of REC and AEC with 
irAE occurrence in week 4 and 7 of therapy, but not at baseline. It seems that laboratory 
antecedents may be dependent on the body’s reaction to immunotherapy and that they 
should be interpreted as a reaction to immunotherapy, not as a general potential to de-
velop irAEs.  
 
One exception was detected: In anti-PD-1 treatment, an LDH elevation above 250 U/l at 
baseline significantly (p = 0.034) predicted a lower probability of irAEs to occur in the first 
cycle. It may therefore be assumed that high LDH indeed signals a potential to reduce 
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irAE risk. Potential explanations would include an association of tumor burden and the 
patient’s immunologic capabilities.  

4.3.4. Directions for future research 
Although some questions concerning irAE dynamics could be answered in this study, 
some new ones have arisen as well. The fact that none of the investigated antecedents 
is applicable to both anti-CTLA-4 and anti-PD-1 treatments was surprising, and the ques-
tion to why they performed so differently could serve as a starting point for further re-
search. To answer this question might help understanding how irAEs develop, how they 
can be predicted and ultimately how they can be controlled more effectively.  
Additionally, further researching the different irAE onset dynamics might lead to the 
recognition of different patient groups with different respective risks of irAE occurrence 
at baseline, thereby offering guidance which therapy to prefer for each individual patient. 
 
Much of the research conducted concerning irAEs did not focus on irAEs in general but 
mostly on one or a distinctive group of irAEs only. In this thesis, biomarkers were ana-
lyzed that can be applied to irAEs in general. It would be interesting for further research 
to investigate in a similar way how the antecedents found in this thesis or others perform 
when focusing on particular irAEs. This could enhance previously published approaches 
to further understanding the different mechanisms leading to the respective entities of 
irAEs.  

An LDH elevation above 250 U/l to predict lower any irAE probability at baseline and an 
LDH elevation to a value between 125 and 250 U/l to predict a higher irAE probability at 
any time of therapy is a remarkable finding to be researched further. It would be interest-
ing to investigate whether this general marker of cell damage and immunotherapy re-
sponse (Diem et al. 2016) generally points to an immunologic potential to develop irAEs. 
If this was the case, it raises the question which one comes first: The immunologic inca-
pability for antitumor response and irAEs leading to tumor progression with high LDH, or 
the LDH indicated high tumor burden that suppresses the immune antitumor and irAE 
response? Could this immunologic incapability be reactivated by immunotherapy? And 
if so: Would especially patients with high LDH at baseline profit from the more aggressive 
combination therapy compared to the monotherapies? Answering these questions would 
help in the decision making which treatment to recommend to affected patients. 
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A prospective longitudinal study design otherwise similar to the one used in this study 
with more potential biomarkers included could help finding and validating more suitable 
biomarkers than found in this study. Especially the detection of low grade irAEs could be 
improved and more specific laboratory parameters could be analyzed to further improve 
therapy and patients’ quality of life. 
To cope with the even higher number of parameters, a possible approach could be to 
use a more sophisticated method: As this study was conducted, many decisions were 
made with regard to the disabilities of regression, such as the limited number of variables 
taken into account, the grouping of the leucocyte group or the extensive previous selec-
tion process. Although this study yielded significant and interpretable results, a more 
sophisticated method such as random forest machine learning could increase informa-
tive value and may give the clinician a more practical assist. This method can be used 
to build a comprehensive decision tree, which can be followed by dermatooncologists to 
support the diagnostics of irAEs (Breiman 2001; Cox-Martin et al. 2018).  
 
This approach is currently being applied to the same dataset involving further parameters 
such as body mass index or previous therapy and is subject to a planned publication by 
Nätlitz et al. of the University of Cologne, which shows promising preliminary results.
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5. Summary 

Immunotherapies have proven to be a promising innovation in the treatment of the me-
tastasized malignant melanoma concerning response and survival. Yet, this new treat-
ment’s benefits come at the cost of a new set of manifold immune related adverse events 
(irAEs). In this dissertation, selective threshold crossings of five laboratory parameters 
(LDH, CRP, relative and absolute eosinophil count and leucocyte count) as well as age 
and gender are analyzed for their potential to serve as irAE biomarkers in anti-PD-1, 
anti-CTLA-4 and combination therapy (nivolumab + ipilimumab). 

For this purpose, a retrospective, longitudinal study design is used. Laboratory parame-
ters are raised at baseline and continuously every cycle after the first dose of therapy 
and considered in three variations: Only baseline measurements, all measurements, and 
excluding baseline measurements. The analyses are conducted separately on each of 
the three therapy groups and all groups combined. Outcome parameters are the labora-
tory parameters’ predictive values concerning either irAEs of any grade or severe irAEs 
ultimately necessitating steroid intervention (steroid irAEs). By conducting the analyses 
in the resulting 24 subdivisions, it is possible to analyze the respective predictive values 
in a particularly differentiated way. Statistically, algorithms of logistic and multilevel lo-
gistic regression models are used in a two-phase approach as well as an additional de-
scriptive method to help relating the results to their practical application.  

In total, 256 courses of therapy are analyzed, dividable in 129 courses of anti-PD-1, 108 
courses of anti-CTLA-4 and 19 courses of combination therapy. The results concerning 
the demographic parameters show an association of female gender with irAEs in 
anti-CTLA-4 treatment throughout all three respective considerations of baseline. This 
includes a minimum of a statistical tendency up to statistical significance (p from 0.087 
to 0.020). Age has no influence on any or steroid irAE occurrence. Of the laboratory 
parameters, none reaches statistical significance in the anti-CTLA-4 subsets. In 
anti-PD-1 treatment considering only baseline parameters, only an LDH elevation 
> 250 U/l is associated with irAE onsets of any grade (p = 0.034). When considering only 
parameters measured after the first cycle of therapy, absolute eosinophil count 
> 59 x1E7/l is associated with irAE onsets of any grade (p = 0.015), while a CRP eleva-
tion > 15 mg/l is strongly associated with the onset of steroid irAEs (p < 0.001). 
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In addition to the found antecedents, which may be of assistance in clinical practice, this 
dissertation’s results strongly highlight a differentiated consideration of baseline param-
eters. In most of the few publications concerning this topic, baseline parameters are used 
to search for irAE antecedents. Yet for this purpose, this thesis emphasizes the im-
portance of measurements after the first dose of immunotherapy to yield significant re-
sults. This might be crucial in order to be able to understand and someday even prevent 
irAEs in modern oncology in a reliable way, not only in the treatment of the malignant 
melanoma. 
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6. Zusammenfassung 

Immuntherapien haben sich als vielversprechende Innovation in der Behandlung des 
metastasierten malignen Melanoms hinsichtlich Ansprechen und Überleben erwiesen. 
Die Vorteile dieser neuen Behandlungsmethode gehen jedoch zu Lasten eines neuen 
Spektrums von vielfältigen immunvermittelten Nebenwirkungen (ivNW). In dieser Disser-
tation werden selektive Schwellenüberschreitungen von fünf Laborparametern (LDH, 
CRP, relative und absolute Eosinophilenzahl und Leukozytenzahl) sowie Alter und Ge-
schlecht auf ihr Potenzial als Biomarker für ivNW in Anti-PD-1, Anti-CTLA-4 und Kombi-
nationstherapie (Nivolumab + Ipilimumab) untersucht. 

Hierfür wird ein retrospektives, längsschnittliches Studiendesign verwendet. Die Labor-
parameter werden zu Beginn und nach der ersten Dosis der Therapie kontinuierlich in 
jedem Zyklus erhoben und in drei unterschiedlichen Varianten betrachtet: Nur Baseline-
Messungen, alle Messungen ohne Baseline sowie alle Messungen ohne Ausnahme. Die 
Analysen werden separat für jede der drei Therapiegruppen sowie für alle Gruppen zu-
sammen durchgeführt. Ergebnisparameter sind die prädiktiven Werte der Laborparame-
ter, die entweder ivNW jedweden Grades oder schwere ivNW betrafen, die im Verlauf 
eine Steroidintervention erforderten (Steroid-ivNW). Durch die Durchführung der Analy-
sen in den daraus resultierenden 24 Unterteilungen können die jeweiligen Vorhersage-
werte besonders differenziert analysiert werden. Statistisch werden Algorithmen von lo-
gistischen und multilevel logistischen Regressionsmodellen in einem zweistufigen Ver-
fahren sowie eine zusätzliche deskriptive Methode verwendet, um die Ergebnisse mit 
ihrer praktischen Anwendung in Beziehung zu setzen.  

Insgesamt werden 256 Therapieverläufe analysiert, teilbar in 129 Verläufe von 
Anti-PD-1, 108 Verläufe von Anti-CTLA-4 und 19 Verläufe von Kombinationstherapie. 
Die Ergebnisse zu den demographischen Parametern zeigen eine Assoziation von weib-
lichem Geschlecht mit irAEs in der Anti-CTLA-4-Behandlung in allen drei Einbeziehun-
gen des Ausgangswerts. Dies reicht von einer statistischen Tendenz bis hin zur statisti-
schen Signifikanz (p von 0,087 bis 0,020). Das Alter hat keinen Einfluss auf das Auftreten 
einer der beiden Gruppen von ivNW. Von den Laborparametern erreicht keiner die sta-
tistische Signifikanz in den Anti-CTLA-4-Untergruppen. In der Anti-PD-1-Therapie, bei 
der nur die Baseline-Messungen berücksichtigt werden, wird lediglich eine LDH-Erhö-
hung > 250 U/l mit dem Auftreten von ivNW beliebigen Grades assoziiert (p = 0,034). 
Werden nur die Parameter betrachtet, die nach dem ersten Therapiezyklus gemessen 
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werden, so ist eine absolute Eosinophilenzahl > 59 x1E7/l mit dem Auftreten von ivNW 
beliebigen Grades assoziiert (p = 0,015), während eine CRP-Erhöhung > 15 mg/l stark 
mit dem Auftreten von Steroid-ivNW assoziiert ist (p < 0,001). 

Zusätzlich zu den ermittelten Markern, die in der klinischen Anwendung als Hilfsmittel 
dienen können, verdeutlichen die Ergebnisse dieser Dissertation die Rolle einer diffe-
renzierten Betrachtung von Baseline-Parametern. In den meisten der wenigen Publika-
tionen zu diesem Thema werden lediglich bei Baseline erhobene Parameter genutzt, um 
nach Biomarkern für ivNW zu suchen. Diese Doktorarbeit unterstreicht jedoch die Be-
deutung von Messungen nach der ersten Dosis der Immuntherapie, um signifikante Er-
gebnisse zu erzielen. Dies könnte entscheidend sein, um ivNW in der modernen Onko-
logie nicht nur bei der Behandlung des malignen Melanoms zuverlässig verstehen und 
eines Tages sogar vorbeugen zu können.  
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1. Parameter selection 

Including baseline 
any AE 

 
  - [REC] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ rec.weide + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1295.5   1311.4   -644.8   1289.5     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.9264 -0.4299 -0.3537 -0.3021  3.4940  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.4933   0.7023   
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -1.8061     0.1041 -17.347  < 2e-16 *** 
rec.weideTRUE   0.8099     0.1715   4.724 2.32e-06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
rec.wedTRUE -0.460 
 
 - Odds Ratios 
     row.labels      or.l        or      or.u 
1   (Intercept) 0.1329071 0.1643011 0.2005341 
2 rec.weideTRUE 1.6005657 2.2477910 3.1379982 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ rec.high + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1316.4   1332.3   -655.2   1310.4     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.7510 -0.4453 -0.3829 -0.3225  3.4487  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.57     0.755    
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -1.6193     0.0959 -16.886   <2e-16 *** 
rec.highTRUE   0.1329     0.3331   0.399     0.69     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 

 
Correlation of Fixed Effects: 
            (Intr) 
rec.hghTRUE -0.184 
 
 - Odds Ratios 
    row.labels      or.l        or      or.u 
1  (Intercept) 0.1629017 0.1980295 0.2380169 
2 rec.highTRUE 0.5745035 1.1420937 2.1385175 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ rec.half + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1306.5   1322.4   -650.2   1300.5     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.9523 -0.4472 -0.3718 -0.3149  3.5152  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5234   0.7234   
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -1.7066     0.0987 -17.290  < 2e-16 *** 
rec.halfTRUE   0.6747     0.2056   3.282  0.00103 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
rec.hlfTRUE -0.336 
 
 - Odds Ratios 
    row.labels      or.l        or      or.u 
1  (Intercept) 0.1484815 0.1814829 0.2193312 
2 rec.halfTRUE 1.3023493 1.9634015 2.9211371 
 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ rec.single + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1316.5   1332.4   -655.2   1310.5     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.7517 -0.4459 -0.3833 -0.3225  3.4441  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5711   0.7557   
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -1.61798    0.09582 -16.886   <2e-16 *** 
rec.singleTRUE  0.11337    0.34428   0.329    0.742     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
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            (Intr) 
rc.snglTRUE -0.177 
 
 - Odds Ratios 
      row.labels      or.l        or      or.u 
1    (Intercept) 0.1631452 0.1982984 0.2383008 
2 rec.singleTRUE 0.5495378 1.1200423 2.1389853 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ rec.double + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1316.5   1332.4   -655.3   1310.5     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.7541 -0.4460 -0.3848 -0.3225  3.4180  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5748   0.7581   
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -1.61351    0.09462 -17.052   <2e-16 *** 
rec.doubleTRUE  0.13824    0.86768   0.159    0.873     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
rec.dblTRUE -0.065 
 
 - Odds Ratios 
      row.labels      or.l        or      or.u 
1    (Intercept) 0.1642083 0.1991872 0.2387671 
2 rec.doubleTRUE 0.1553388 1.1482532 5.4416556 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ rec.triple + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1316.6   1332.5   -655.3   1310.6     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.7547 -0.4468 -0.3849 -0.3225  3.4182  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5759   0.7589   
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -1.61233    0.09459 -17.046   <2e-16 *** 
rec.tripleTRUE -0.05448    1.14352  -0.048    0.962     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
rc.trplTRUE -0.052 
 
 - Odds Ratios 
      row.labels       or.l        or      or.u 
1    (Intercept) 0.16439345 0.1994225 0.2390086 
2 rec.tripleTRUE 0.04696868 0.9469759 6.5330374 
 
 
 
  - [AEC] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ aec.high + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1313.2   1329.1   -653.6   1307.2     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.8116 -0.4473 -0.3820 -0.3219  3.5556  
 
Random effects: 

 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5538   0.7442   
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.64290    0.09562 -17.182   <2e-16 *** 
aec.highTRUE  0.62631    0.32986   1.899   0.0576 .   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
aec.hghTRUE -0.194 
 
 - Odds Ratios 
    row.labels      or.l        or      or.u 
1  (Intercept) 0.1591748 0.1934181 0.2323155 
2 aec.highTRUE 0.9561182 1.8706932 3.5116601 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ aec.half + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1316.3   1332.2   -655.1   1310.3     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.7531 -0.4454 -0.3825 -0.3218  3.4295  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.564    0.751    
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.62540    0.09725 -16.713   <2e-16 *** 
aec.halfTRUE  0.13222    0.24540   0.539     0.59     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
aec.hlfTRUE -0.254 
 
 - Odds Ratios 
    row.labels      or.l        or      or.u 
1  (Intercept) 0.1615619 0.1968326 0.2373076 
2 aec.halfTRUE 0.6936178 1.1413644 1.8207628 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ aec.single + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1313.5   1329.4   -653.7   1307.5     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.8199 -0.4476 -0.3819 -0.3215  3.5641  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5604   0.7486   
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -1.6397     0.0956 -17.151   <2e-16 *** 
aec.singleTRUE   0.6404     0.3517   1.821   0.0686 .   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ac.snglTRUE -0.181 
 
 - Odds Ratios 
      row.labels      or.l       or      or.u 
1    (Intercept) 0.1596756 0.194044 0.2330382 
2 aec.singleTRUE 0.9257743 1.897206 3.7102444 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ aec.double + (1 | pid) 
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   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1315.6   1331.5   -654.8   1309.6     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.8416 -0.4461 -0.3840 -0.3220  3.4207  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5739   0.7576   
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -1.61936    0.09475 -17.092   <2e-16 *** 
aec.doubleTRUE  0.78505    0.75999   1.033    0.302     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
aec.dblTRUE -0.083 
 
 - Odds Ratios 
      row.labels      or.l        or      or.u 
1    (Intercept) 0.1631966 0.1980246 0.2374119 
2 aec.doubleTRUE 0.4229498 2.1925116 9.1238686 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ aec.triple + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1315.6   1331.5   -654.8   1309.6     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.7549 -0.4471 -0.3853 -0.3228  3.4163  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5752   0.7584   
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
                 Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -1.610e+00  9.234e-02  -17.44   <2e-16 *** 
aec.tripleTRUE -2.374e+01  2.010e+05    0.00        1     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ac.trplTRUE 0.000  
convergence code: 0 
unable to evaluate scaled gradient 
 Hessian is numerically singular: parameters are not 
uniquely determined 
 
 - Odds Ratios 
      row.labels      or.l           or      or.u 
1    (Intercept) 0.1667535 1.998380e-01 0.2394866 
2 aec.tripleTRUE 0.0000000 4.917641e-11       Inf 
 
 
 
  - [LC] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ lc.high + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1316.4   1332.3   -655.2   1310.4     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.7599 -0.4477 -0.3842 -0.3221  3.4225  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5856   0.7653   
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept) -1.60526    0.09619 -16.689   <2e-16 *** 
lc.highTRUE -0.16392    0.38589  -0.425    0.671     
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
lc.highTRUE -0.171 
 
 - Odds Ratios 
   row.labels      or.l        or      or.u 
1 (Intercept) 0.1651366 0.2008378 0.2415722 
2 lc.highTRUE 0.3781192 0.8488065 1.7388038 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ lc.half + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1308.9   1324.8   -651.5   1302.9     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.8476 -0.4468 -0.3660 -0.3076  3.5417  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5373   0.733    
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.7231     0.1031 -16.715  < 2e-16 *** 
lc.halfTRUE   0.4959     0.1755   2.825  0.00473 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
lc.halfTRUE -0.422 
 
 - Odds Ratios 
   row.labels      or.l        or      or.u 
1 (Intercept) 0.1447663 0.1785088 0.2175194 
2 lc.halfTRUE 1.1580574 1.6419520 2.3071903 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ lc.single + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1316.4   1332.3   -655.2   1310.4     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.7594 -0.4476 -0.3840 -0.3221  3.4223  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5847   0.7646   
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -1.60621    0.09614 -16.707   <2e-16 *** 
lc.singleTRUE -0.14476    0.38698  -0.374    0.708     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
lc.snglTRUE -0.170 
 
 - Odds Ratios 
     row.labels      or.l        or     or.u 
1   (Intercept) 0.1649954 0.2006475 0.241322 
2 lc.singleTRUE 0.3847058 0.8652316 1.776600 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ lc.double + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1315.6   1331.5   -654.8   1309.6     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.7618 -0.4468 -0.3835 -0.3205  3.4339  
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Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5942   0.7709   
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -1.612e+00  9.289e-02  -17.35   <2e-16 *** 
lc.doubleTRUE -2.917e+01  2.781e+06    0.00        1     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
lc.doblTRUE 0.000  
convergence code: 0 
unable to evaluate scaled gradient 
 Hessian is numerically singular: parameters are not 
uniquely determined 
 
 - Odds Ratios 
     row.labels      or.l           or      or.u 
1   (Intercept) 0.1662998 1.995065e-01 0.2393439 
2 lc.doubleTRUE 0.0000000 2.135325e-13       Inf 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ lc.triple + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1316.2   1332.1   -655.1   1310.2     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.7545 -0.4469 -0.3851 -0.3227  3.4166  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5747   0.7581   
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -1.611e+00  9.233e-02  -17.45   <2e-16 *** 
lc.tripleTRUE -2.372e+01  3.562e+05    0.00        1     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
lc.trplTRUE 0.000  
convergence code: 0 
unable to evaluate scaled gradient 
 Hessian is numerically singular: parameters are not 
uniquely determined 
 
 - Odds Ratios 
     row.labels      or.l           or      or.u 
1   (Intercept) 0.1665598 1.996022e-01 0.2391996 
2 lc.tripleTRUE 0.0000000 4.993875e-11       Inf 
 
 
 
  - [LDH] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ ldh.weide + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1305.6   1321.5   -649.8   1299.6     1477  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.7544 -0.4359 -0.3841 -0.3116  3.3945  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5773   0.7598   
Number of obs: 1480, groups:  pid, 254 
 
Fixed effects: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -1.61661    0.09556 -16.917   <2e-16 *** 
ldh.weideTRUE -0.45632    0.56913  -0.802    0.423     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ldh.wedTRUE -0.133 

 
 - Odds Ratios 
     row.labels      or.l        or      or.u 
1   (Intercept) 0.1633654 0.1985705 0.2384265 
2 ldh.weideTRUE 0.1781436 0.6336098 1.7523095 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ ldh.high + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1305.3   1321.2   -649.7   1299.3     1477  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.7295 -0.4478 -0.3769 -0.3179  3.4071  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5526   0.7434   
Number of obs: 1480, groups:  pid, 254 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -1.6634     0.1008  -16.51   <2e-16 *** 
ldh.highTRUE   0.2046     0.2025    1.01    0.312     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ldh.hghTRUE -0.360 
 
 - Odds Ratios 
    row.labels      or.l        or      or.u 
1  (Intercept) 0.1544285 0.1894922 0.2299903 
2 ldh.highTRUE 0.8168363 1.2269829 1.8099173 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ ldh.half + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1279.8   1295.7   -636.9   1273.8     1477  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-1.0790 -0.4276 -0.3593 -0.3052  3.4824  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5044   0.7102   
Number of obs: 1480, groups:  pid, 254 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -1.7889     0.1004 -17.811  < 2e-16 *** 
ldh.halfTRUE   1.1169     0.2086   5.354 8.59e-08 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ldh.hlfTRUE -0.370 
 
 - Odds Ratios 
    row.labels      or.l        or      or.u 
1  (Intercept) 0.1360454 0.1671376 0.2023733 
2 ldh.halfTRUE 2.0206752 3.0552285 4.5871630 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ ldh.single + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1304.7   1320.6   -649.4   1298.7     1477  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.7307 -0.4486 -0.3755 -0.3182  3.4107  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.55     0.7416   
Number of obs: 1480, groups:  pid, 254 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -1.66970    0.09997 -16.701   <2e-16 *** 
ldh.singleTRUE  0.26883    0.20926   1.285    0.199     
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--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ldh.sngTRUE -0.343 
 
 - Odds Ratios 
      row.labels      or.l        or      or.u 
1    (Intercept) 0.1536717 0.1883029 0.2281519 
2 ldh.singleTRUE 0.8591371 1.3084299 1.9551275 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ ldh.double + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1306.3   1322.2   -650.1   1300.3     1477  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.7535 -0.4449 -0.3827 -0.3208  3.4015  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5796   0.7613   
Number of obs: 1480, groups:  pid, 254 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -1.62495    0.09576  -16.97   <2e-16 *** 
ldh.doubleTRUE -0.12225    0.48903   -0.25    0.803     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ldh.dblTRUE -0.141 
 
 - Odds Ratios 
      row.labels      or.l        or      or.u 
1    (Intercept) 0.1619592 0.1969218 0.2365518 
2 ldh.doubleTRUE 0.3098979 0.8849244 2.1700328 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ ldh.triple + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1304.9   1320.8   -649.4   1298.9     1477  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.7555 -0.4464 -0.3842 -0.3115  3.3952  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5793   0.7611   
Number of obs: 1480, groups:  pid, 254 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -1.61490    0.09521 -16.961   <2e-16 *** 
ldh.tripleTRUE -0.85853    0.77862  -1.103     0.27     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ldh.trpTRUE -0.094 
 
 - Odds Ratios 
      row.labels       or.l        or      or.u 
1    (Intercept) 0.16376307 0.1989113 0.2386843 
2 ldh.tripleTRUE 0.06447075 0.4237829 1.5912272 
 
 
 
  - [CRP] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ crp.high + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1313.7   1329.7   -653.9   1307.7     1487  
 

Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.7865 -0.4447 -0.3719 -0.3143  3.4767  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5496   0.7414   
Number of obs: 1490, groups:  pid, 254 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -1.6920     0.1028 -16.459   <2e-16 *** 
crp.highTRUE   0.2934     0.1853   1.583    0.113     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
crp.hghTRUE -0.406 
 
 - Odds Ratios 
    row.labels      or.l        or      or.u 
1  (Intercept) 0.1494048 0.1841421 0.2242808 
2 crp.highTRUE 0.9259386 1.3409185 1.9170899 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ crp.half + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1315.8   1331.7   -654.9   1309.8     1487  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.8079 -0.4417 -0.3796 -0.3176  3.4480  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5832   0.7636   
Number of obs: 1490, groups:  pid, 254 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.64340    0.09747 -16.861   <2e-16 *** 
crp.halfTRUE  0.17197    0.27517   0.625    0.532     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
crp.hlfTRUE -0.228 
 
 - Odds Ratios 
    row.labels      or.l        or      or.u 
1  (Intercept) 0.1583843 0.1933221 0.2328484 
2 crp.halfTRUE 0.6772483 1.1876392 2.0025995 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ crp.single + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1316.1   1332.0   -655.1   1310.1     1487  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.7480 -0.4431 -0.3804 -0.3192  3.4375  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5769   0.7595   
Number of obs: 1490, groups:  pid, 254 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -1.63664    0.09777 -16.739   <2e-16 *** 
crp.singleTRUE  0.07172    0.26482   0.271    0.787     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
crp.sngTRUE -0.249 
 
 - Odds Ratios 
      row.labels      or.l        or      or.u 
1    (Intercept) 0.1594465 0.1946337 0.2346743 
2 crp.singleTRUE 0.6258155 1.0743548 1.7751179 
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Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ crp.double + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1315.7   1331.6   -654.8   1309.7     1487  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.7482 -0.4419 -0.3805 -0.3182  3.4424  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.575    0.7583   
Number of obs: 1490, groups:  pid, 254 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -1.64180    0.09627 -17.053   <2e-16 *** 
crp.doubleTRUE  0.25362    0.35814   0.708    0.479     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
crp.dblTRUE -0.183 
 
 - Odds Ratios 
      row.labels      or.l        or      or.u 
1    (Intercept) 0.1590417 0.1936317 0.2327541 
2 crp.doubleTRUE 0.6143950 1.2886843 2.5291001 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ crp.triple + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1308.4   1324.3   -651.2   1302.4     1487  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.7820 -0.4494 -0.3657 -0.3168  3.5421  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5316   0.7291   
Number of obs: 1490, groups:  pid, 254 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -1.71739    0.09983 -17.203  < 2e-16 *** 
crp.tripleTRUE  0.62612    0.21751   2.879  0.00399 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
crp.trpTRUE -0.348 
 
 - Odds Ratios 
      row.labels     or.l        or      or.u 
1    (Intercept) 0.146405 0.1795347 0.2172773 
2 crp.tripleTRUE 1.210364 1.8703479 2.8463149 
 
 
 
 
 

AE with steroid intervention  
 
  - [REC] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ rec.weide + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   604.8    620.7   -299.4    598.8     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4700 -0.2065 -0.1779 -0.1548  5.9127  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.404    1.185    
Number of obs: 1483, groups:  pid, 252 
 

Fixed effects: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -3.2253     0.2070 -15.578   <2e-16 *** 
rec.weideTRUE   0.3357     0.2879   1.166    0.244     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
rec.wedTRUE -0.241 
 
 - Odds Ratios 
     row.labels       or.l         or       or.u 
1   (Intercept) 0.02504943 0.03974581 0.05738199 
2 rec.weideTRUE 0.77715386 1.39893539 2.41713047 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ rec.high + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   606.1    622.0   -300.0    600.1     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5127 -0.1888 -0.1745 -0.1534  5.8315  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.573    1.254    
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -3.1716     0.2053 -15.451   <2e-16 *** 
rec.highTRUE  -0.1330     0.5712  -0.233    0.816     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
rec.hghTRUE -0.081 
 
 - Odds Ratios 
    row.labels       or.l        or       or.u 
1  (Intercept) 0.02636395 0.0419372 0.06014954 
2 rec.highTRUE 0.24360734 0.8754813 2.41299167 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ rec.half + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   606.1    622.0   -300.0    600.1     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5087 -0.1882 -0.1767 -0.1548  5.8960  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.554    1.246    
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -3.18144    0.20820 -15.281   <2e-16 *** 
rec.halfTRUE  0.05366    0.37489   0.143    0.886     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
rec.hlfTRUE -0.196 
 
 - Odds Ratios 
    row.labels       or.l         or      or.u 
1  (Intercept) 0.02599018 0.04152564 0.0599414 
2 rec.halfTRUE 0.47809906 1.05512510 2.1121506 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ rec.single + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   606.1    622.0   -300.0    600.1     1480  
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Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5119 -0.1887 -0.1773 -0.1534  5.8504  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.568    1.252    
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -3.17344    0.20507 -15.475   <2e-16 *** 
rec.singleTRUE -0.08282    0.57452  -0.144    0.885     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
rc.snglTRUE -0.075 
 
 - Odds Ratios 
      row.labels       or.l         or       or.u 
1    (Intercept) 0.02632581 0.04185929 0.06001396 
2 rec.singleTRUE 0.25473867 0.92051306 2.55595186 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ rec.double + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   603.8    619.7   -298.9    597.8     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.6435 -0.1874 -0.1763 -0.1529  5.8949  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.543    1.242    
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -3.1921     0.2050  -15.57   <2e-16 *** 
rec.doubleTRUE   1.5826     0.9589    1.65   0.0989 .   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
rec.dblTRUE -0.107 
 
 - Odds Ratios 
      row.labels       or.l         or        or.u 
1    (Intercept) 0.02583381 0.04108396  0.05884588 
2 rec.doubleTRUE 0.57642656 4.86746361 29.07242648 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ rec.triple + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   605.4    621.3   -299.7    599.4     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5109 -0.1890 -0.1775 -0.1536  5.8773  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.559    1.249    
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -3.1711     0.2044 -15.515   <2e-16 *** 
rec.tripleTRUE -20.4044   295.6033  -0.069    0.945     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
rc.trplTRUE 0.000  
convergence code: 0 
Model is nearly unidentifiable: large eigenvalue ratio 
 - Rescale variables? 
 
 - Odds Ratios 
      row.labels          or.l           or          or.u 

1    (Intercept)  2.810726e-02 4.195693e-02  6.263092e-02 
2 rec.tripleTRUE 3.279856e-261 1.375613e-09 5.769490e+242 
 
 
 
  - [AEC] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ aec.high + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   605.8    621.7   -299.9    599.8     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5030 -0.1882 -0.1771 -0.1555  5.9958  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.518    1.232    
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -3.1845     0.2040 -15.607   <2e-16 *** 
aec.highTRUE   0.3290     0.5326   0.618    0.537     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
aec.hghTRUE -0.089 
 
 - Odds Ratios 
    row.labels       or.l         or       or.u 
1  (Intercept) 0.02611392 0.04139784 0.05923659 
2 aec.highTRUE 0.43452505 1.38958474 3.64419290 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ aec.half + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   604.2    620.1   -299.1    598.2     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5500 -0.1876 -0.1727 -0.1477  5.7916  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.672    1.293    
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -3.1454     0.2081 -15.112   <2e-16 *** 
aec.halfTRUE  -0.6430     0.5035  -1.277    0.202     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
aec.hlfTRUE -0.069 
 
 - Odds Ratios 
    row.labels       or.l         or      or.u 
1  (Intercept) 0.02683529 0.04304808 0.0620837 
2 aec.halfTRUE 0.17183473 0.52569076 1.2866140 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ aec.single + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   605.4    621.3   -299.7    599.4     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4998 -0.1882 -0.1772 -0.1557  6.0583  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.499    1.224    
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
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               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -3.1866     0.2034 -15.664   <2e-16 *** 
aec.singleTRUE   0.4841     0.5415   0.894    0.371     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ac.snglTRUE -0.087 
 
 - Odds Ratios 
      row.labels       or.l         or       or.u 
1    (Intercept) 0.02609951 0.04131163 0.05904232 
2 aec.singleTRUE 0.49998826 1.62271367 4.34377755 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ aec.double + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   605.7    621.6   -299.8    599.7     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5109 -0.1876 -0.1764 -0.1527  5.8956  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.573    1.254    
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -3.1860     0.2058  -15.48   <2e-16 *** 
aec.doubleTRUE   0.8006     1.1605    0.69     0.49     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
aec.dblTRUE -0.100 
 
 - Odds Ratios 
      row.labels       or.l         or        or.u 
1    (Intercept) 0.02592701 0.04133807  0.05929319 
2 aec.doubleTRUE 0.10762195 2.22693299 16.12705644 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ aec.triple + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   605.7    621.6   -299.8    599.7     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5120 -0.1885 -0.1771 -0.1532  5.8848  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.571    1.253    
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)      -3.1757     0.1628 -19.503   <2e-16 *** 
aec.tripleTRUE  -15.4561  5197.4327  -0.003    0.998     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ac.trplTRUE 0.000  
convergence code: 0 
unable to evaluate scaled gradient 
 Hessian is numerically singular: parameters are not 
uniquely determined 
 
 - Odds Ratios 
      row.labels       or.l           or       or.u 
1    (Intercept) 0.03035145 4.176278e-02 0.05746446 
2 aec.tripleTRUE 0.00000000 1.938565e-07        Inf 
 
 
 
  - [LC] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 

 Family: binomial  ( logit ) 
Formula: ae.steroid ~ lc.high + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   605.9    621.8   -299.9    599.9     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4949 -0.1882 -0.1771 -0.1537  5.8812  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.522    1.234    
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -3.1838     0.2045 -15.566   <2e-16 *** 
lc.highTRUE   0.2666     0.5370   0.496     0.62     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
lc.highTRUE -0.095 
 
 - Odds Ratios 
   row.labels       or.l         or       or.u 
1 (Intercept) 0.02610363 0.04142977 0.05933191 
2 lc.highTRUE 0.40452368 1.30552078 3.45077467 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ lc.half + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   605.6    621.5   -299.8    599.6     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4929 -0.1918 -0.1784 -0.1538  5.9596  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.473    1.214    
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -3.2095     0.2080 -15.430   <2e-16 *** 
lc.halfTRUE   0.2241     0.2956   0.758    0.448     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
lc.halfTRUE -0.242 
 
 - Odds Ratios 
   row.labels       or.l         or       or.u 
1 (Intercept) 0.02540235 0.04037792 0.05842643 
2 lc.halfTRUE 0.68153535 1.25118952 2.18759816 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ lc.single + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   605.8    621.8   -299.9    599.8     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4938 -0.1882 -0.1772 -0.1537  5.8807  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.519    1.232    
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -3.1840     0.2044 -15.575   <2e-16 *** 
lc.singleTRUE   0.2843     0.5382   0.528    0.597     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
lc.snglTRUE -0.094 
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 - Odds Ratios 
     row.labels       or.l         or       or.u 
1   (Intercept) 0.02610279 0.04141928 0.05930552 
2 lc.singleTRUE 0.41086608 1.32882489 3.52159859 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ lc.double + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   605.5    621.4   -299.8    599.5     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5663 -0.1875 -0.1760 -0.1521  5.9022  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.61     1.269    
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -3.1839     0.1636 -19.458   <2e-16 *** 
lc.doubleTRUE  -15.4679  4033.8537  -0.004    0.997     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
lc.doblTRUE 0.000  
convergence code: 0 
unable to evaluate scaled gradient 
Model failed to converge: degenerate  Hessian with 1 nega-
tive eigenvalues 
 
 - Odds Ratios 
     row.labels       or.l           or       or.u 
1   (Intercept) 0.03005869 4.142422e-02 0.05708719 
2 lc.doubleTRUE 0.00000000 1.915999e-07        Inf 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ lc.triple + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   606.0    621.9   -300.0    600.0     1480  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5102 -0.1887 -0.1773 -0.1535  5.8803  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.558    1.248    
Number of obs: 1483, groups:  pid, 252 
 
Fixed effects: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -3.1745     0.2042 -15.548   <2e-16 *** 
lc.tripleTRUE -14.1148   512.0000  -0.028    0.978     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
lc.trplTRUE 0.000  
convergence code: 0 
Model is nearly unidentifiable: large eigenvalue ratio 
 - Rescale variables? 
 
 - Odds Ratios 
     row.labels       or.l           or       or.u 
1   (Intercept) 0.02802516 4.181642e-02 0.06239439 
2 lc.tripleTRUE 0.00000000 7.413598e-07        Inf 
 
 
 
  - [LDH] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ ldh.weide + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   605.4    621.3   -299.7    599.4     1477  
 

Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5209 -0.1866 -0.1751 -0.1511  5.8717  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.646    1.283    
Number of obs: 1480, groups:  pid, 254 
 
Fixed effects: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -3.1912     0.2092 -15.255   <2e-16 *** 
ldh.weideTRUE  -0.1150     0.8048  -0.143    0.886     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ldh.wedTRUE -0.075 
 
 - Odds Ratios 
     row.labels       or.l         or       or.u 
1   (Intercept) 0.02553557 0.04112241 0.05932744 
2 ldh.weideTRUE 0.12949698 0.89139330 3.54435764 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ ldh.high + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   604.2    620.1   -299.1    598.2     1477  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4852 -0.1885 -0.1763 -0.1511  5.9159  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.525    1.235    
Number of obs: 1480, groups:  pid, 254 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -3.2411     0.2122 -15.277   <2e-16 *** 
ldh.highTRUE   0.3578     0.3122   1.146    0.252     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ldh.hghTRUE -0.236 
 
 - Odds Ratios 
    row.labels       or.l         or       or.u 
1  (Intercept) 0.02428082 0.03912254 0.05690827 
2 ldh.highTRUE 0.75197473 1.43021221 2.57892625 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ ldh.half + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   604.7    620.6   -299.4    598.7     1477  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5019 -0.1888 -0.1749 -0.1531  5.8861  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.536    1.239    
Number of obs: 1480, groups:  pid, 254 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -3.2138     0.2082 -15.434   <2e-16 *** 
ldh.halfTRUE   0.3011     0.3609   0.834    0.404     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ldh.hlfTRUE -0.143 
 
 - Odds Ratios 
    row.labels       or.l         or       or.u 
1  (Intercept) 0.02511398 0.04020425 0.05800778 
2 ldh.halfTRUE 0.63496647 1.35138185 2.64427456 
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Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ ldh.single + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   604.4    620.3   -299.2    598.4     1477  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4896 -0.1887 -0.1765 -0.1511  5.9130  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.548    1.244    
Number of obs: 1480, groups:  pid, 254 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -3.2345     0.2117  -15.28   <2e-16 *** 
ldh.singleTRUE   0.3439     0.3274    1.05    0.293     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ldh.sngTRUE -0.223 
 
 - Odds Ratios 
      row.labels      or.l         or       or.u 
1    (Intercept) 0.0244478 0.03938016 0.05722331 
2 ldh.singleTRUE 0.7163373 1.41041243 2.61069166 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ ldh.double + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   605.2    621.1   -299.6    599.2     1477  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5162 -0.1860 -0.1747 -0.1510  5.8771  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.622    1.274    
Number of obs: 1480, groups:  pid, 254 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -3.2016     0.2095 -15.284   <2e-16 *** 
ldh.doubleTRUE   0.3164     0.6797   0.466    0.642     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ldh.dblTRUE -0.100 
 
 - Odds Ratios 
      row.labels       or.l         or       or.u 
1    (Intercept) 0.02525972 0.04069572 0.05873675 
2 ldh.doubleTRUE 0.29364548 1.37224416 4.59974023 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ ldh.triple + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   605.2    621.1   -299.6    599.2     1477  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5219 -0.1869 -0.1753 -0.1512  5.8686  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.65     1.285    
Number of obs: 1480, groups:  pid, 254 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -3.1873     0.2089 -15.255   <2e-16 *** 
ldh.tripleTRUE  -0.4347     1.0940  -0.397    0.691     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 

Correlation of Fixed Effects: 
            (Intr) 
ldh.trpTRUE -0.058 
 
 - Odds Ratios 
      row.labels       or.l       or       or.u 
1    (Intercept) 0.02564388 0.041284 0.05952307 
2 ldh.tripleTRUE 0.03320664 0.647436 3.75796104 
 
 
 
  - [CRP] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ crp.high + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   602.9    618.9   -298.5    596.9     1487  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4681 -0.2088 -0.1750 -0.1499  5.5286  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.377    1.173    
Number of obs: 1490, groups:  pid, 254 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -3.2820     0.2101 -15.623   <2e-16 *** 
crp.highTRUE   0.5427     0.2833   1.915   0.0554 .   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
crp.hghTRUE -0.276 
 
 - Odds Ratios 
    row.labels       or.l         or      or.u 
1  (Intercept) 0.02352019 0.03755491 0.0545046 
2 crp.highTRUE 0.96687108 1.72056605 2.9527540 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ crp.half + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   605.9    621.8   -299.9    599.9     1487  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5184 -0.1886 -0.1716 -0.1510  5.8749  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.61     1.269    
Number of obs: 1490, groups:  pid, 254 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -3.1704     0.2094 -15.142   <2e-16 *** 
crp.halfTRUE  -0.3749     0.5494  -0.682    0.495     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
crp.hlfTRUE -0.150 
 
 - Odds Ratios 
    row.labels       or.l         or       or.u 
1  (Intercept) 0.02611965 0.04198478 0.06063295 
2 crp.halfTRUE 0.19820995 0.68735784 1.81354127 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ crp.single + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   606.3    622.3   -300.2    600.3     1487  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5145 -0.1860 -0.1748 -0.1525  5.9291  
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Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.611    1.269    
Number of obs: 1490, groups:  pid, 254 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -3.20234    0.20923 -15.305   <2e-16 *** 
crp.singleTRUE  0.08637    0.42000   0.206    0.837     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
crp.sngTRUE -0.143 
 
 - Odds Ratios 
      row.labels       or.l         or       or.u 
1    (Intercept) 0.02532653 0.04066687 0.05876484 
2 crp.singleTRUE 0.44474395 1.09021250 2.35550856 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ crp.double + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   606.3    622.2   -300.1    600.3     1487  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5195 -0.1867 -0.1720 -0.1516  5.9074  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.636    1.279    
Number of obs: 1490, groups:  pid, 254 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -3.1909     0.2083 -15.317   <2e-16 *** 
crp.doubleTRUE  -0.1886     0.6488  -0.291    0.771     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
crp.dblTRUE -0.083 
 
 - Odds Ratios 
      row.labels       or.l         or       or.u 
1    (Intercept) 0.02562998 0.04113527 0.05929291 
2 crp.doubleTRUE 0.18554849 0.82815539 2.56959330 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ crp.triple + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   593.3    609.2   -293.7    587.3     1487  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5253 -0.1834 -0.1694 -0.1492  5.4522  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.254    1.12     
Number of obs: 1490, groups:  pid, 254 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -3.3401     0.2114 -15.802  < 2e-16 *** 
crp.tripleTRUE   1.1693     0.3025   3.865 0.000111 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
crp.trpTRUE -0.310 
 
 - Odds Ratios 
      row.labels       or.l         or       or.u 
1    (Intercept) 0.02208131 0.03543308 0.05136279 
2 crp.tripleTRUE 1.74515840 3.21967067 5.75112579 

 

Baseline only 
any AE 

 
  - [REC] 
 
 
  
glm(formula = ae.any ~ rec.weide, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.9214  -0.9214  -0.8035   1.4571   1.6049   
 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -0.9651     0.2399  -4.023 5.74e-05 *** 
rec.weideTRUE   0.3280     0.2921   1.123    0.261     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 308.84  on 245  degrees of freedom 
Residual deviance: 307.56  on 244  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 311.56 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
     row.labels      or.l        or      or.u 
1   (Intercept) 0.2335978 0.3809524 0.6009538 
2 rec.weideTRUE 0.7890947 1.3882212 2.4889173 
 
 
 
 
  
glm(formula = ae.any ~ rec.high, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.1774  -0.8701  -0.8701   1.5197   1.5197   
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -0.7763     0.1395  -5.563 2.64e-08 *** 
rec.highTRUE   0.7763     0.7207   1.077    0.281     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 308.84  on 245  degrees of freedom 
Residual deviance: 307.71  on 244  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 311.71 
 
Number of Fisher Scoring iterations: 4 
 
 
 - Odds Ratios 
    row.labels      or.l        or      or.u 
1  (Intercept) 0.3482604 0.4601227 0.6023194 
2 rec.highTRUE 0.5017991 2.1733333 9.4154914 
 
 
 
 
  
glm(formula = ae.any ~ rec.half, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.0842  -0.8216  -0.8216   1.2735   1.5812   
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -0.9126     0.1596  -5.717 1.08e-08 *** 
rec.halfTRUE   0.6895     0.3170   2.175   0.0296 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 308.84  on 245  degrees of freedom 
Residual deviance: 304.19  on 244  degrees of freedom 
  (8 observations deleted due to missingness) 
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AIC: 308.19 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
    row.labels     or.l        or      or.u 
1  (Intercept) 0.291363 0.4014599 0.5454756 
2 rec.halfTRUE 1.065709 1.9927273 3.7090709 
 
 
 
 
  
glm(formula = ae.any ~ rec.single, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.3018  -0.8679  -0.8679   1.5225   1.5225   
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -0.7824     0.1394  -5.613 1.99e-08 *** 
rec.singleTRUE   1.0701     0.7764   1.378    0.168     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 308.84  on 245  degrees of freedom 
Residual deviance: 306.93  on 244  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 310.93 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
      row.labels      or.l        or       or.u 
1    (Intercept) 0.3462199 0.4573171  0.5984744 
2 rec.singleTRUE 0.6279874 2.9155556 15.1080228 
 
 
 
 
  
glm(formula = ae.any ~ rec.double, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.8823  -0.8823  -0.8823   1.5045   1.5045   
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -0.7425     0.1367  -5.433 5.56e-08 *** 
rec.doubleTRUE -13.8235   882.7434  -0.016    0.988     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 308.84  on 245  degrees of freedom 
Residual deviance: 308.06  on 244  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 312.06 
 
Number of Fisher Scoring iterations: 13 
 
 - Odds Ratios 
      row.labels     or.l           or      or.u 
1    (Intercept) 0.364059 4.759036e-01 0.6221086 
2 rec.doubleTRUE 0.000000 9.920148e-07       Inf 
 
 
 
 
  
glm(formula = ae.any ~ rec.triple, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.8802  -0.8802  -0.8802   1.5072   1.5072   
 
Coefficients: (1 not defined because of singularities) 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -0.7485     0.1366  -5.482 4.21e-08 *** 
rec.tripleTRUE       NA         NA      NA       NA     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 308.84  on 245  degrees of freedom 
Residual deviance: 308.84  on 245  degrees of freedom 

  (8 observations deleted due to missingness) 
AIC: 310.84 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
   row.labels or.l or or.u 
1 (Intercept)   NA NA   NA 
 
 
 
  - [AEC] 
 
 
  
glm(formula = ae.any ~ aec.high, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.6651  -0.8683  -0.8683   1.5220   1.5220   
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -0.7813     0.1385  -5.641 1.69e-08 *** 
aec.highTRUE   1.8799     1.1630   1.616    0.106     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 308.84  on 245  degrees of freedom 
Residual deviance: 305.69  on 244  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 309.69 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
    row.labels      or.l        or        or.u 
1  (Intercept) 0.3472440 0.4578313   0.5981306 
2 aec.highTRUE 0.8240066 6.5526316 133.6482625 
 
 
 
 
  
glm(formula = ae.any ~ aec.half, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.0108  -0.8618  -0.8618   1.5301   1.5301   
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -0.7993     0.1471  -5.434 5.52e-08 *** 
aec.halfTRUE   0.3938     0.4007   0.983    0.326     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 308.84  on 245  degrees of freedom 
Residual deviance: 307.90  on 244  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 311.9 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
    row.labels      or.l        or      or.u 
1  (Intercept) 0.3350900 0.4496644 0.5970789 
2 aec.halfTRUE 0.6614098 1.4825871 3.2249764 
 
 
 
 
  
glm(formula = ae.any ~ aec.single, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.8661  -0.8661  -0.8661   1.5247   1.5247   
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -0.7873     0.1384  -5.690 1.27e-08 *** 
aec.singleTRUE  16.3533   840.2742   0.019    0.984     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
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    Null deviance: 308.84  on 245  degrees of freedom 
Residual deviance: 301.95  on 244  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 305.95 
 
Number of Fisher Scoring iterations: 14 
 
 - Odds Ratios 
      row.labels      or.l           or     or.u 
1    (Intercept) 0.3469886 4.550898e-01 0.596869 
2 aec.singleTRUE 0.0000000 1.265204e+07      Inf 
 
 
 
 
  
glm(formula = ae.any ~ aec.double, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.8823  -0.8823  -0.8823   1.5045   1.5045   
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -0.7425     0.1367  -5.433 5.56e-08 *** 
aec.doubleTRUE -13.8235   882.7434  -0.016    0.988     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 308.84  on 245  degrees of freedom 
Residual deviance: 308.06  on 244  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 312.06 
 
Number of Fisher Scoring iterations: 13 
 
 - Odds Ratios 
      row.labels     or.l           or      or.u 
1    (Intercept) 0.364059 4.759036e-01 0.6221086 
2 aec.doubleTRUE 0.000000 9.920148e-07       Inf 
 
 
 
 
  
glm(formula = ae.any ~ aec.triple, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.8802  -0.8802  -0.8802   1.5072   1.5072   
 
Coefficients: (1 not defined because of singularities) 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -0.7485     0.1366  -5.482 4.21e-08 *** 
aec.tripleTRUE       NA         NA      NA       NA     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 308.84  on 245  degrees of freedom 
Residual deviance: 308.84  on 245  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 310.84 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
   row.labels or.l or or.u 
1 (Intercept)   NA NA   NA 
 
 
 
  - [LC] 
 
 
  
glm(formula = ae.any ~ lc.high, family = binomial("logit"), 
data = nb.data,  
    na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.8908  -0.8908  -0.8908   1.4941   1.7011   
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -0.7195     0.1408   -5.11 3.23e-07 *** 
lc.highTRUE  -0.4592     0.5889   -0.78    0.436     
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 308.84  on 245  degrees of freedom 
Residual deviance: 308.19  on 244  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 312.19 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
   row.labels      or.l        or      or.u 
1 (Intercept) 0.3677714 0.4870130 0.6392734 
2 lc.highTRUE 0.1733816 0.6317949 1.8549865 
 
 
 
 
  
glm(formula = ae.any ~ lc.half, family = binomial("logit"), 
data = nb.data,  
    na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.8880  -0.8757  -0.8757   1.4976   1.5128   
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)    
(Intercept) -0.72705    0.22616  -3.215  0.00131 ** 
lc.halfTRUE -0.03376    0.28372  -0.119  0.90529    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 308.84  on 245  degrees of freedom 
Residual deviance: 308.83  on 244  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 312.83 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
   row.labels      or.l        or      or.u 
1 (Intercept) 0.3061475 0.4833333 0.7457544 
2 lc.halfTRUE 0.5563112 0.9668063 1.6965108 
 
 
 
 
  
glm(formula = ae.any ~ lc.single, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.8884  -0.8884  -0.8884   1.4971   1.6651   
 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -0.7259     0.1407  -5.161 2.46e-07 *** 
lc.singleTRUE  -0.3727     0.5942  -0.627    0.531     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 308.84  on 245  degrees of freedom 
Residual deviance: 308.43  on 244  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 312.43 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
     row.labels      or.l        or     or.u 
1   (Intercept) 0.3654959 0.4838710 0.634946 
2 lc.singleTRUE 0.1876695 0.6888889 2.052981 
 
 
 
 
  
glm(formula = ae.any ~ lc.double, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.8802  -0.8802  -0.8802   1.5072   1.5072   
 
Coefficients: (1 not defined because of singularities) 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -0.7485     0.1366  -5.482 4.21e-08 *** 
lc.doubleTRUE       NA         NA      NA       NA     
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--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 308.84  on 245  degrees of freedom 
Residual deviance: 308.84  on 245  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 310.84 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
   row.labels or.l or or.u 
1 (Intercept)   NA NA   NA 
 
 
 
 
  
glm(formula = ae.any ~ lc.triple, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.8823  -0.8823  -0.8823   1.5045   1.5045   
 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -0.7425     0.1367  -5.433 5.56e-08 *** 
lc.tripleTRUE -13.8235   882.7434  -0.016    0.988     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 308.84  on 245  degrees of freedom 
Residual deviance: 308.06  on 244  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 312.06 
 
Number of Fisher Scoring iterations: 13 
 
 - Odds Ratios 
     row.labels     or.l           or      or.u 
1   (Intercept) 0.364059 4.759036e-01 0.6221086 
2 lc.tripleTRUE 0.000000 9.920148e-07       Inf 
 
 
 
  - [LDH] 
 
 
  
glm(formula = ae.any ~ ldh.weide, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.8814  -0.8814  -0.8814   1.5057   1.7552   
 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -0.7451     0.1402  -5.314 1.07e-07 *** 
ldh.weideTRUE  -0.5542     0.6663  -0.832    0.406     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 308.09  on 246  degrees of freedom 
Residual deviance: 307.33  on 245  degrees of freedom 
  (7 observations deleted due to missingness) 
AIC: 311.33 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
     row.labels      or.l        or      or.u 
1   (Intercept) 0.3588357 0.4746835 0.6223068 
2 ldh.weideTRUE 0.1272056 0.5745455 1.9042479 
 
 
 
 
  
glm(formula = ae.any ~ ldh.high, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.9311  -0.9311  -0.7842   1.4456   1.6304   
 
Coefficients: 

             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -0.6115     0.1739  -3.516 0.000438 *** 
ldh.highTRUE  -0.4102     0.2839  -1.445 0.148554     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 308.09  on 246  degrees of freedom 
Residual deviance: 305.96  on 245  degrees of freedom 
  (7 observations deleted due to missingness) 
AIC: 309.96 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
    row.labels      or.l        or      or.u 
1  (Intercept) 0.3832931 0.5425532 0.7591786 
2 ldh.highTRUE 0.3769652 0.6635294 1.1507545 
 
 
 
 
  
glm(formula = ae.any ~ ldh.half, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
   Min      1Q  Median      3Q     Max   
-0.920  -0.920  -0.804   1.459   1.604   
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -0.9634     0.2183  -4.414 1.01e-05 *** 
ldh.halfTRUE   0.3227     0.2807   1.149     0.25     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 308.09  on 246  degrees of freedom 
Residual deviance: 306.75  on 245  degrees of freedom 
  (7 observations deleted due to missingness) 
AIC: 310.75 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
    row.labels      or.l        or      or.u 
1  (Intercept) 0.2449493 0.3815789 0.5783222 
2 ldh.halfTRUE 0.8000724 1.3807935 2.4111859 
 
 
 
 
  
glm(formula = ae.any ~ ldh.single, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.8937  -0.8937  -0.8262   1.4906   1.5753   
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -0.7115     0.1662  -4.282 1.85e-05 *** 
ldh.singleTRUE  -0.1880     0.2936  -0.640    0.522     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 308.09  on 246  degrees of freedom 
Residual deviance: 307.67  on 245  degrees of freedom 
  (7 observations deleted due to missingness) 
AIC: 311.67 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
      row.labels      or.l        or      or.u 
1    (Intercept) 0.3520519 0.4909091 0.6762876 
2 ldh.singleTRUE 0.4610307 0.8286252 1.4629127 
 
 
 
 
  
glm(formula = ae.any ~ ldh.double, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.8791  -0.8791  -0.8791   1.5085   1.7125   
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Coefficients: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -0.7514     0.1401  -5.364 8.13e-08 *** 
ldh.doubleTRUE  -0.4526     0.6730  -0.672    0.501     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 308.09  on 246  degrees of freedom 
Residual deviance: 307.60  on 245  degrees of freedom 
  (7 observations deleted due to missingness) 
AIC: 311.6 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
      row.labels      or.l        or      or.u 
1    (Intercept) 0.3566694 0.4716981 0.6182043 
2 ldh.doubleTRUE 0.1396089 0.6360000 2.1497283 
 
 
 
 
  
glm(formula = ae.any ~ ldh.triple, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.8797  -0.8797  -0.8797   1.5079   1.9728   
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -0.7499     0.1383  -5.423 5.85e-08 *** 
ldh.tripleTRUE  -1.0418     1.0889  -0.957    0.339     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 308.09  on 246  degrees of freedom 
Residual deviance: 306.94  on 245  degrees of freedom 
  (7 observations deleted due to missingness) 
AIC: 310.94 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
      row.labels       or.l        or      or.u 
1    (Intercept) 0.35850641 0.4723926 0.6170015 
2 ldh.tripleTRUE 0.01851142 0.3528139 2.1142924 
 
 
 
  - [CRP] 
 
 
  
glm(formula = ae.any ~ crp.high, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.8876  -0.8876  -0.8675   1.4981   1.5230   
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -0.72824    0.18789  -3.876 0.000106 *** 
crp.highTRUE -0.05529    0.27327  -0.202 0.839653     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 309.61  on 246  degrees of freedom 
Residual deviance: 309.57  on 245  degrees of freedom 
  (7 observations deleted due to missingness) 
AIC: 313.57 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
    row.labels      or.l        or      or.u 
1  (Intercept) 0.3310418 0.4827586 0.6929414 
2 crp.highTRUE 0.5525209 0.9462081 1.6163878 
 
 
 
 
  
glm(formula = ae.any ~ crp.half, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 

Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.8904  -0.8904  -0.8904   1.4946   1.6431   
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -0.7205     0.1437  -5.015 5.31e-07 *** 
crp.halfTRUE  -0.3293     0.4621  -0.713    0.476     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 309.61  on 246  degrees of freedom 
Residual deviance: 309.08  on 245  degrees of freedom 
  (7 observations deleted due to missingness) 
AIC: 313.08 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
    row.labels      or.l        or      or.u 
1  (Intercept) 0.3652281 0.4864865 0.6420923 
2 crp.halfTRUE 0.2717868 0.7194444 1.7074737 
 
 
 
 
  
glm(formula = ae.any ~ crp.single, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.9282  -0.8682  -0.8682   1.5221   1.5221   
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -0.7814     0.1498  -5.218 1.81e-07 *** 
crp.singleTRUE   0.1624     0.3638   0.446    0.655     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 309.61  on 246  degrees of freedom 
Residual deviance: 309.42  on 245  degrees of freedom 
  (7 observations deleted due to missingness) 
AIC: 313.42 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
      row.labels      or.l        or     or.u 
1    (Intercept) 0.3393003 0.4577465 0.610956 
2 crp.singleTRUE 0.5642268 1.1763314 2.370775 
 
 
 
 
  
glm(formula = ae.any ~ crp.double, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
   Min      1Q  Median      3Q     Max   
-0.903  -0.903  -0.903   1.479   1.948   
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -0.6865     0.1406  -4.881 1.05e-06 *** 
crp.doubleTRUE  -1.0481     0.6418  -1.633    0.102     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 309.61  on 246  degrees of freedom 
Residual deviance: 306.35  on 245  degrees of freedom 
  (7 observations deleted due to missingness) 
AIC: 310.35 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
      row.labels       or.l        or      or.u 
1    (Intercept) 0.38027752 0.5033113 0.6605808 
2 crp.doubleTRUE 0.08010068 0.3506192 1.0838093 
 
 
 
 
  
glm(formula = ae.any ~ crp.triple, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
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Deviance Residuals:  
   Min      1Q  Median      3Q     Max   
-0.938  -0.859  -0.859   1.437   1.534   
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -0.8071     0.1579  -5.111  3.2e-07 *** 
crp.tripleTRUE   0.2140     0.3144   0.681    0.496     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 309.61  on 246  degrees of freedom 
Residual deviance: 309.15  on 245  degrees of freedom 
  (7 observations deleted due to missingness) 
AIC: 313.15 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
      row.labels      or.l        or      or.u 
1    (Intercept) 0.3251839 0.4461538 0.6046583 
2 crp.tripleTRUE 0.6613345 1.2386570 2.2794593 
 
 
 
 
 

AE with steroid intervention 
 
  - [REC] 
 
 
  
glm(formula = ae.steroid ~ rec.weide, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.5448  -0.5448  -0.4130  -0.4130   2.2378   
 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -1.8326     0.3109  -5.894 3.76e-09 *** 
rec.weideTRUE  -0.5861     0.4248  -1.380    0.168     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 161.69  on 245  degrees of freedom 
Residual deviance: 159.82  on 244  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 163.82 
 
Number of Fisher Scoring iterations: 5 
 
 - Odds Ratios 
     row.labels       or.l        or      or.u 
1   (Intercept) 0.08267885 0.1600000 0.2828314 
2 rec.weideTRUE 0.24076918 0.5565068 1.2947811 
 
 
 
 
  
glm(formula = ae.steroid ~ rec.high, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.7585  -0.4508  -0.4508  -0.4508   2.1618   
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -2.2351     0.2194 -10.188   <2e-16 *** 
rec.highTRUE   1.1365     0.8455   1.344    0.179     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 161.69  on 245  degrees of freedom 
Residual deviance: 160.19  on 244  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 164.19 
 
Number of Fisher Scoring iterations: 5 
 
 - Odds Ratios 
    row.labels       or.l        or       or.u 
1  (Intercept) 0.06773614 0.1069767  0.1607157 

2 rec.highTRUE 0.43936924 3.1159420 14.4534944 
 
 
 
 
  
glm(formula = ae.steroid ~ rec.half, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.4813  -0.4813  -0.4813  -0.3923   2.2815   
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -2.0971     0.2312  -9.070   <2e-16 *** 
rec.halfTRUE  -0.4286     0.5687  -0.754    0.451     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 161.69  on 245  degrees of freedom 
Residual deviance: 161.08  on 244  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 165.08 
 
Number of Fisher Scoring iterations: 5 
 
 - Odds Ratios 
    row.labels       or.l        or      or.u 
1  (Intercept) 0.07580597 0.1228070 0.1885317 
2 rec.halfTRUE 0.18368399 0.6514286 1.8082531 
 
 
 
 
  
glm(formula = ae.steroid ~ rec.single, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.8203  -0.4499  -0.4499  -0.4499   2.1638   
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -2.2398     0.2193  -10.21   <2e-16 *** 
rec.singleTRUE   1.3235     0.8649    1.53    0.126     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 161.69  on 245  degrees of freedom 
Residual deviance: 159.77  on 244  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 163.77 
 
Number of Fisher Scoring iterations: 5 
 
 - Odds Ratios 
      row.labels       or.l        or       or.u 
1    (Intercept) 0.06742815 0.1064815  0.1599539 
2 rec.singleTRUE 0.51793001 3.7565217 18.5451266 
 
 
 
 
  
glm(formula = ae.steroid ~ rec.double, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
   Min      1Q  Median      3Q     Max   
-0.464  -0.464  -0.464  -0.464   2.137   
 
Coefficients: 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)      -2.1748     0.2111 -10.304   <2e-16 *** 
rec.doubleTRUE  -13.3913  1455.3975  -0.009    0.993     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 161.69  on 245  degrees of freedom 
Residual deviance: 161.48  on 244  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 165.48 
 
Number of Fisher Scoring iterations: 14 
 
 - Odds Ratios 
      row.labels       or.l           or      or.u 
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1    (Intercept) 0.07513827 1.136364e-01 0.1718595 
2 rec.doubleTRUE 0.00000000 1.528358e-06       Inf 
 
 
 
 
  
glm(formula = ae.steroid ~ rec.triple, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
   Min      1Q  Median      3Q     Max   
-0.463  -0.463  -0.463  -0.463   2.138   
 
Coefficients: (1 not defined because of singularities) 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)      -2.179      0.211  -10.33   <2e-16 *** 
rec.tripleTRUE       NA         NA      NA       NA     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 161.69  on 245  degrees of freedom 
Residual deviance: 161.69  on 245  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 163.69 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
   row.labels or.l or or.u 
1 (Intercept)   NA NA   NA 
 
 
 
  - [AEC] 
 
 
  
glm(formula = ae.steroid ~ aec.high, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.1774  -0.4469  -0.4469  -0.4469   2.1695   
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -2.2536     0.2192 -10.281   <2e-16 *** 
aec.highTRUE   2.2536     1.0237   2.201   0.0277 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 161.69  on 245  degrees of freedom 
Residual deviance: 157.54  on 244  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 161.54 
 
Number of Fisher Scoring iterations: 5 
 
 - Odds Ratios 
    row.labels       or.l        or       or.u 
1  (Intercept) 0.06652074 0.1050228  0.1577113 
2 aec.highTRUE 1.10111327 9.5217391 82.4629942 
 
 
 
 
  
glm(formula = ae.steroid ~ aec.half, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.4745  -0.4745  -0.4745  -0.4745   2.3272   
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -2.1272     0.2206  -9.643   <2e-16 *** 
aec.halfTRUE  -0.5119     0.7644  -0.670    0.503     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 161.69  on 245  degrees of freedom 
Residual deviance: 161.18  on 244  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 165.18 
 
Number of Fisher Scoring iterations: 5 

 
 - Odds Ratios 
    row.labels       or.l        or      or.u 
1  (Intercept) 0.07530383 0.1191710 0.1795231 
2 aec.halfTRUE 0.09303842 0.5993789 2.1822227 
 
 
 
 
  
glm(formula = ae.steroid ~ aec.single, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
   Min      1Q  Median      3Q     Max   
-1.482  -0.446  -0.446  -0.446   2.171   
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -2.2581     0.2191 -10.304   <2e-16 *** 
aec.singleTRUE   2.9513     1.2442   2.372   0.0177 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 161.69  on 245  degrees of freedom 
Residual deviance: 156.02  on 244  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 160.02 
 
Number of Fisher Scoring iterations: 5 
 
 - Odds Ratios 
      row.labels       or.l         or        or.u 
1    (Intercept) 0.06622367  0.1045455   0.1569777 
2 aec.singleTRUE 1.76842388 19.1304348 421.0954641 
 
 
 
 
  
glm(formula = ae.steroid ~ aec.double, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
   Min      1Q  Median      3Q     Max   
-0.464  -0.464  -0.464  -0.464   2.137   
 
Coefficients: 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)      -2.1748     0.2111 -10.304   <2e-16 *** 
aec.doubleTRUE  -13.3913  1455.3975  -0.009    0.993     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 161.69  on 245  degrees of freedom 
Residual deviance: 161.48  on 244  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 165.48 
 
Number of Fisher Scoring iterations: 14 
 
 - Odds Ratios 
      row.labels       or.l           or      or.u 
1    (Intercept) 0.07513827 1.136364e-01 0.1718595 
2 aec.doubleTRUE 0.00000000 1.528358e-06       Inf 
 
 
 
 
  
glm(formula = ae.steroid ~ aec.triple, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
   Min      1Q  Median      3Q     Max   
-0.463  -0.463  -0.463  -0.463   2.138   
 
Coefficients: (1 not defined because of singularities) 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)      -2.179      0.211  -10.33   <2e-16 *** 
aec.tripleTRUE       NA         NA      NA       NA     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 161.69  on 245  degrees of freedom 
Residual deviance: 161.69  on 245  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 163.69 
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Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
   row.labels or.l or or.u 
1 (Intercept)   NA NA   NA 
 
 
 
  - [LC] 
 
 
  
glm(formula = ae.steroid ~ lc.high, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.6231  -0.4495  -0.4495  -0.4495   2.1646   
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -2.2417     0.2242  -9.997   <2e-16 *** 
lc.highTRUE   0.7012     0.6746   1.040    0.299     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 161.69  on 245  degrees of freedom 
Residual deviance: 160.74  on 244  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 164.74 
 
Number of Fisher Scoring iterations: 5 
 
 - Odds Ratios 
   row.labels       or.l        or      or.u 
1 (Intercept) 0.06657043 0.1062802 0.1610324 
2 lc.highTRUE 0.44072762 2.0162338 6.7847370 
 
 
 
 
  
glm(formula = ae.steroid ~ lc.half, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.4788  -0.4788  -0.4788  -0.4340   2.1951   
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -2.3150     0.3706  -6.247 4.19e-10 *** 
lc.halfTRUE   0.2066     0.4509   0.458    0.647     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 161.69  on 245  degrees of freedom 
Residual deviance: 161.48  on 244  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 165.48 
 
Number of Fisher Scoring iterations: 5 
 
 - Odds Ratios 
   row.labels       or.l         or      or.u 
1 (Intercept) 0.04396984 0.09876543 0.1916779 
2 lc.halfTRUE 0.52210121 1.22946429 3.1294195 
 
 
 
 
  
glm(formula = ae.steroid ~ lc.single, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.6444  -0.4484  -0.4484  -0.4484   2.1666   
 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -2.2465     0.2242  -10.02   <2e-16 *** 
lc.singleTRUE   0.7802     0.6786    1.15     0.25     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 161.69  on 245  degrees of freedom 
Residual deviance: 160.54  on 244  degrees of freedom 
  (8 observations deleted due to missingness) 

AIC: 164.54 
 
Number of Fisher Scoring iterations: 5 
 
 - Odds Ratios 
     row.labels       or.l        or      or.u 
1   (Intercept) 0.06625616 0.1057692 0.1602394 
2 lc.singleTRUE 0.47439888 2.1818182 7.4237909 
 
 
 
 
  
glm(formula = ae.steroid ~ lc.double, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
   Min      1Q  Median      3Q     Max   
-0.463  -0.463  -0.463  -0.463   2.138   
 
Coefficients: (1 not defined because of singularities) 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -2.179      0.211  -10.33   <2e-16 *** 
lc.doubleTRUE       NA         NA      NA       NA     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 161.69  on 245  degrees of freedom 
Residual deviance: 161.69  on 245  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 163.69 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
   row.labels or.l or or.u 
1 (Intercept)   NA NA   NA 
 
 
 
 
  
glm(formula = ae.steroid ~ lc.triple, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
   Min      1Q  Median      3Q     Max   
-0.464  -0.464  -0.464  -0.464   2.137   
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -2.1748     0.2111 -10.304   <2e-16 *** 
lc.tripleTRUE  -13.3913  1455.3975  -0.009    0.993     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 161.69  on 245  degrees of freedom 
Residual deviance: 161.48  on 244  degrees of freedom 
  (8 observations deleted due to missingness) 
AIC: 165.48 
 
Number of Fisher Scoring iterations: 14 
 
 - Odds Ratios 
     row.labels       or.l           or      or.u 
1   (Intercept) 0.07513827 1.136364e-01 0.1718595 
2 lc.tripleTRUE 0.00000000 1.528358e-06       Inf 
 
 
 
  - [LDH] 
 
 
  
glm(formula = ae.steroid ~ ldh.weide, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.5553  -0.4663  -0.4663  -0.4663   2.1321   
 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -2.1643     0.2155 -10.042   <2e-16 *** 
ldh.weideTRUE   0.3725     0.7936   0.469    0.639     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
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    Null deviance: 166.23  on 246  degrees of freedom 
Residual deviance: 166.02  on 245  degrees of freedom 
  (7 observations deleted due to missingness) 
AIC: 170.02 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
     row.labels       or.l        or      or.u 
1   (Intercept) 0.07336292 0.1148325 0.1714137 
2 ldh.weideTRUE 0.21762589 1.4513889 5.7482684 
 
 
 
 
  
glm(formula = ae.steroid ~ ldh.high, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.5003  -0.5003  -0.4506  -0.4506   2.1623   
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -2.2361     0.2811  -7.954 1.81e-15 *** 
ldh.highTRUE   0.2212     0.4165   0.531    0.595     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 166.23  on 246  degrees of freedom 
Residual deviance: 165.95  on 245  degrees of freedom 
  (7 observations deleted due to missingness) 
AIC: 169.95 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
    row.labels       or.l        or      or.u 
1  (Intercept) 0.05885435 0.1068702 0.1787149 
2 ldh.highTRUE 0.54330421 1.2476190 2.8267478 
 
 
 
 
  
glm(formula = ae.steroid ~ ldh.half, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.5350  -0.5350  -0.4202  -0.4202   2.2230   
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -1.8718     0.2871  -6.520 7.03e-11 *** 
ldh.halfTRUE  -0.5108     0.4165  -1.227     0.22     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 166.23  on 246  degrees of freedom 
Residual deviance: 164.72  on 245  degrees of freedom 
  (7 observations deleted due to missingness) 
AIC: 168.72 
 
Number of Fisher Scoring iterations: 5 
 
 - Odds Ratios 
    row.labels       or.l        or      or.u 
1  (Intercept) 0.08391883 0.1538462 0.2608635 
2 ldh.halfTRUE 0.26120945 0.6000000 1.3586065 
 
 
 
 
  
glm(formula = ae.steroid ~ ldh.single, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.5067  -0.5067  -0.4531  -0.4531   2.1574   
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -2.2246     0.2631  -8.454   <2e-16 *** 
ldh.singleTRUE   0.2367     0.4277   0.554     0.58     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 

 
    Null deviance: 166.23  on 246  degrees of freedom 
Residual deviance: 165.93  on 245  degrees of freedom 
  (7 observations deleted due to missingness) 
AIC: 169.93 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
      row.labels       or.l        or      or.u 
1    (Intercept) 0.06204694 0.1081081 0.1752944 
2 ldh.singleTRUE 0.53154378 1.2671233 2.8945510 
 
 
 
 
  
glm(formula = ae.steroid ~ ldh.double, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.5780  -0.4652  -0.4652  -0.4652   2.1341   
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -2.1691     0.2155 -10.067   <2e-16 *** 
ldh.doubleTRUE   0.4643     0.7983   0.582    0.561     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 166.23  on 246  degrees of freedom 
Residual deviance: 165.92  on 245  degrees of freedom 
  (7 observations deleted due to missingness) 
AIC: 169.92 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
      row.labels       or.l        or      or.u 
1    (Intercept) 0.07302012 0.1142857 0.1705771 
2 ldh.doubleTRUE 0.23718905 1.5909091 6.3899588 
 
 
 
 
  
glm(formula = ae.steroid ~ ldh.triple, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.5553  -0.4690  -0.4690  -0.4690   2.1269   
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -2.1518     0.2113 -10.184   <2e-16 *** 
ldh.tripleTRUE   0.3600     1.1006   0.327    0.744     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 166.23  on 246  degrees of freedom 
Residual deviance: 166.13  on 245  degrees of freedom 
  (7 observations deleted due to missingness) 
AIC: 170.13 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
      row.labels       or.l        or      or.u 
1    (Intercept) 0.07498638 0.1162791 0.1722956 
2 ldh.tripleTRUE 0.07431049 1.4333333 8.8685231 
 
 
 
  - [CRP] 
 
 
  
glm(formula = ae.steroid ~ crp.high, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.5214  -0.5214  -0.4222  -0.4222   2.2190   
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -2.3728     0.3153  -7.527 5.21e-14 *** 
crp.highTRUE   0.4461     0.4192   1.064    0.287     
--- 
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Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 166.23  on 246  degrees of freedom 
Residual deviance: 165.08  on 245  degrees of freedom 
  (7 observations deleted due to missingness) 
AIC: 169.08 
 
Number of Fisher Scoring iterations: 5 
 
 - Odds Ratios 
    row.labels       or.l         or      or.u 
1  (Intercept) 0.04735657 0.09322034 0.1649411 
2 crp.highTRUE 0.69084055 1.56222418 3.6351296 
 
 
 
 
  
glm(formula = ae.steroid ~ crp.half, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.4807  -0.4807  -0.4807  -0.4807   2.2815   
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -2.1001     0.2163  -9.711   <2e-16 *** 
crp.halfTRUE  -0.4257     0.7660  -0.556    0.578     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 166.23  on 246  degrees of freedom 
Residual deviance: 165.89  on 245  degrees of freedom 
  (7 observations deleted due to missingness) 
AIC: 169.89 
 
Number of Fisher Scoring iterations: 5 
 
 - Odds Ratios 
    row.labels       or.l        or      or.u 
1  (Intercept) 0.07813144 0.1224490 0.1830856 
2 crp.halfTRUE 0.10122260 0.6533333 2.3891423 
 
 
 
 
  
glm(formula = ae.steroid ~ crp.single, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.4741  -0.4741  -0.4741  -0.4666   2.1460   
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -2.12931    0.22551  -9.442   <2e-16 *** 
crp.singleTRUE -0.06791    0.57323  -0.118    0.906     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 166.23  on 246  degrees of freedom 
Residual deviance: 166.21  on 245  degrees of freedom 
  (7 observations deleted due to missingness) 
AIC: 170.21 
 
Number of Fisher Scoring iterations: 4 
 
 - Odds Ratios 
      row.labels       or.l        or      or.u 
1    (Intercept) 0.07432681 0.1189189 0.1807038 
2 crp.singleTRUE 0.26172748 0.9343434 2.6219044 
 
 
 
 
  
glm(formula = ae.steroid ~ crp.double, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.4831  -0.4831  -0.4831  -0.4831   2.4478   
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)      -2.089      0.212  -9.855   <2e-16 *** 
crp.doubleTRUE   -0.855      1.048  -0.816    0.414     

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 166.23  on 246  degrees of freedom 
Residual deviance: 165.38  on 245  degrees of freedom 
  (7 observations deleted due to missingness) 
AIC: 169.38 
 
Number of Fisher Scoring iterations: 5 
 
 - Odds Ratios 
      row.labels       or.l        or      or.u 
1    (Intercept) 0.07971636 0.1237624 0.1836752 
2 crp.doubleTRUE 0.02317875 0.4252632 2.1920864 
 
 
 
 
  
glm(formula = ae.steroid ~ crp.triple, family = bino-
mial("logit"),  
    data = nb.data, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.6095  -0.4218  -0.4218  -0.4218   2.2198   
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -2.3749     0.2614  -9.086   <2e-16 *** 
crp.tripleTRUE   0.7857     0.4344   1.809   0.0705 .   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 166.23  on 246  degrees of freedom 
Residual deviance: 163.14  on 245  degrees of freedom 
  (7 observations deleted due to missingness) 
AIC: 167.14 
 
Number of Fisher Scoring iterations: 5 
 
 - Odds Ratios 
      row.labels       or.l         or      or.u 
1    (Intercept) 0.05354701 0.09302326 0.1502081 
2 crp.tripleTRUE 0.90983009 2.19387755 5.0835785 
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Excluding baseline 
any AE 

 
  - [REC] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ rec.weide + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   973.1    988.4   -483.5    967.1     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.6353 -0.3922 -0.3458 -0.3031  3.5179  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.4926   0.7019   
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -1.9174     0.1137 -16.856   <2e-16 *** 
rec.weideTRUE   0.3244     0.2925   1.109    0.267     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
rec.wedTRUE -0.287 
 
 - Odds Ratios 
     row.labels      or.l        or     or.u 
1   (Intercept) 0.1158170 0.1469945 0.182112 
2 rec.weideTRUE 0.7599496 1.3831925 2.408167 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ rec.high + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   974.2    989.5   -484.1    968.2     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5922 -0.3836 -0.3490 -0.3073  3.5265  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.495    0.7036   
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -1.8903     0.1107 -17.076   <2e-16 *** 
rec.highTRUE   0.1125     0.3812   0.295    0.768     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
rec.hghTRUE -0.181 
 
 
 
 
 - Odds Ratios 
    row.labels      or.l        or      or.u 
1  (Intercept) 0.1198085 0.1510293 0.1861497 
2 rec.highTRUE 0.5021812 1.1191202 2.2684540 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ rec.half + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   972.4    987.8   -483.2    966.4     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.6818 -0.3907 -0.3470 -0.3041  3.5375  
 
Random effects: 
 Groups Name        Variance Std.Dev. 

 pid    (Intercept) 0.4726   0.6875   
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -1.9246     0.1129 -17.050   <2e-16 *** 
rec.halfTRUE   0.3820     0.2754   1.387    0.165     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
rec.hlfTRUE -0.287 
 
 - Odds Ratios 
    row.labels      or.l        or      or.u 
1  (Intercept) 0.1152617 0.1459411 0.1806312 
2 rec.halfTRUE 0.8353044 1.4651607 2.4710755 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ rec.single + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   974.2    989.6   -484.1    968.2     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5950 -0.3840 -0.3492 -0.3071  3.5122  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5009   0.7077   
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -1.88647    0.11075  -17.03   <2e-16 *** 
rec.singleTRUE  0.03977    0.39758    0.10     0.92     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
rc.snglTRUE -0.172 
 
 - Odds Ratios 
      row.labels      or.l        or      or.u 
1    (Intercept) 0.1202383 0.1516056 0.1868685 
2 rec.singleTRUE 0.4489133 1.0405752 2.1674295 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ rec.double + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   973.9    989.2   -483.9    967.9     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.6999 -0.3837 -0.3482 -0.3075  3.4995  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.4946   0.7033   
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -1.8890     0.1092 -17.306   <2e-16 *** 
rec.doubleTRUE   0.5643     0.8793   0.642    0.521     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
rec.dblTRUE -0.076 
 
 - Odds Ratios 
      row.labels      or.l        or      or.u 
1    (Intercept) 0.1202414 0.1512247 0.1857262 
2 rec.doubleTRUE 0.2342216 1.7581485 8.6403604 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ rec.triple + (1 | pid) 
   Data: excl.b.data 
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     AIC      BIC   logLik deviance df.resid  
   974.2    989.6   -484.1    968.2     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5970 -0.3840 -0.3487 -0.3065  3.5081  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5067   0.7118   
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -1.8862     0.1097 -17.201   <2e-16 *** 
rec.tripleTRUE   0.2365     1.1397   0.207    0.836     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
rc.trplTRUE -0.077 
 
 - Odds Ratios 
      row.labels       or.l        or      or.u 
1    (Intercept) 0.12039599 0.1516469 0.1863496 
2 rec.tripleTRUE 0.06321155 1.2667704 8.7515097 
 
 
 
  - [AEC] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ aec.high + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   970.9    986.2   -482.4    964.9     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.7158 -0.3874 -0.3470 -0.3080  3.6334  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.4551   0.6746   
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -1.9213     0.1099 -17.483   <2e-16 *** 
aec.highTRUE   0.6837     0.3545   1.929   0.0538 .   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
aec.hghTRUE -0.214 
 
 - Odds Ratios 
    row.labels      or.l        or      or.u 
1  (Intercept) 0.1163507 0.1464234 0.1801893 
2 aec.highTRUE 0.9543985 1.9811116 3.8736151 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ aec.half + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   974.2    989.6   -484.1    968.2     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5981 -0.3782 -0.3496 -0.3070  3.5022  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5071   0.7121   
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.88132    0.11236 -16.743   <2e-16 *** 
aec.halfTRUE -0.03875    0.30926  -0.125      0.9     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
aec.hlfTRUE -0.230 

 
 - Odds Ratios 
    row.labels      or.l        or      or.u 
1  (Intercept) 0.1205142 0.1523887 0.1884738 
2 aec.halfTRUE 0.5066601 0.9619949 1.7154024 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ aec.single + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   971.7    987.1   -482.9    965.7     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.7073 -0.3812 -0.3467 -0.3067  3.6352  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.475    0.6892   
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -1.9147     0.1104 -17.345   <2e-16 *** 
aec.singleTRUE   0.6303     0.3802   1.658   0.0973 .   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ac.snglTRUE -0.200 
 
 - Odds Ratios 
      row.labels      or.l        or      or.u 
1    (Intercept) 0.1169549 0.1473911 0.1814838 
2 aec.singleTRUE 0.8546710 1.8780947 3.8469075 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ aec.double + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   972.3    987.6   -483.1    966.3     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.9122 -0.3831 -0.3445 -0.3076  3.4967  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.4859   0.6971   
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -1.8958     0.1090 -17.389   <2e-16 *** 
aec.doubleTRUE   1.1616     0.7787   1.492    0.136     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
aec.dblTRUE -0.096 
 
 - Odds Ratios 
      row.labels      or.l        or       or.u 
1    (Intercept) 0.1194530 0.1501974  0.1844204 
2 aec.doubleTRUE 0.5986886 3.1951390 14.0094190 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ aec.triple + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   973.5    988.9   -483.8    967.5     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5951 -0.3845 -0.3501 -0.3079  3.4978  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.4986   0.7061   
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
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                 Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -1.881e+00  1.058e-01  -17.79   <2e-16 *** 
aec.tripleTRUE -2.431e+01  3.136e+05    0.00        1     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ac.trplTRUE 0.000  
convergence code: 0 
unable to evaluate scaled gradient 
 Hessian is numerically singular: parameters are not 
uniquely determined 
 
 - Odds Ratios 
      row.labels      or.l           or      or.u 
1    (Intercept) 0.1238272 1.523552e-01 0.1874557 
2 aec.tripleTRUE 0.0000000 2.760653e-11       Inf 
 
 
 
  - [LC] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ lc.high + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   974.2    989.6   -484.1    968.2     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5993 -0.3781 -0.3493 -0.3066  3.5082  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5107   0.7146   
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept) -1.88142    0.11060 -17.012   <2e-16 *** 
lc.highTRUE -0.09467    0.48301  -0.196    0.845     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
lc.highTRUE -0.142 
 
 - Odds Ratios 
   row.labels      or.l        or      or.u 
1 (Intercept) 0.1208678 0.1523743 0.1877609 
2 lc.highTRUE 0.3205346 0.9096716 2.1886435 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ lc.half + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   973.9    989.2   -483.9    967.9     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5973 -0.3809 -0.3469 -0.3007  3.4602  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.4967   0.7048   
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -1.868      0.112 -16.670   <2e-16 *** 
lc.halfTRUE   -0.194      0.321  -0.604    0.546     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
lc.halfTRUE -0.233 
 
 - Odds Ratios 
   row.labels      or.l        or      or.u 
1 (Intercept) 0.1221162 0.1544837 0.1907189 
2 lc.halfTRUE 0.4215538 0.8236270 1.4987074 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 

 Family: binomial  ( logit ) 
Formula: ae.any ~ lc.single + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   974.2    989.6   -484.1    968.2     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5993 -0.3781 -0.3493 -0.3066  3.5082  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5107   0.7146   
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -1.88142    0.11060 -17.012   <2e-16 *** 
lc.singleTRUE -0.09467    0.48301  -0.196    0.845     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
lc.snglTRUE -0.142 
 
 - Odds Ratios 
     row.labels      or.l        or      or.u 
1   (Intercept) 0.1208678 0.1523743 0.1877609 
2 lc.singleTRUE 0.3205346 0.9096716 2.1886435 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ lc.double + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   973.6    989.0   -483.8    967.6     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.6029 -0.3772 -0.3481 -0.3050  3.5211  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5234   0.7234   
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -1.885e+00  1.066e-01  -17.68   <2e-16 *** 
lc.doubleTRUE -2.803e+01  2.111e+06    0.00        1     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
lc.doblTRUE 0.000  
convergence code: 0 
unable to evaluate scaled gradient 
 Hessian is numerically singular: parameters are not 
uniquely determined 
 
 - Odds Ratios 
     row.labels      or.l           or      or.u 
1   (Intercept) 0.1232618 1.518988e-01 0.1871889 
2 lc.doubleTRUE 0.0000000 6.739625e-13       Inf 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ lc.triple + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   972.3    982.5   -484.1    968.3     1235  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5963 -0.3841 -0.3493 -0.3070  3.5044  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.5037   0.7097   
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.8846     0.1092  -17.26   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
fit warnings: 
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fixed-effect model matrix is rank deficient so dropping 1 
column / coefficient 
 
 - Odds Ratios 
   row.labels or.l or or.u 
1 (Intercept)   NA NA   NA 
 
 
 
  - [LDH] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ ldh.weide + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   964.9    980.3   -479.5    958.9     1230  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5880 -0.3786 -0.3463 -0.3012  3.6119  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.4784   0.6916   
Number of obs: 1233, groups:  pid, 236 
 
Fixed effects: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -1.8824     0.1091 -17.257   <2e-16 *** 
ldh.weideTRUE  -1.1303     1.0545  -1.072    0.284     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ldh.wedTRUE -0.081 
 
 - Odds Ratios 
     row.labels       or.l        or      or.u 
1   (Intercept) 0.12099354 0.1522187 0.1868964 
2 ldh.weideTRUE 0.01748508 0.3229294 1.6960268 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ ldh.high + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   966.4    981.8   -480.2    960.4     1230  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5813 -0.3812 -0.3494 -0.3079  3.4678  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.4725   0.6874   
Number of obs: 1233, groups:  pid, 236 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.90579    0.11281 -16.894   <2e-16 *** 
ldh.highTRUE  0.07857    0.29901   0.263    0.793     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ldh.hghTRUE -0.267 
 
 - Odds Ratios 
    row.labels      or.l        or     or.u 
1  (Intercept) 0.1173320 0.1487054 0.183864 
2 ldh.highTRUE 0.5834795 1.0817415 1.897865 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ ldh.half + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   964.5    974.7   -480.2    960.5     1231  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5836 -0.3765 -0.3492 -0.3085  3.4622  
 
Random effects: 
 Groups Name        Variance Std.Dev. 

 pid    (Intercept) 0.4746   0.6889   
Number of obs: 1233, groups:  pid, 236 
 
Fixed effects: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.8981     0.1088  -17.45   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
fit warnings: 
fixed-effect model matrix is rank deficient so dropping 1 
column / coefficient 
 
 - Odds Ratios 
   row.labels or.l or or.u 
1 (Intercept)   NA NA   NA 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ ldh.single + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   966.3    981.7   -480.2    960.3     1230  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5803 -0.3805 -0.3487 -0.3076  3.4703  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.4715   0.6866   
Number of obs: 1233, groups:  pid, 236 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -1.9092     0.1127 -16.937   <2e-16 *** 
ldh.singleTRUE   0.1159     0.2997   0.387    0.699     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ldh.sngTRUE -0.265 
 
 - Odds Ratios 
      row.labels      or.l        or      or.u 
1    (Intercept) 0.1169494 0.1481974 0.1832007 
2 ldh.singleTRUE 0.6049772 1.1228773 1.9730756 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ ldh.double + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   966.5    981.8   -480.2    960.5     1230  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5843 -0.3767 -0.3493 -0.3086  3.4623  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.4759   0.6899   
Number of obs: 1233, groups:  pid, 236 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -1.89664    0.10970 -17.290   <2e-16 *** 
ldh.doubleTRUE -0.06692    0.66143  -0.101    0.919     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ldh.dblTRUE -0.127 
 
 - Odds Ratios 
      row.labels      or.l        or      or.u 
1    (Intercept) 0.1191008 0.1500722 0.1844223 
2 ldh.doubleTRUE 0.2071825 0.9352665 3.0162378 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ ldh.triple + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   965.5    980.8   -479.7    959.5     1230  
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Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5871 -0.3779 -0.3506 -0.3008  3.5032  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.4782   0.6915   
Number of obs: 1233, groups:  pid, 236 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -1.8869     0.1091 -17.293   <2e-16 *** 
ldh.tripleTRUE  -0.9438     1.0653  -0.886    0.376     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ldh.trpTRUE -0.077 
 
 - Odds Ratios 
      row.labels      or.l        or      or.u 
1    (Intercept) 0.1204321 0.1515475 0.1860456 
2 ldh.tripleTRUE 0.0208396 0.3891458 2.1097172 
 
 
 
  - [CRP] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ crp.high + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   972.5    987.9   -483.3    966.5     1240  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5895 -0.3705 -0.3438 -0.3043  3.7410  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.4845   0.696    
Number of obs: 1243, groups:  pid, 237 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -1.8856     0.1136 -16.600   <2e-16 *** 
crp.highTRUE  -0.1476     0.2854  -0.517    0.605     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
crp.hghTRUE -0.278 
 
 - Odds Ratios 
    row.labels      or.l        or      or.u 
1  (Intercept) 0.1195293 0.1517359 0.1878727 
2 crp.highTRUE 0.4784084 0.8627435 1.4745599 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ crp.half + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   972.4    987.8   -483.2    966.4     1240  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.6373 -0.3809 -0.3460 -0.3058  3.5132  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.4813   0.6938   
Number of obs: 1243, groups:  pid, 237 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -1.9169     0.1117 -17.167   <2e-16 *** 
crp.halfTRUE   0.2080     0.3306   0.629    0.529     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
crp.hlfTRUE -0.216 
 
 - Odds Ratios 
    row.labels      or.l        or      or.u 

1  (Intercept) 0.1162752 0.1470611 0.1813516 
2 crp.halfTRUE 0.6194947 1.2312136 2.2876030 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ crp.single + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   971.9    987.3   -483.0    965.9     1240  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5880 -0.3721 -0.3466 -0.3027  3.6829  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.477    0.6907   
Number of obs: 1243, groups:  pid, 237 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -1.8803     0.1110 -16.937   <2e-16 *** 
crp.singleTRUE  -0.3547     0.3956  -0.897     0.37     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
crp.sngTRUE -0.197 
 
 - Odds Ratios 
      row.labels      or.l        or      or.u 
1    (Intercept) 0.1207292 0.1525469 0.1878723 
2 crp.singleTRUE 0.3000765 0.7014065 1.4433914 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ crp.double + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   970.0    985.4   -482.0    964.0     1240  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.7657 -0.3745 -0.3461 -0.3063  3.5240  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.4615   0.6793   
Number of obs: 1243, groups:  pid, 237 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -1.9313     0.1103 -17.503   <2e-16 *** 
crp.doubleTRUE   0.7350     0.4203   1.749   0.0803 .   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
crp.dblTRUE -0.186 
 
 - Odds Ratios 
      row.labels      or.l        or      or.u 
1    (Intercept) 0.1148560 0.1449535 0.1782853 
2 crp.doubleTRUE 0.8698594 2.0854101 4.6040794 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ crp.triple + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   969.7    985.1   -481.9    963.7     1240  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5659 -0.3862 -0.3456 -0.3049  3.5827  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.4513   0.6718   
Number of obs: 1243, groups:  pid, 237 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -1.9529     0.1130 -17.279   <2e-16 *** 
crp.tripleTRUE   0.5245     0.2899   1.809   0.0704 .   
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--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
crp.trpTRUE -0.288 
 
 - Odds Ratios 
      row.labels      or.l        or      or.u 
1    (Intercept) 0.1118163 0.1418565 0.1753762 
2 crp.tripleTRUE 0.9347769 1.6896393 2.9317338 
 
 
 
 
 

AE with steroid intervention 
 
  - [REC] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ rec.weide + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   428.9    444.3   -211.4    422.9     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5244 -0.1387 -0.1266 -0.1091  6.5547  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 3.192    1.787    
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -3.8303     0.3933  -9.738   <2e-16 *** 
rec.weideTRUE   0.4941     0.4794   1.031    0.303     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
rec.wedTRUE -0.073 
 
 - Odds Ratios 
     row.labels        or.l         or       or.u 
1   (Intercept) 0.002048941 0.02170211 0.03984618 
2 rec.weideTRUE 0.583341614 1.63900714 3.98029954 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ rec.high + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   428.6    444.0   -211.3    422.6     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5450 -0.1319 -0.1153 -0.1025  6.7084  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 4.034    2.009    
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -3.8849     0.5120  -7.588 3.25e-14 *** 
rec.highTRUE  -0.8877     0.8687  -1.022    0.307     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
rec.hghTRUE 0.185  
 
 - Odds Ratios 
    row.labels         or.l         or       or.u 
1  (Intercept) 0.0007038044 0.02055057 0.04079227 
2 rec.highTRUE 0.0208465776 0.41159545 1.76368788 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ rec.half + (1 | pid) 

   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   429.9    445.2   -211.9    423.9     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4635 -0.1379 -0.1228 -0.1071  6.5530  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 3.506    1.872    
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -3.83083    0.42561  -9.001   <2e-16 *** 
rec.halfTRUE  0.01758    0.54002   0.033    0.974     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
rec.hlfTRUE 0.011  
 
 - Odds Ratios 
    row.labels         or.l         or       or.u 
1  (Intercept) 0.0007166873 0.02169154 0.04079983 
2 rec.halfTRUE 0.2327076704 1.01774047 2.69127775 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ rec.single + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   428.7    444.1   -211.4    422.7     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5433 -0.1317 -0.1148 -0.1024  6.6214  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 4.036    2.009    
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -3.8876     0.5128  -7.581 3.43e-14 *** 
rec.singleTRUE  -0.8598     0.8744  -0.983    0.325     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
rc.snglTRUE 0.193  
 
 - Odds Ratios 
      row.labels         or.l         or       or.u 
1    (Intercept) 0.0006978931 0.02049388 0.04069074 
2 rec.singleTRUE 0.0206596231 0.42326361 1.83199186 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ rec.double + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   426.9    442.2   -210.4    420.9     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4661 -0.1380 -0.1232 -0.1078  6.5554  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 3.365    1.834    
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -3.8351     0.4078  -9.404   <2e-16 *** 
rec.doubleTRUE   2.1173     1.1313   1.872   0.0613 .   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
rec.dblTRUE -0.127 
 
 - Odds Ratios 
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      row.labels        or.l         or        or.u 
1    (Intercept) 0.001956498 0.02159884  0.04007065 
2 rec.doubleTRUE 0.729689484 8.30830372 77.81586194 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ rec.triple + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   429.4    444.8   -211.7    423.4     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4589 -0.1390 -0.1237 -0.1079  6.5389  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 3.462    1.861    
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
                 Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -3.816e+00  2.359e-01  -16.18   <2e-16 *** 
rec.tripleTRUE -3.612e+01  2.536e+07    0.00        1     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
rc.trplTRUE 0.000  
convergence code: 0 
unable to evaluate scaled gradient 
 Hessian is numerically singular: parameters are not 
uniquely determined 
 
 - Odds Ratios 
      row.labels       or.l           or     or.u 
1    (Intercept) 0.01387396 2.202758e-02 0.034973 
2 rec.tripleTRUE 0.00000000 2.067288e-16      Inf 
 
 
 
  - [AEC] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ aec.high + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   429.6    444.9   -211.8    423.6     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5066 -0.1319 -0.1169 -0.1041  6.4319  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 3.87     1.967    
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -3.8752     0.4880  -7.941    2e-15 *** 
aec.highTRUE  -0.4067     0.7793  -0.522    0.602     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
aec.hghTRUE 0.228  
 
 - Odds Ratios 
    row.labels         or.l         or       or.u 
1  (Intercept) 1.045895e+05 0.02074926 0.04047793 
2 aec.highTRUE 2.561193e-01 0.66583065 2.51962094 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ aec.half + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   427.4    442.8   -210.7    421.4     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.6168 -0.1234 -0.1073 -0.0888  6.5060  
 
Random effects: 

 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 4.975    2.23     
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -4.0112     0.8353  -4.802 1.57e-06 *** 
aec.halfTRUE  -1.1006     0.8742  -1.259    0.208     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
aec.hlfTRUE 0.493  
 
 - Odds Ratios 
row.labels        or.l         or       or.u 
1  (Intercept) 0.003523635 0.01811252 0.09310371 
2 aec.halfTRUE 0.059970614 0.33268765 1.84558845 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ aec.single + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   429.7    445.1   -211.9    423.7     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4963 -0.1322 -0.1176 -0.1046  6.4570  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 3.795    1.948    
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -3.8678     0.4777  -8.097 5.64e-16 *** 
aec.singleTRUE  -0.3140     0.7921  -0.396    0.692     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ac.snglTRUE 0.236  
 
 - Odds Ratios 
      row.labels         or.l         or       or.u 
1    (Intercept) 2.951304e+10 0.02090451 0.04048823 
2 aec.singleTRUE 2.673216e-02 0.73053025 2.83706016 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ aec.double + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   428.7    444.1   -211.4    422.7     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4699 -0.1339 -0.1191 -0.1040  6.5891  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 3.728    1.931    
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -3.8898     0.4632  -8.397   <2e-16 *** 
aec.doubleTRUE   1.4740     1.2614   1.168    0.243     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
aec.dblTRUE -0.189 
 
 - Odds Ratios 
      row.labels         or.l         or        or.u 
1    (Intercept) 0.0004590448 0.02045008  0.03957937 
2 aec.doubleTRUE 0.1940957206 4.36652076 60.76882889 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ aec.triple + (1 | pid) 
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   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   429.7    445.0   -211.8    423.7     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4605 -0.1383 -0.1230 -0.1074  6.5458  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 3.499    1.871    
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
                 Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -3.825e+00  2.366e-01  -16.17   <2e-16 *** 
aec.tripleTRUE -3.535e+01  3.875e+07    0.00        1     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ac.trplTRUE 0.000  
convergence code: 0 
unable to evaluate scaled gradient 
Model failed to converge: degenerate  Hessian with 1 nega-
tive eigenvalues 
 
 - Odds Ratios 
      row.labels       or.l           or       or.u 
1    (Intercept) 0.01371862 2.181268e-02 0.03468227 
2 aec.tripleTRUE 0.00000000 4.425988e-16        Inf 
 
 
 
  - [LC] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ lc.high + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   429.7    445.1   -211.8    423.7     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4898 -0.1345 -0.1195 -0.1061  6.5532  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 3.638    1.907    
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -3.8381     0.4418  -8.688   <2e-16 *** 
lc.highTRUE  -0.3551     0.8814  -0.403    0.687     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
lc.highTRUE 0.068  
 
 - Odds Ratios 
   row.labels         or.l         or       or.u 
1 (Intercept) 0.0006832067 0.02153393 0.04089018 
2 lc.highTRUE 0.0835137885 0.70110422 3.14071083 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ lc.half + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   427.4    442.7   -210.7    421.4     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4783 -0.1382 -0.1189 -0.1030  6.2722  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 3.699    1.923    
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -3.7966     0.4545  -8.354   <2e-16 *** 
lc.halfTRUE  -1.1234     0.8121  -1.383    0.167     
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
lc.halfTRUE 0.056  
 
 - Odds Ratios 
   row.labels         or.l         or       or.u 
1 (Intercept) 0.0004334092 0.02244589 0.04311111 
2 lc.halfTRUE 0.0291002849 0.32518010 1.25637078 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ lc.single + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   429.7    445.1   -211.8    423.7     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4898 -0.1345 -0.1195 -0.1061  6.5532  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 3.638    1.907    
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -3.8381     0.4418  -8.688   <2e-16 *** 
lc.singleTRUE  -0.3551     0.8814  -0.403    0.687     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
lc.snglTRUE 0.068  
 
 - Odds Ratios 
     row.labels         or.l         or       or.u 
1   (Intercept) 0.0006832067 0.02153393 0.04089018 
2 lc.singleTRUE 0.0835137885 0.70110422 3.14071083 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ lc.double + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   429.4    444.8   -211.7    423.4     1234  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4684 -0.1363 -0.1211 -0.1056  6.5641  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 3.65     1.911    
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -3.853e+00  2.396e-01  -16.08   <2e-16 *** 
lc.doubleTRUE -3.665e+01  6.711e+07    0.00        1     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
lc.doblTRUE 0.000  
convergence code: 0 
unable to evaluate scaled gradient 
 Hessian is numerically singular: parameters are not 
uniquely determined 
 
 - Odds Ratios 
     row.labels       or.l           or       or.u 
1   (Intercept) 0.01326156 2.121145e-02 0.03392705 
2 lc.doubleTRUE 0.00000000 1.206625e-16        Inf 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ lc.triple + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   427.9    438.1   -211.9    423.9     1235  
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Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4612 -0.1379 -0.1227 -0.1071  6.5498  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 3.517    1.875    
Number of obs: 1237, groups:  pid, 234 
 
Fixed effects: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -3.831      0.427  -8.973   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
fit warnings: 
fixed-effect model matrix is rank deficient so dropping 1 
column / coefficient 
 
 - Odds Ratios 
   row.labels or.l or or.u 
1 (Intercept)   NA NA   NA 
 
 
 
  - [LDH] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ ldh.weide + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   421.7    437.1   -207.9    415.7     1230  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4666 -0.1362 -0.1211 -0.1056  6.5047  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 3.628    1.905    
Number of obs: 1233, groups:  pid, 236 
 
Fixed effects: 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -3.855e+00  2.414e-01  -15.97   <2e-16 *** 
ldh.weideTRUE -3.848e+01  1.540e+07    0.00        1     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ldh.wedTRUE 0.000  
convergence code: 0 
unable to evaluate scaled gradient 
 Hessian is numerically singular: parameters are not 
uniquely determined 
 
 - Odds Ratios 
     row.labels       or.l           or       or.u 
1   (Intercept) 0.01319355 2.117684e-02 0.03399075 
2 ldh.weideTRUE 0.00000000 1.933779e-17        Inf 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ ldh.high + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   423.5    438.9   -208.8    417.5     1230  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4734 -0.1292 -0.1181 -0.1031  6.5386  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 3.777    1.943    
Number of obs: 1233, groups:  pid, 236 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -3.90984    0.48426  -8.074 6.81e-16 *** 
ldh.highTRUE -0.03673    0.54714  -0.067    0.946     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ldh.hghTRUE -0.100 
 
 - Odds Ratios 
    row.labels         or.l         or       or.u 

1  (Intercept) 0.0003809718 0.02004378 0.03958038 
2 ldh.highTRUE 0.2920060040 0.96393425 2.59633157 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ ldh.half + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   421.5    431.7   -208.8    417.5     1231  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4707 -0.1289 -0.1179 -0.1030  6.5433  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 3.775    1.943    
Number of obs: 1233, groups:  pid, 236 
 
Fixed effects: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -3.9132     0.4818  -8.122 4.59e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
fit warnings: 
fixed-effect model matrix is rank deficient so dropping 1 
column / coefficient 
 
 - Odds Ratios 
   row.labels or.l or or.u 
1 (Intercept)   NA NA   NA 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ ldh.single + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   423.5    438.9   -208.8    417.5     1230  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4711 -0.1289 -0.1179 -0.1030  6.5426  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 3.775    1.943    
Number of obs: 1233, groups:  pid, 236 
 
Fixed effects: 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -3.912766   0.484149  -8.082 6.38e-16 *** 
ldh.singleTRUE -0.005336   0.548525  -0.010    0.992     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ldh.sngTRUE -0.098 
 
 - Odds Ratios 
      row.labels         or.l         or       or.u 
1    (Intercept) 0.0003809361 0.01998515 0.03945898 
2 ldh.singleTRUE 0.3004565143 0.99467843 2.69148208 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ ldh.double + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   423.5    438.8   -208.7    417.5     1230  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4716 -0.1295 -0.1180 -0.1032  6.5409  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 3.785    1.945    
Number of obs: 1233, groups:  pid, 236 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -3.9104     0.4826  -8.103 5.34e-16 *** 
ldh.doubleTRUE  -0.1616     1.2173  -0.133    0.894     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
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Correlation of Fixed Effects: 
            (Intr) 
ldh.dblTRUE -0.032 
 
 - Odds Ratios 
      row.labels         or.l         or       or.u 
1    (Intercept) 0.0003867051 0.02003331 0.03933744 
2 ldh.doubleTRUE 0.0326574454 0.85081011 6.32407824 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ ldh.triple + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   422.0    437.4   -208.0    416.0     1230  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4674 -0.1354 -0.1204 -0.1051  6.5131  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 3.658    1.913    
Number of obs: 1233, groups:  pid, 236 
 
Fixed effects: 
                 Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -3.867e+00  2.419e-01  -15.98   <2e-16 *** 
ldh.tripleTRUE -3.801e+01  1.678e+07    0.00        1     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
ldh.trpTRUE 0.000  
convergence code: 0 
unable to evaluate scaled gradient 
 Hessian is numerically singular: parameters are not 
uniquely determined 
 
 - Odds Ratios 
      row.labels       or.l           or       or.u 
1    (Intercept) 0.01301774 2.091612e-02 0.03360677 
2 ldh.tripleTRUE 0.00000000 3.112462e-17        Inf 
 
 
 
  - [CRP] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ crp.high + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   423.7    439.1   -208.8    417.7     1240  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5136 -0.1296 -0.1193 -0.1019  5.9175  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 3.792    1.947    
Number of obs: 1243, groups:  pid, 237 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -3.9606     0.4903  -8.079 6.55e-16 *** 
crp.highTRUE   0.2655     0.4584   0.579    0.563     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
crp.hghTRUE -0.122 
 
 - Odds Ratios 
    row.labels         or.l         or       or.u 
1  (Intercept) 0.0003567709 0.01905238 0.03791312 
2 crp.highTRUE 0.4923395125 1.30403271 3.05384398 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ crp.half + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   423.1    438.4   -208.5    417.1     1240  

 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4883 -0.1286 -0.1136 -0.1001  6.5821  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 4.073    2.018    
Number of obs: 1243, groups:  pid, 237 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -3.9387     0.5402  -7.292 3.06e-13 *** 
crp.halfTRUE  -0.7591     0.8526  -0.890    0.373     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
crp.hlfTRUE 0.087  
 
 - Odds Ratios 
    row.labels         or.l         or       or.u 
1  (Intercept) 0.0002427659 0.01947392 0.03960878 
2 crp.halfTRUE 0.0067011752 0.46810026 1.91126856 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ crp.single + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   424.0    439.4   -209.0    418.0     1240  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4849 -0.1307 -0.1164 -0.1017  6.6302  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 3.854    1.963    
Number of obs: 1243, groups:  pid, 237 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -3.93972    0.49579  -7.946 1.92e-15 *** 
crp.singleTRUE  0.06663    0.62014   0.107    0.914     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
crp.sngTRUE -0.053 
 
 - Odds Ratios 
      row.labels         or.l        or       or.u 
1    (Intercept) 0.0003731992 0.0194537 0.03864051 
2 crp.singleTRUE 0.2717626458 1.0688996 3.24918077 
 
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ crp.double + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   424.0    439.4   -209.0    418.0     1240  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4786 -0.1271 -0.1159 -0.1011  6.6151  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 3.94     1.985    
Number of obs: 1243, groups:  pid, 237 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -3.9455     0.5136  -7.682 1.57e-14 *** 
crp.doubleTRUE  -0.1476     0.9274  -0.159    0.874     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
crp.dblTRUE 0.116  
 
 - Odds Ratios 
      row.labels       or.l         or       or.u 
1    (Intercept) 0.00000000 0.01934129 0.03862553 
2 crp.doubleTRUE 0.01686142 0.86278401 4.13443513 
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Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ crp.triple + (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   415.9    431.3   -205.0    409.9     1240  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.7111 -0.1197 -0.1101 -0.0921  5.9482  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 3.857    1.964    
Number of obs: 1243, groups:  pid, 237 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -4.1366     0.5526  -7.486 7.08e-14 *** 
crp.tripleTRUE   1.3427     0.4541   2.957  0.00311 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
crp.trpTRUE -0.335 
 
 - Odds Ratios 
      row.labels        or.l         or       or.u 
1    (Intercept) 0.005409201 0.01597647 0.04718766 
2 crp.tripleTRUE 1.572447598 3.82941509 9.32585606 

2. Main analysis 

Including Baseline 
Incl. Baseline - Any AE 

 
  - [incl. baseline - any AE] 
 
 - Multicollinearity 
VIF 
 
  ldh.half  rec.weide crp.triple        sex        age  
  1.280694   1.280133   1.004751   1.003851   1.003857  
 
1/VIF 
 
  ldh.half  rec.weide crp.triple        sex        age  
 0.7808268  0.7811686  0.9952716  0.9961639  0.9961574  
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ ldh.half + rec.weide + crp.triple + sex 
+ (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
  1253.9   1285.6   -620.9   1241.9     1456  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-1.0978 -0.4177 -0.3467 -0.2978  3.6835  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.4043   0.6358   
Number of obs: 1462, groups:  pid, 252 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -2.0422     0.1438 -14.198  < 2e-16 *** 
ldh.halfTRUE     0.8725     0.2351   3.711 0.000206 *** 
rec.weideTRUE    0.4953     0.1971   2.513 0.011965 *   
crp.tripleTRUE   0.6789     0.2187   3.104 0.001911 **  
sexf             0.1622     0.1785   0.909 0.363355     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) l.TRUE r.TRUE c.TRUE 
ldh.hlfTRUE -0.127                      
rec.wedTRUE -0.237 -0.459               
crp.trpTRUE -0.256  0.055 -0.029        
sexf        -0.644 -0.010  0.009  0.011 
 
 
 
  - [combination therapy - incl. baseline - any AE] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ ldh.half + rec.weide + crp.triple + sex 
+ (1 | pid) +      age 
   Data: subset(final.data, med.group == "Combi") 
 
     AIC      BIC   logLik deviance df.resid  
    85.1     99.2    -35.5     71.1       49  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-1.3863 -0.7836 -0.6084  0.9449  1.9129  
 
Random effects: 
 Groups Name        Variance  Std.Dev.  
 pid    (Intercept) 1.922e-14 1.386e-07 
Number of obs: 56, groups:  pid, 19 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|) 
(Intercept)    -0.14065    1.15246  -0.122    0.903 
ldh.halfTRUE    1.18511    0.94860   1.249    0.212 
rec.weideTRUE  -0.01190    0.70794  -0.017    0.987 
crp.tripleTRUE  0.96225    0.66805   1.440    0.150 
sexf            0.67697    0.67362   1.005    0.315 
age            -0.01896    0.02461  -0.770    0.441 
 
Correlation of Fixed Effects: 
            (Intr) l.TRUE r.TRUE c.TRUE sexf   
ldh.hlfTRUE -0.056                             
rec.wedTRUE -0.043 -0.399                      
crp.trpTRUE -0.138  0.179  0.041               
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sexf         0.227  0.215 -0.219 -0.157        
age         -0.919 -0.069 -0.029 -0.002 -0.439 
 
 
 
  - [PD-1 - incl. baseline - any AE] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ ldh.half + rec.weide + crp.triple + sex 
+ (1 | pid) +      age 
   Data: subset(final.data, med.group == "PD1") 
 
     AIC      BIC   logLik deviance df.resid  
   750.9    785.7   -368.5    736.9     1055  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.8382 -0.3492 -0.3044 -0.2648  3.9097  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.3228   0.5682   
Number of obs: 1062, groups:  pid, 127 
 
Fixed effects: 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -2.873409   0.610254  -4.709 2.49e-06 *** 
ldh.halfTRUE    1.011824   0.341489   2.963  0.00305 **  
rec.weideTRUE   0.637898   0.276126   2.310  0.02088 *   
crp.tripleTRUE  0.445029   0.321653   1.384  0.16649     
sexf           -0.003486   0.235176  -0.015  0.98817     
age             0.007896   0.008835   0.894  0.37148     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) l.TRUE r.TRUE c.TRUE sexf   
ldh.hlfTRUE -0.073                             
rec.wedTRUE -0.033 -0.498                      
crp.trpTRUE -0.083  0.003 -0.008               
sexf        -0.268 -0.059  0.024  0.030        
age         -0.947  0.051 -0.047  0.010  0.070 
 
 
 
  - [CTLA-4 - incl. baseline - any AE] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ ldh.half + rec.weide + crp.triple + sex 
+ (1 | pid) +      age 
   Data: subset(final.data, med.group == "CTLA4") 
 
     AIC      BIC   logLik deviance df.resid  
   400.6    427.5   -193.3    386.6      337  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-1.0932 -0.6323 -0.4951  1.1358  2.2691  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0        0        
Number of obs: 344, groups:  pid, 106 
 
Fixed effects: 
                Estimate Std. Error z value Pr(>|z|)    
(Intercept)    -1.897372   0.611705  -3.102  0.00192 ** 
ldh.halfTRUE    0.533682   0.326402   1.635  0.10204    
rec.weideTRUE   0.178159   0.293170   0.608  0.54339    
crp.tripleTRUE  0.510283   0.337237   1.513  0.13025    
sexf            0.497855   0.249661   1.994  0.04614 *  
age             0.006464   0.008984   0.720  0.47181    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) l.TRUE r.TRUE c.TRUE sexf   
ldh.hlfTRUE -0.070                             
rec.wedTRUE -0.108 -0.392                      
crp.trpTRUE -0.013  0.084 -0.063               
sexf        -0.277  0.005  0.019  0.025        
age         -0.942  0.001  0.010 -0.090  0.080 
 
 
 
 
 

Incl. Baseline – Steroid AE 
 
  - [incl. baseline - steroid AE] 
 
 - Multicollinearity 
VIF 

 
crp.triple   aec.half   ldh.high        sex        age  
  1.101894   1.006661   1.101082   1.008189   1.006049  
 
1/VIF 
 
crp.triple   aec.half   ldh.high        sex        age  
 0.9075280  0.9933832  0.9081976  0.9918779  0.9939877  
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ crp.triple + aec.half + ldh.high + 
sex + (1 | pid) 
   Data: final.data 
 
     AIC      BIC   logLik deviance df.resid  
   581.9    613.6   -285.0    569.9     1456  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.5859 -0.1915 -0.1614 -0.1413  5.2230  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.291    1.136    
Number of obs: 1462, groups:  pid, 252 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -3.47335    0.27696 -12.541  < 2e-16 *** 
crp.tripleTRUE  1.24275    0.31811   3.907 9.36e-05 *** 
aec.halfTRUE   -0.61535    0.50583  -1.217    0.224     
ldh.highTRUE   -0.02386    0.34362  -0.069    0.945     
sexf            0.29138    0.30214   0.964    0.335     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) c.TRUE a.TRUE l.TRUE 
crp.trpTRUE -0.209                      
aec.hlfTRUE -0.067 -0.035               
ldh.hghTRUE -0.105 -0.259  0.011        
sexf        -0.609  0.001  0.030 -0.009 
 
 
 
  - [combination therapy - incl. baseline - steroid 
AE] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ crp.triple + aec.half + ldh.high + 
sex + (1 | pid) +      age 
   Data: subset(final.data, med.group == "Combi") 
 
     AIC      BIC   logLik deviance df.resid  
    70.7     84.8    -28.3     56.7       49  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.6911 -0.5068 -0.4114 -0.3436  2.5288  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.3429   0.5856   
Number of obs: 56, groups:  pid, 19 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|) 
(Intercept)    -2.18114    1.54012  -1.416    0.157 
crp.tripleTRUE  0.59475    0.85774   0.693    0.488 
aec.halfTRUE   -0.29397    1.26600  -0.232    0.816 
ldh.highTRUE    0.05510    0.89387   0.062    0.951 
sexf           -0.65411    0.90628  -0.722    0.470 
age             0.02068    0.03138   0.659    0.510 
 
Correlation of Fixed Effects: 
            (Intr) c.TRUE a.TRUE l.TRUE sexf   
crp.trpTRUE -0.142                             
aec.hlfTRUE -0.205 -0.134                      
ldh.hghTRUE -0.031 -0.385  0.193               
sexf         0.226 -0.213 -0.051  0.070        
age         -0.922  0.099  0.125 -0.117 -0.447 
 
 
 
  - [PD-1 - incl. baseline - steroid AE] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ crp.triple + aec.half + ldh.high + 
sex + (1 | pid) +      age 
   Data: subset(final.data, med.group == "PD1") 
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     AIC      BIC   logLik deviance df.resid  
   241.3    276.1   -113.6    227.3     1055  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4271 -0.1479 -0.1328 -0.1239  9.2001  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0        0        
Number of obs: 1062, groups:  pid, 127 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -5.06995    1.12283  -4.515 6.32e-06 *** 
crp.tripleTRUE  1.87504    0.44717   4.193 2.75e-05 *** 
aec.halfTRUE   -0.90547    1.03981  -0.871    0.384     
ldh.highTRUE    0.12245    0.53689   0.228    0.820     
sexf            0.13806    0.40704   0.339    0.734     
age             0.01540    0.01597   0.965    0.335     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) c.TRUE a.TRUE l.TRUE sexf   
crp.trpTRUE -0.129                             
aec.hlfTRUE -0.046 -0.071                      
ldh.hghTRUE  0.004 -0.259 -0.017               
sexf        -0.307  0.049  0.035  0.003        
age         -0.953  0.017  0.014 -0.063  0.111 
 
 
 
  - [CTLA-4 - incl. baseline - steroid AE] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ crp.triple + aec.half + ldh.high + 
sex + (1 | pid) +      age 
   Data: subset(final.data, med.group == "CTLA4") 
 
     AIC      BIC   logLik deviance df.resid  
   242.4    269.3   -114.2    228.4      337  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.6838 -0.3913 -0.3117 -0.2462  4.5514  
 
Random effects: 
 Groups Name        Variance  Std.Dev.  
 pid    (Intercept) 1.218e-15 3.489e-08 
Number of obs: 344, groups:  pid, 106 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -3.41897    0.89230  -3.832 0.000127 *** 
crp.tripleTRUE  0.61908    0.46275   1.338 0.180953     
aec.halfTRUE   -0.75964    0.62933  -1.207 0.227411     
ldh.highTRUE   -0.40371    0.49941  -0.808 0.418881     
sexf            0.83148    0.35671   2.331 0.019755 *   
age             0.01510    0.01293   1.168 0.242969     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) c.TRUE a.TRUE l.TRUE sexf   
crp.trpTRUE  0.004                             
aec.hlfTRUE -0.002  0.051                      
ldh.hghTRUE -0.020 -0.284 -0.046               
sexf        -0.318  0.024  0.027 -0.056        
age         -0.944 -0.095 -0.070 -0.027  0.092 

Baseline only 
Only Baseline - AE 

 
  - [nb.any AE] 
 
 - Multicollinearity 
VIF 
 
rec.half ldh.high crp.half      sex      age  
1.008834 1.009389 1.000939 1.006440 1.006980  
 
1/VIF 
 
 rec.half  ldh.high  crp.half       sex       age  
0.9912430 0.9906979 0.9990614 0.9936009 0.9930686  
 
 
 
  

glm(formula = ae.any ~ rec.half + ldh.high + crp.half + sex 
+ age, family = binomial("logit"), data = nb.data, na.ac-
tion = na.exclude) 
 
Deviance Residuals:  
   Min      1Q  Median      3Q     Max   
-1.282  -0.891  -0.734   1.323   1.829   
 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|)   
(Intercept)  -0.343757   0.682251  -0.504   0.6144   
rec.halfTRUE  0.620875   0.335653   1.850   0.0643 . 
ldh.highTRUE -0.379696   0.301231  -1.260   0.2075   
crp.halfTRUE -0.638441   0.499215  -1.279   0.2009   
sexf          0.395333   0.285608   1.384   0.1663   
age          -0.008944   0.010288  -0.869   0.3847   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 299.68  on 239  degrees of freedom 
Residual deviance: 290.18  on 234  degrees of freedom 
  (14 observations deleted due to missingness) 
AIC: 302.18 
 
Number of Fisher Scoring iterations: 4 
 
 
 
  - [combination therapy - nb.any AE] 
 
glm(formula = ae.any ~ rec.half + ldh.high + crp.half + sex 
+ age, family = binomial("logit"), data = subset(nb.data, 
med.group == "Combi"), na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.5350  -1.1389   0.7732   0.9755   1.6890   
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|) 
(Intercept)     1.55037    1.97980   0.783    0.434 
rec.halfTRUE   -0.26599    1.54709  -0.172    0.863 
ldh.highTRUE    0.36765    1.11632   0.329    0.742 
crp.halfTRUE   17.46556 2399.54534   0.007    0.994 
sexf            0.72806    1.11857   0.651    0.515 
age            -0.03701    0.03965  -0.933    0.351 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 25.864  on 18  degrees of freedom 
Residual deviance: 23.555  on 13  degrees of freedom 
AIC: 35.555 
 
Number of Fisher Scoring iterations: 15 
 
 
 
 
  - [PD-1 - nb.any AE] 
 
 
  
glm(formula = ae.any ~ rec.half + ldh.high + crp.half + sex 
+  
    age, family = binomial("logit"), data = subset(nb.data, 
med.group ==  
    "PD1"), na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.2532  -0.7822  -0.6084   1.1829   2.2189   
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)   
(Intercept)  -2.23703    1.13246  -1.975   0.0482 * 
rec.halfTRUE  0.70161    0.47182   1.487   0.1370   
ldh.highTRUE -1.04579    0.49436  -2.115   0.0344 * 
crp.halfTRUE -0.29228    0.64676  -0.452   0.6513   
sexf         -0.06382    0.44201  -0.144   0.8852   
age           0.02220    0.01649   1.346   0.1783   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 141.01  on 122  degrees of freedom 
Residual deviance: 131.96  on 117  degrees of freedom 
  (5 observations deleted due to missingness) 
AIC: 143.96 
 
Number of Fisher Scoring iterations: 4 
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  - [CTLA-4 - nb.any AE] 
 
 
  
glm(formula = ae.any ~ rec.half + ldh.high + crp.half + sex 
+  
    age, family = binomial("logit"), data = subset(nb.data, 
med.group ==  
    "CTLA4"), na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.5005  -0.9354  -0.6769   1.2188   1.9664   
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)   
(Intercept)   0.21651    1.12574   0.192   0.8475   
rec.halfTRUE  0.70524    0.54723   1.289   0.1975   
ldh.highTRUE -0.27123    0.48322  -0.561   0.5746   
crp.halfTRUE -1.55019    1.12086  -1.383   0.1667   
sexf          0.75430    0.45250   1.667   0.0955 . 
age          -0.01963    0.01684  -1.166   0.2436   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 125.21  on 97  degrees of freedom 
Residual deviance: 116.99  on 92  degrees of freedom 
  (9 observations deleted due to missingness) 
AIC: 128.99 
 
Number of Fisher Scoring iterations: 4 
 
 
 
 
 
 

Only Baseline - steroid 
 
  - [nb.steroid AE] 
 
 - Multicollinearity 
VIF 
 
crp.triple  rec.weide   ldh.half        sex        age  
  1.006126   1.261901   1.260114   1.005078   1.002946  
 
1/VIF 
 
crp.triple  rec.weide   ldh.half        sex        age  
 0.9939113  0.7924552  0.7935792  0.9949478  0.9970631  
 
 
 
  
glm(formula = ae.steroid ~ crp.triple + rec.weide + 
ldh.half +  
    sex + age, family = binomial("logit"), data = nb.data, 
na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.7485  -0.4900  -0.3848  -0.3547   2.4246   
 
Coefficients: 
                Estimate Std. Error z value Pr(>|z|) 
(Intercept)    -1.858783   1.158297  -1.605    0.109 
crp.tripleTRUE  0.817979   0.499050   1.639    0.101 
rec.weideTRUE  -0.496357   0.447267  -1.110    0.267 
ldh.halfTRUE   -0.057597   0.484191  -0.119    0.905 
sexf            0.153220   0.441471   0.347    0.729 
age            -0.005621   0.015741  -0.357    0.721 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 156.04  on 239  degrees of freedom 
Residual deviance: 150.24  on 234  degrees of freedom 
  (14 observations deleted due to missingness) 
AIC: 162.24 
 
Number of Fisher Scoring iterations: 5 
 
 
 
 
  - [combination therapy - nb.steroid AE] 
 
glm(formula = ae.steroid ~ crp.triple + rec.weide + 
ldh.half +  
    sex + age, family = binomial("logit"), data = sub-
set(nb.data,  
    med.group == "Combi"), na.action = na.exclude) 
 
Deviance Residuals:  

       Min          1Q      Median          3Q         Max   
-1.750e-05  -2.110e-08  -2.110e-08  -2.110e-08   1.422e-05   
 
Coefficients: 
                 Estimate Std. Error z value Pr(>|z|) 
(Intercept)      -231.604 285384.239  -0.001    0.999 
crp.tripleTRUE    143.378 191560.107   0.001    0.999 
rec.weideTRUE     -66.301 101189.151  -0.001    0.999 
ldh.halfTRUE       72.865 142102.039   0.001    1.000 
sexf             -126.322 162006.770  -0.001    0.999 
age                 3.398   4273.684   0.001    0.999 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 1.9557e+01  on 18  degrees of freedom 
Residual deviance: 1.0851e-09  on 13  degrees of freedom 
AIC: 12 
 
Number of Fisher Scoring iterations: 25 
 
 
 
  - [PD-1 - nb.steroid AE] 
 
glm(formula = ae.steroid ~ crp.triple + rec.weide + 
ldh.half +  
    sex + age, family = binomial("logit"), data = sub-
set(nb.data,  
    med.group == "PD1"), na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.5413  -0.4304  -0.3594  -0.3221   2.4712   
 
Coefficients: 
                Estimate Std. Error z value Pr(>|z|) 
(Intercept)    -2.673322   2.095536  -1.276    0.202 
crp.tripleTRUE  0.392317   0.836955   0.469    0.639 
rec.weideTRUE  -0.002936   0.775192  -0.004    0.997 
ldh.halfTRUE   -0.395447   0.771859  -0.512    0.608 
sexf           -0.222660   0.714662  -0.312    0.755 
age             0.005205   0.026671   0.195    0.845 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 64.394  on 122  degrees of freedom 
Residual deviance: 63.382  on 117  degrees of freedom 
  (5 observations deleted due to missingness) 
AIC: 75.382 
 
Number of Fisher Scoring iterations: 5 
 
 
 
- [CTLA-4 - nb.steroid AE] 
 
glm(formula = ae.steroid ~ crp.triple + rec.weide + 
ldh.half +  
    sex + age, family = binomial("logit"), data = sub-
set(nb.data,  
    med.group == "CTLA4"), na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.0219  -0.5116  -0.3589  -0.2742   2.7537   
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)   
(Intercept)    -2.49682    1.78659  -1.398   0.1623   
crp.tripleTRUE  1.21197    0.77848   1.557   0.1195   
rec.weideTRUE  -0.46049    0.68720  -0.670   0.5028   
ldh.halfTRUE    0.41061    0.74372   0.552   0.5809   
sexf            1.27690    0.74533   1.713   0.0867 . 
age            -0.01040    0.02417  -0.430   0.6670   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 68.832  on 97  degrees of freedom 
Residual deviance: 62.154  on 92  degrees of freedom 
  (9 observations deleted due to missingness) 
AIC: 74.154 
 
Number of Fisher Scoring iterations: 5 
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Excluding baseline 
Excl. Baseline - Any AE 

 
  - [excl. baseline - any AE] 
 
 - Multicollinearity 
VIF 
 
crp.triple   aec.high ldh.single        sex        age  
  1.035446   1.007872   1.038546   1.008314   1.006874  
 
1/VIF 
 
crp.triple   aec.high ldh.single        sex        age  
 0.9657670  0.9921891  0.9628847  0.9917546  0.9931732  
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ crp.triple + aec.high + ldh.single + sex 
+ (1 | pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   958.2    988.9   -473.1    946.2     1216  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.7934 -0.3819 -0.3401 -0.3061  3.1754  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.3979   0.6308   
Number of obs: 1222, groups:  pid, 234 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -2.03313    0.15709 -12.943   <2e-16 *** 
crp.tripleTRUE  0.54913    0.29001   1.893   0.0583 .   
aec.highTRUE    0.75809    0.35395   2.142   0.0322 *   
ldh.singleTRUE  0.09212    0.30063   0.306   0.7593     
sexf            0.07680    0.20586   0.373   0.7091     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) c.TRUE a.TRUE l.TRUE 
crp.trpTRUE -0.216                      
aec.hghTRUE -0.197  0.035               
ldh.sngTRUE -0.161 -0.066  0.012        
sexf        -0.664  0.018  0.048 -0.027 
 
 
 
  - [combination therapy - excl. baseline - any AE] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ crp.triple + ldh.single + sex + age + (1 
| pid) 
   Data: subset(excl.b.data, med.group == "Combi") 
 
     AIC      BIC   logLik deviance df.resid  
    56.3     66.0    -22.2     44.3       31  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.9603 -0.5733 -0.3973  0.8719  1.7356  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 1.241    1.114    
Number of obs: 37, groups:  pid, 16 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|) 
(Intercept)     1.03654    2.32112   0.447    0.655 
crp.tripleTRUE -0.34448    1.26986  -0.271    0.786 
ldh.singleTRUE -0.30536    1.53756  -0.199    0.843 
sexf            0.89555    1.17809   0.760    0.447 
age            -0.03934    0.04800  -0.820    0.412 
 
Correlation of Fixed Effects: 
            (Intr) c.TRUE l.TRUE sexf   
crp.trpTRUE -0.274                      
ldh.sngTRUE -0.180  0.184               
sexf         0.224 -0.143 -0.056        
age         -0.934  0.180  0.116 -0.459 
 
 
 
 
 

  - [PD-1 - excl. baseline - any AE] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ crp.triple + aec.high + ldh.single + sex 
+ (1 | pid) +      age 
   Data: subset(excl.b.data, med.group == "PD1") 
 
     AIC      BIC   logLik deviance df.resid  
   613.5    647.4   -299.8    599.5      932  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.6715 -0.3315 -0.3019 -0.2863  3.4954  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.1841   0.429    
Number of obs: 939, groups:  pid, 117 
 
Fixed effects: 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -2.724618   0.645420  -4.221 2.43e-05 *** 
crp.tripleTRUE  0.376511   0.407043   0.925   0.3550     
aec.highTRUE    1.253915   0.514791   2.436   0.0149 *   
ldh.singleTRUE  0.248533   0.381966   0.651   0.5153     
sexf            0.023109   0.248018   0.093   0.9258     
age             0.005623   0.009410   0.598   0.5501     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) c.TRUE a.TRUE l.TRUE sexf   
crp.trpTRUE -0.041                             
aec.hghTRUE -0.135  0.012                      
ldh.sngTRUE -0.018 -0.037  0.040               
sexf        -0.291  0.037  0.066 -0.026        
age         -0.953 -0.023  0.066 -0.041  0.098 
 
 
 
  - [CTLA-4 - excl. baseline - any AE] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ crp.triple + aec.high + ldh.single + sex 
+ (1 | pid) +      age 
   Data: subset(excl.b.data, med.group == "CTLA4") 
 
     AIC      BIC   logLik deviance df.resid  
   277.6    302.1   -131.8    263.6      239  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.8781 -0.5727 -0.4996 -0.3656  2.7182  
 
Random effects: 
 Groups Name        Variance  Std.Dev.  
 pid    (Intercept) 3.799e-14 1.949e-07 
Number of obs: 246, groups:  pid, 101 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)    
(Intercept)    -2.45301    0.75792  -3.237  0.00121 ** 
crp.tripleTRUE  0.47115    0.44838   1.051  0.29335    
aec.highTRUE    0.11706    0.46954   0.249  0.80312    
ldh.singleTRUE -0.29991    0.50275  -0.597  0.55082    
sexf            0.37931    0.30586   1.240  0.21492    
age             0.01678    0.01117   1.502  0.13307    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) c.TRUE a.TRUE l.TRUE sexf   
crp.trpTRUE  0.001                             
aec.hghTRUE -0.074  0.063                      
ldh.sngTRUE  0.018 -0.159 -0.019               
sexf        -0.254  0.006  0.018 -0.061        
age         -0.954 -0.081 -0.007 -0.065  0.073 
 
 
 
 
 

Excl. Baseline – Steroid AE 
 
  - [ob.steroid AE] 
 
 - Multicollinearity 
VIF 
 
crp.triple    lc.half   ldh.half        sex        age  
  1.054472   1.229245   1.179197   1.005322   1.002902  
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1/VIF 
 
crp.triple    lc.half   ldh.half        sex        age  
 0.9483415  0.8135076  0.8480345  0.9947060  0.9971065  
 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ crp.triple + lc.half + ldh.high + sex 
+ age + (1 |      pid) 
   Data: excl.b.data 
 
     AIC      BIC   logLik deviance df.resid  
   417.6    453.3   -201.8    403.6     1215  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.8179 -0.1327 -0.1047 -0.0869  5.4850  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 4.084    2.021    
Number of obs: 1222, groups:  pid, 234 
 
Fixed effects: 
                 Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -4.3419099  1.2116475  -3.583 0.000339 *** 
crp.tripleTRUE  1.5223356  0.4812343   3.163 0.001559 **  
lc.halfTRUE    -1.5511258  0.9082753  -1.708 0.087679 .   
ldh.highTRUE   -0.2241938  0.5770126  -0.389 0.697615     
sexf            0.4435773  0.4535402   0.978 0.328058     
age             0.0007453  0.0158277   0.047 0.962443     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) c.TRUE lc.TRUE ld.TRUE sexf   
crp.trpTRUE -0.163                               
lc.halfTRUE  0.077 -0.241                        
ldh.hghTRUE  0.001 -0.092  0.067                 
sexf        -0.287  0.073 -0.087  -0.054         
age         -0.833 -0.048  0.054  -0.028   0.045 
 
 
 
  - [combination therapy - excl. baseline - steroid 
AE] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ crp.triple + lc.half + ldh.high + sex 
+ age + (1 |      pid) 
   Data: subset(excl.b.data, med.group == "Combi") 
 
     AIC      BIC   logLik deviance df.resid  
    50.0     61.3    -18.0     36.0       30  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-1.1705 -0.3643 -0.2492 -0.1610  1.3935  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 3.912    1.978    
Number of obs: 37, groups:  pid, 16 
 
Fixed effects: 
                Estimate Std. Error z value Pr(>|z|) 
(Intercept)    -0.964516   3.069639  -0.314    0.753 
crp.tripleTRUE -0.015347   1.986573  -0.008    0.994 
lc.halfTRUE    -1.787607   2.380697  -0.751    0.453 
ldh.highTRUE    0.963243   1.946063   0.495    0.621 
sexf            0.190586   1.752562   0.109    0.913 
age            -0.004335   0.065119  -0.067    0.947 
 
Correlation of Fixed Effects: 
            (Intr) c.TRUE lc.TRUE ld.TRUE sexf   
crp.trpTRUE -0.081                               
lc.halfTRUE -0.184 -0.464                        
ldh.hghTRUE -0.098  0.301 -0.277                 
sexf         0.205 -0.182  0.059  -0.093         
age         -0.928  0.047  0.152   0.052  -0.459 
 
 
 
  - [PD-1 - excl. baseline - steroid AE] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ crp.triple + ldh.high + sex + age + 
(1 | pid) 
   Data: subset(excl.b.data, med.group == "PD1") 
 
     AIC      BIC   logLik deviance df.resid  
   167.9    197.1    -78.0    155.9      943  

 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.4410 -0.1231 -0.1109 -0.0985 12.2963  
 
Random effects: 
 Groups Name        Variance  Std.Dev.  
 pid    (Intercept) 4.114e-14 2.028e-07 
Number of obs: 949, groups:  pid, 119 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -5.70964    1.39156  -4.103 4.08e-05 *** 
crp.tripleTRUE  2.20200    0.53247   4.135 3.54e-05 *** 
ldh.highTRUE    0.20499    0.78321   0.262    0.794     
sexf            0.40095    0.50892   0.788    0.431     
age             0.01685    0.01985   0.849    0.396     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) c.TRUE l.TRUE sexf   
crp.trpTRUE -0.095                      
ldh.hghTRUE  0.010 -0.069               
sexf        -0.310  0.084 -0.042        
age         -0.949 -0.047 -0.061  0.093 
 
 
 
  - [CTLA-4 - excl. baseline - steroid AE] 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.steroid ~ crp.triple + lc.half + ldh.high + sex 
+ age + (1 |      pid) 
   Data: subset(excl.b.data, med.group == "CTLA4") 
 
     AIC      BIC   logLik deviance df.resid  
   177.1    201.6    -81.6    163.1      239  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.6513 -0.3778 -0.3233 -0.2361  4.2076  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0        0        
Number of obs: 246, groups:  pid, 101 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -3.89820    1.10134  -3.540 0.000401 *** 
crp.tripleTRUE  0.40397    0.60408   0.669 0.503662     
lc.halfTRUE    -0.97310    1.06928  -0.910 0.362796     
ldh.highTRUE   -0.84240    0.78917  -1.067 0.285768     
sexf            0.73077    0.42016   1.739 0.081986 .   
age             0.02382    0.01576   1.512 0.130612     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) c.TRUE lc.TRUE ld.TRUE sexf   
crp.trpTRUE  0.002                               
lc.halfTRUE -0.026 -0.089                        
ldh.hghTRUE  0.048 -0.153  0.070                 
sexf        -0.295  0.028 -0.074  -0.099         
age         -0.957 -0.078  0.006  -0.078   0.103 
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3. Post-hoc analyses 
- ldh.half in excl. baseline, pd1, any irAE 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ crp.triple + aec.high + ldh.half + (1 | 
pid) 
   Data: subset(excl.b.data, med.group == "PD1") 
 
     AIC      BIC   logLik deviance df.resid  
   608.3    627.7   -300.2    600.3      935  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.6770 -0.3272 -0.3038 -0.2872  3.4554  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.1927   0.439    
Number of obs: 939, groups:  pid, 117 
 
Fixed effects: 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -2.333859   0.002876  -811.6   <2e-16 *** 
crp.tripleTRUE  0.392207   0.002783   140.9   <2e-16 *** 
aec.highTRUE    1.226135   0.002783   440.6   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) c.TRUE 
crp.trpTRUE 0.000         
aec.hghTRUE 0.000  0.000  
fit warnings: 
fixed-effect model matrix is rank deficient so dropping 1 
column / coefficient 
convergence code: 0 
Model failed to converge with max|grad| = 0.0260886 (tol = 
0.001, component 1) 

 
 
 
 

- ldh.high in excl. baseline, pd1, any irAE 
 
Generalized linear mixed model fit by maximum likelihood 
(Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: ae.any ~ crp.triple + aec.high + ldh.high + (1 | 
pid) 
   Data: subset(excl.b.data, med.group == "PD1") 
 
     AIC      BIC   logLik deviance df.resid  
   610.0    634.2   -300.0    600.0      934  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.6772 -0.3279 -0.3019 -0.2853  3.4913  
 
Random effects: 
 Groups Name        Variance Std.Dev. 
 pid    (Intercept) 0.1945   0.441    
Number of obs: 939, groups:  pid, 117 
 
Fixed effects: 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -2.355292   0.002765  -851.7   <2e-16 *** 
crp.tripleTRUE  0.384437   0.002763   139.1   <2e-16 *** 
aec.highTRUE    1.236775   0.002763   447.6   <2e-16 *** 
ldh.highTRUE    0.227166   0.002763    82.2   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
 
Correlation of Fixed Effects: 
            (Intr) c.TRUE a.TRUE 
crp.trpTRUE 0.000                
aec.hghTRUE 0.000  0.000         
ldh.hghTRUE 0.000  0.000  0.000  
convergence code: 0 
Model failed to converge with max|grad| = 0.025585 (tol = 
0.001, component 1)
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10. Lebenslauf 

Mein Lebenslauf wird aus Gründen des Datenschutzes in der elektronischen Fassung 
meiner Arbeit nicht veröffentlicht. 


