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1  | INTRODUC TION

The Fungi comprise an enormous diversity of species and life 
styles. Estimations of the number of species range from 2.2 to 
3.8 million (Hawksworth & Lücking, 2017) of which only a small 
fraction (<145,000, http://www.speci​esfun​gorum.org/Names/​

Names.asp, accessed January 2019) have been formally de-
scribed. The evolutionary relationships between major fungal 
lineages are far from resolved an there is still no general agree-
ment on the number of phyla, particularly for the basal clades. 
Hibbett et al. (2007) named seven phyla. Blackwell (2011) gave 
the number of phyla as ‘about 10’. Following the recent definition 
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Abstract
1.	 The internal transcribed spacer (ITS) is used often in DNA metabarcoding of fungi. 

One disadvantage of its high variability may be a failure to classify operational 
taxonomic units (OTUs) when no similar reference sequence exists. We tested 
whether the 5.8S region, often sequenced with ITS2 but discarded before analy-
sis, could provide OTU classifications when ITS2 fails.

2.	 We used in silico evaluation to compare classification success of 5.8S and ITS2 
from the UNITE database when reference sequences of the same species, genus, 
or family were removed. We then developed an automated pipeline for a com-
bined 5.8S–ITS2 analysis and applied it to mixed environmental samples contain-
ing many lineages that are underrepresented in databases.

3.	 ITS was clearly superior for species‐level classifications with a complete refer-
ence database, but 5.8S outperformed ITS at higher level classifications with an 
incomplete database. Our combined 5.8S‐ITS2 pipeline classified 3× more fun-
gal OTUs compared to ITS2 alone, particularly within Chytridiomycota (27×) and 
Rozellomycota (6×).

4.	 Missing reference sequences led to the failure of ITS to classify many fungal OTUs 
at all, and to a significant underestimation of environmental fungal diversity. Using 
5.8S to complement ITS classification will likely provide better estimates of diver-
sity in lineages for which database coverage is poor.
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of Rozellomycota (or Cryptomycota) (Corsaro et al., 2014; Jones, 
Richards, Hawksworth, & Bass, 2011; Lara, Moreira, & López‐
García, 2010), Tedersoo, Bahram, Puusepp, Nilsson, and James 
(2017) mentions 12 phyla and indicates that there may be more 
phyla. The latest taxonomy defines 16 basal phyla in addition 
to the Ascomycota and Basidiomycota bringing the total to 18 
(Wijayawardene et al., 2018). The community‐curated refer-
ence database UNITE (Kõljalg et al., 2013) currently (version 7.2, 
2017‐12‐01) also lists 18 phyla, including the preliminary named 
phyla GS01 and GS19.

Schoch et al. (2012) proposed the internal transcribed spacer 
(ITS) region of the eukaryotic rRNA operon as a universal fungal 
DNA barcode. The ITS region is c. 300–1,200 bp long and is located 
between the 18S (small eukaryotic ribosomal subunit, SSU) and 28S 
(large subunit, LSU) rRNA genes. It contains the two highly variable 
spacers, ITS1 and ITS2, separated by the less variable 5.8S gene 
(Nilsson, Kristiansson, Ryberg, Hallenberg, & Larsson, 2008). The 
full ITS region is included in the UNITE database (Kõljalg et al., 2013).

Advances in sequencing technologies have enabled a shift to 
DNA metabarcoding surveys of environmental samples, whereby 
sample throughput is much higher than previously possible and 
whole communities can be studied without the need for isolation 
and culture of single species or isolation of genotypes through 
cloning of single DNA fragments (Nilsson et al., 2018). Because 
the maximum length of continuously read sequence (c. 550 bases 
with overlapping paired‐end design) using the most commonly used 
Illumina sequencer for metabarcoding (MiSeq), it is not feasible to 
sequence the whole ITS region. Most studies focus on either the 
ITS1 or ITS2 (Miller, Hopkins, Inward, & Vogler, 2016; Tedersoo et 
al., 2014; Wurzbacher, Nilsson, Rautio, & Peura, 2017) as a result. 
Of the two ITS2 is often preferred, because it is in general shorter 
than ITS1 (Wang et al., 2015), thus causing less amplification bias 
and additionally less biased primers have been developed for ITS2 
(Tedersoo & Lindahl, 2016).

The ability of Illumina‐based DNA metabarcoding to identify 
fungal taxa in mixed samples varies among studies. An in sil-
ico test with 8,967 ITS sequences from a range of fungal phyla 
(Porras‐Alfaro, Liu, Kuske, & Xie, 2014) reported that >90% of test 
data (ITS1 91%; ITS2 93%) were identified to the correct genus. 
In a mock community of 24 Dikarya species, both ITS1 and ITS2 
sequences of different species could be clustered into one op-
erational taxonomic unit (OTU) (Blaxter et al., 2005) each and 
classified correctly (Tedersoo et al., 2015). In environmental sam-
ples, classification of ITS sequences has proven more challenging 
in many studies. Rime et al. (2015) reported that 5% of the ITS2 
OTUs from soil samples could not be classified to phylum (i.e., 
only to kingdom fungi). Wurzbacher et al. (2017) found that 25% 
of fungal OTUs in permafrost thaw ponds could not be assigned 
to phylum with ITS2. In a study of fungi in decaying wood, Yang 
et al. (2016) found that 19%–25% of OTUs could not be classified 
below kingdom level, and a study from lake sediments reported 
72% of fungi were unclassified for the ITS1 region and 49% of 
unclassified fungi for the ITS2 (Wahl et al., 2018). These results all 

highlight the fact that the incomplete state of reference databases 
for many fungal taxa may hinder ITS classification, although it is 
not clear which taxonomic levels are affected and how this affects 
classification success.

A potential reason for the failure of ITS to classify fungal OTUs 
from environmental samples, even to higher taxonomic levels, is 
the variability of the ITS sequence itself. While high variability 
among closely related taxa makes the ITS an excellent DNA bar-
code, its variability also hinders classification of evolutionarily 
more distant taxa. This is because large sequence divergence can 
make it difficult to establish homology and impairs an alignment 
to identify a sister taxon. This may be especially problematic in 
less well‐studied habitats such as freshwater, where a wide vari-
ety of early diverging fungal lineages occur (Grossart, Wurzbacher, 
James, & Kagami, 2016; Rojas‐Jimenez et al., 2017) and for which 
sequences from closely related species are often not available in 
reference databases.

Interestingly, many fungal DNA metabarcoding studies amplify 
the ITS2 region using the primer pair ITS3/ITS4 (White, Bruns, Lee, 
& Taylor, 1990), which includes a c. 130 bp long fragment of the 5.8S 
rRNA gene. The 5.8S rRNA gene has a much lower substitution rate 
compared to ITS1 or ITS2 (Nilsson et al., 2008) and is thus usually 
neglected as a potential barcode, but has been used for phyloge-
netic classification (Neubert, Mendgen, Brinkmann, & Wirsel, 2006; 
Roose‐Amsaleg, Yves, & Myriam, 2004). If it is part of an amplicon it 
is normally discarded during the data processing steps (e.g., Bálint, 
Schmidt, Sharma, Thines, & Schmitt, 2014; Lindahl et al., 2013), be-
cause its lower variability would reduce OTU resolution and could 
cause biases in OTU classification if not handled correctly. The fact 
that the 5.8S gene is included in the full ITS reference database 
UNITE, allows for direct taxonomic comparison with the ITS1 and 
ITS2.

Here we tested whether the more conserved 5.8S region could 
provide higher level classification of fungi in cases where ITS2 
could not, using in silico analysis of sequences present in the UNITE 
database. We classified query sequences at different taxonomic 
ranks using the 5.8S, ITS1 and ITS2 and examined the extent to 
which the classification success depended on database complete-
ness. Specifically, we excluded all other sequences from individu-
als of either the same species, genus, or family. We observed that 
ITS1 and ITS2 are clearly superior for species‐level classifications 
when the reference database is complete, but that 5.8S outper-
forms both markers at higher level taxonomic classifications with 
an incomplete database. Based on this result, we developed and 
implemented an automated pipeline to analyse amplicons that con-
tain both 5.8S and ITS2 rRNA gene regions, typical of many fungal 
DNA metabarcoding studies. A test on sequence data from sedi-
ment and water samples from 20 freshwater lakes showed that the 
5.8S sequence added phylum level classifications for most (74%) of 
the 64% of our ITS2 OTUs that were unclassified with ITS2 alone. 
The current version of the pipeline is released under GPLv3 and 
can be found at www.github.com/f-heege​r/two_marker_metab​
arcod​ing/relea​ses/tag/v1.1.

http://www.github.com/f-heeger/two_marker_metabarcoding/releases/tag/v1.1
http://www.github.com/f-heeger/two_marker_metabarcoding/releases/tag/v1.1
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2  | MATERIAL S AND METHODS

2.1 | Testing the effects of an incomplete reference 
database

For the in silico evaluation of how database completeness affects 
classification with different rRNA markers, we created a dataset 
whereby the classification of each query sequence was known, 
and where at least one other sequence from (a) the same spe-
cies, (b) a different species in the same genus, and (c) a different 
genus within the same family, were also available. This allowed 
us to test whether classifications at a given rank were correct, 
even when all other sequences for the species, genus, or family 
were not present (i.e., removed from our reference database). An 
additional criterion was that complete sequences of ITS1, ITS2, 
and 5.8S had to be available to allow for comparison between 
the markers. We created such a dataset in the following way: 
Fungal ITS1, 5.8S and ITS2 sequences were extracted from se-
quences in the UNITE database (version 7.2, 2017‐12‐01) using 
ITSx with default parameters (version 1.0.11, Bengtsson‐Palme 
et al., 2013). Sequences that satisfied the following three criteria 
were selected: (a) all three markers could be detected by ITSx, (b) a 
species‐level classification was available in UNITE, and (c) at least 
one other sequence was available from the same species, from 
the same genus (but different species), and from the same family 
(but different genus). There were 5,038 sequences that satisfied 
these criteria and from these we chose a random subset of 100 
sequences for our evaluation.

Marker sequences (ITS1, ITS2, 5.8S) were classified inde-
pendently with the lowest common ancestor (LCA) classification 
approach based on database search results similar to the one 
employed in MEGAN (Huson, Auch, Qi, & Schuster, 2007). First a 
database search of each sequence is performed against the UNITE 
database. For each sequence, hits with an e‐value below a mini-
mum value (default: 10–7) are considered. Any hit with an identity 
or query coverage below a certain threshold (default: 80% and 
85% respectively) or a bitscore lower than a certain percentage 
(default: 95%) of the best score for that sequence is excluded. For 
the remaining hits the LCA in the taxonomic tree that underlies 
UNITE is determined in the following way: For each level in the 
taxonomic tree, starting from kingdom, classifications of all hits 
are compared. If the classification of a certain percentage (default: 
90%) or more of the hits at this taxonomic level are the same, it 
will be accepted as the classification on this level for the query 
sequence. Otherwise the LCA is found and the query will only be 
classified to the last level, where a majority was achieved. During 
this process any classifications of ‘undetermined’ or ‘unclassified’ 
are ignored.

ITS2 sequences were additionally analysed with the Ribosomal 
Databse Project (RDP) (Wang, Garrity, Tiedje, & Cole, 2007) classi-
fier to make sure that the LCA approach we implemented here gives 
results comparable to widely applied tools. We employed the clas-
sifier trained for use in the PIPITS pipeline (Gweon et al., 2015) on 

ITS sequences from the same version (7.2, 2017‐12‐01) of UNITE we 
used for the LCA classification.

For 5.8S and ITS2, the classification was run using a range of pa-
rameter values for minimum identity, minimum coverage, top bit score 
fraction cutoff, and LCA majority stringency. This was done to investi-
gate the parameter stability of the approach. The effect of missing da-
tabase coverage was tested by first classifying query sequences using 
the complete reference database, and then repeating the process 
three times, removing all sequences from the same species, genus, and 
family in subsequent iterations. To assess whether classifying the 5.8S 
and ITS2 together was an effective method, we classified the com-
bined 5.8S and ITS2 fragment with the LCA approach and compared 
the resulting classifications with those in the UNITE database.

2.2 | 5.8S reference dataset

As a reference dataset for classification of 5.8S sequences, we 
used the 5.8S sequences that were extracted from UNITE with 
ITSx (above) and complemented them with non‐fungal 5.8S 
sequences from the 5.8S rRNA family (RF00002) of the Rfam 
database (Kalvari et al., 2018). Identical sequences were derep-
licated to one representative with vsearch (version 1.9.7; Rognes, 
Flouri, Nichols, Quince, & Mahé, 2016). For each representative 
sequence, a taxonomic classification was determined by generat-
ing an LCA from the classifications of all sequences it represents. 
For Rfam sequences classified as fungi, any classification at lower 
rank was ignored and priority was given to the taxonomy informa-
tion from the UNITE database.

2.3 | Description of the pipeline

The pipeline was implemented as a workflow with snakemake 
(Köster & Rahmann, 2012). It was tested on Ubuntu, but should 
run on any operating system where Python and the external tools 
are available. Most computation‐intensive steps are done using 
external tools, the others are implemented directly in Python. 
Once the pipeline and the external tools are installed, and the 
configuration file defining parameters for the pipeline and the 
properties of the input data has been created the whole analysis 
(including the download of the reference databases) can be run 
with one command line command. If the user configures multiple 
CPUs, the pipeline will execute multiple steps in parallel where 
possible and also take advantage of parallelization capabilities of 
external tools.

The pipeline consists of four main stages: (a) initial read process-
ing, (b) 5.8S classification, (c) ITS2 classification and (d) final classifi-
cation (Figure 1).

a	 Initial read processing starts by producing quality plots with 
FastQC (version 0.11.2; Andrews, 2015). The presence of the 
forward or reverse primer in the first 25 bases of the respective 
read is checked with flexbar (version v2.5_beta; Roehr, Dieterich, 
& Reinert, 2017). Quality trimming with Trimmomatic (version 0.35; 
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Bolger, Lohse, & Usadel, 2014) consists of a sliding window 
trimming (default window size: 8 and a minimum Phred score: 
20) and removal of trailing bases with a low (default: <20) Phred 
quality, followed by the removal of sequences that are too short 
(default: <200) or have a low average Phred quality (default: 
<30) after trimming.

Forward and reverse reads of each pair are then merged with 
Pear (version 0.9.6; Zhang, Kobert, Flouri, & Stamatakis, 2014). By 
default the minimum overlap for merging is set to 10. Pairs that 
cannot be merged or are too short (default: <150) or too long 
(default: >550) after merging are discarded. Merged sequences 
are dereplicated with vsearch. Potential chimeras (including se-
quences classified as ‘suspicious’) are removed with vsearch in 
de novo chimera detection mode with default parameters. The 
5.8S and ITS2 sequences are extracted with ITSx with default 
parameters, except that partial 5.8S sequences are accepted. 
The 5.8S and the ITS2 sequences are independently classified 
in Stage 2 and 3 respectively.

b	 5.8S classification starts with removal of the forward primer and 
sequences with ambiguous bases are discarded using cutadapt 
(version 1.9.1; Martin, 2011). Sequences are dereplicated with 
vsearch and then classified by a similarity search against our com-
bined 5.8S reference dataset (above) with lambda (version 0.9.3; 
Hauswedell, Singer, & Reinert, 2014) followed by a LCA classifica-
tion as described for the in silico test (above).

c	 ITS2 classification starts with dereplication of ITS2 sequences 
with vsearch. Clustering into OTUs is done with swarm2 (version 
2.1.6; Mahé, Rognes, Quince, Vargas, & Dunthorn, 2015). OTUs 
are classified by similarity search and LCA in the same way as 5.8S 
sequences are classified (above).

d	 The final classification of the OTUs defined by the ITS2 combines 
the classifications from stage 2 and 3. For each read present in 
an ITS2 OTU cluster, all 5.8S sequences and their classifications 
are collected. The 5.8S classifications are combined with the same 
LCA approach explained above. The resulting classification is 
compared to the ITS2 classification. If 5.8S and ITS2 classification 
are concordant, but the ITS2 is classified to a lower taxonomic 
rank, the ITS2 classification is accepted. Sequences that are un-
classified with ITS2 will automatically take the 5.8S classifications. 
All conflicting classifications can either be marked (default) or re-
solved by the user by giving priority to one of the markers.

2.4 | Test with reads from freshwater lake samples

We tested the pipeline on an unpublished dataset (E. C. Bourne, 
et al. unpublished data) of water and sediment samples, taken in 
October and November 2014 from the littoral zone of 20 freshwater 
lakes in North‐East Germany. In six lakes, additional sediment and 
water samples were taken from the pelagic zone. Amplification was 
performed using ITS3mix1 and ITS3mix2 forward primers (Tedersoo 
et al., 2015) that were modified by adding a degenerate base (W) 
at the third position, and the standard reverse primer ITS4 (White 
et al., 1990). This primer set amplified a 350–500 bp amplicon con-
sisting of the full ITS2 and c. 130 bp of the 5′‐end of the 5.8S gene. 
Amplicons were sequenced with overlapping 300 bases paired‐end 
reads on an Illumina MiSeq (v3 chemistry).

3  | RESULTS

Analysis of the classification of query sequences with an increasingly 
incomplete reference database showed a clear difference among 
markers (Figure 2). When the query species was present in the refer-
ence database, ITS1 and ITS2 both correctly classified 90% of queries 
to species, whereas 5.8S classified 3% of queries to species and 56% of 
sequences to order (Figure 2). The removal of all sequences from the 
same species, genus, or family had an increasingly detrimental effect on 
the classification success of both ITS sequences (Figure 2). Removing 
only the query species (i.e., other species in the genus still present in 
the database) caused a distinct drop in successful classification of ITS1 

F I G U R E  1   Overview of the steps in the automated pipeline 
for parallel classification with ITS2 and 5.8S. External tools and 
approaches used are given in parentheses. Abbreviations: ITS, 
internal transcribed spacer; LCA, lowest common ancestor; OTU, 
operational taxonomic unit
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and ITS2 at the kingdom (from 100% to 83% and 88% respectively), 
phylum (from 100% to 83% and 88% respectively), and class (from 
100% to 83% and 87% respectively) ranks (Figure 2). In contrast, the 
kingdom and phylum rank classifications of 5.8S sequences were not 
notably affected by the removal of reference sequences, with classifi-
cation at the class rank only dropping from 83% to 81% and classifica-
tion to kingdom and phylum being completely unaffected (Figure 2).

The LCA classification was performed with a range of parameters 
for ITS2 and 5.8S to test parameter stability. The stringency parameter 
had minimal influence on ITS2 classifications (Figure S1). Lowering the 
parameters of minimum identity (Figure S2) and minimum coverage 
(Figure S3) increased the number of classifications, but also increased 
the numbers of wrong classifications. Lower values for the top bitscore 
fraction parameter caused more wrong ITS2 classifications without 
increasing the number of correct classifications (Figure S4). Minimum 
identity and minimum coverage had little influence on 5.8S classifica-
tions (Figures S5 and S6), although a very high value (100%) resulted 
in more wrong classifications. The top bitscore fraction parameter 
gave more correct 5.8S classifications for values ≤5%, but at the cost 

of an increased number of wrong classifications (Figure S7). Finally a 
low value (≤85%) for the stringency parameter resulted in more wrong 
5.8S classifications, while a very high value (100%) led to a decrease in 
correct assignments (Figure S8).

Comparison with RDP classifications (Figure S9) showed that the 
LCA approach gives comparable results to the RDP classifier (trained 
on the UNITE database) for our data. The comparison between in-
dependent classification of ITS2 and 5.8S with the classification of a 
combined fragment of both regions revealed that a combined frag-
ment improved classification at kingdom and phylum ranks, but not 
to the same extent as an independent classification of 5.8S and ITS2 
with a subsequent combination of the result (Figure S10).

The environmental dataset from 20 freshwater lakes (water and 
sediment samples) consisted of 13.6 million read pairs. It was analysed 
with our pipeline on a Ubuntu workstation with 32GB RAM and a 4 
core Intel i7 CPU in under 48 hr. Our analysis pipeline generated 17,514 
non‐singleton OTUs. The 5.8S marker classified nearly three times as 
many OTUs compared to ITS2, including a 27‐fold increase in the num-
ber of Chytridiomycota OTUs and a 6‐fold increase in Rozellomycota 

F I G U R E  2   Results from the classification of the in silico test set (100 sequences). LCA classification was performed with different 
markers (panels from left to right) and with different completeness of the reference database (panels from top to bottom). Numbers of 
correct (blue), wrong (red) and unassigned (grey) classifications are given compared to the original classification in UNITE. Abbreviations: ITS, 
internal transcribed spacer; LCA, lowest common ancestor

N
othing

rem
oved

S
am

e species
rem

oved
S
am

e genus
rem

oved
S
am

e fam
ily

rem
oved



     |  1707Methods in Ecology and Evolu
onHEEGER et al.

OTUs (Table 1). Using ITS2, 30% of all OTUs were classified as Fungi, 
1% were classified as belonging to a different kingdom, and 69% were 
unclassified (Figure 3). In contrast, using 5.8S, 64% were classified as 
Fungi, 12% were classified as belonging to a different kingdom, and 
24% were unclassified (Figure 3). Using the two markers in combina-
tion, results were very similar to those using 5.8S alone (Table 1), but 
with more low level (family to species) classifications (Figure 3).

There was a classification conflict for only one OTU. The 5.8S 
classification was Arthropoda, whereas the ITS2 classification was 
Ascomycota. This was caused by a miss‐classification of SH200261.07FU 
in the UNITE database (R. H. Nilsson, personal communication, 14 May, 
2018), that has been subsequently corrected in UNITE.

4  | DISCUSSION

We developed and implemented a modular pipeline for the process-
ing of fungal DNA metabarcoding data that uses the taxonomic in-
formation from the 5.8S gene to complement the more widely used 
ITS2 region. These markers are adjacent to one another in the eu-
karyotic rRNA operon and >100 bp of 5.8S are typically sequenced 
using the most frequently employed ITS2 primer sets (Tedersoo et 
al., 2015; White et al., 1990), but then discarded prior to analysis. 
Using both markers in combination allowed us to classify a substan-
tially greater number of OTUs than with ITS2 alone, in particular for 
less well studied, basal fungal lineages.

Our in silico analysis of the UNITE database expanded on ear-
lier results (Porras‐Alfaro et al., 2014) that ITS1 and ITS2 are very 
good marker sequences when the database contains the exact 
same sequence or at least a sequence from the same species. In 
our test cases, no sequences were assigned to the wrong species 
and very few were unclassified. However, when only removing all 
sequences of the same species from our reference dataset, the 
ability to classify the genus dropped to 71% and 70% for ITS1 
and ITS2 respectively, despite there being representatives of the 
genus in the reference dataset. Even for higher taxonomic ranks 
(phylum, class) the removal of the species caused classification 
problems. Simulating novel genera or families by removing the re-
spective sequences from the database increased the effect even 
more. This is most likely the reason that many fungal OTUs remain 
unclassified in environmental studies that focus on poorly studied 
environments like freshwater (Grossart et al., 2016; Rojas‐Jimenez 

et al., 2017). We found that new species, genera or families that 
do not have any reference sequences available are often unidenti-
fied at even at the kingdom rank, leading to fungal diversity being 
severely underestimated.

In our environmental dataset from lake water and sediments, 
there were large differences in OTU classifications, depending on 
whether we used ITS2 or 5.8S. The proportion of OTUs that could be 
identified as fungi was twice as high using the 5.8S, with 6‐fold more 
Rozellomycota (also known as Cryptomycota) and nearly 30‐fold more 
Chytridiomycota. Chytridiomycota are not well represented in the 
UNITE database (Frenken et al., 2017) and our in silico analysis showed 
that even if our environmental OTUs were represented by other mem-
bers of the same genus or family, the ITS2 classification can fail com-
pletely. As a result, using ITS2 alone would have led to an estimate 
of Chytridiomycota of 3%, while the 5.8S classifications indicate that 
the actual proportion is an order of magnitude higher (32%). Similarly, 
the percentage of Rozellomycota would increase from 0.1% to 3% 
(Figure 3). An estimation of the proportion of fungal phyla based on the 
ITS2 alone would have been strongly biased towards Ascomycota and 
Basidiomycota, which are better represented in the reference database.

Although the ITS2 barcode allows for accurate identification 
when near‐perfect reference data are available, it may be unable to 
find a high enough similarity to any sequence when no closely re-
lated species is represented in the database. In such cases, the 5.8S 
sequence can help to classify OTUs to at least a higher taxonomic 
rank. In our environmental data, the 5.8S was especially helpful in 
splitting the results into fungal and non‐fungal sequences when it 
comes to early diverging lineages or lineages that belong to the Top 
50 unknown fungal lineages (Nilsson et al., 2016). Nonetheless, our 
results clearly indicate that the 5.8S would be of limited use as a 
DNA barcode on its own, or to delineate OTUs, but it should rather 
be seen as providing complementary information.

Our implementation of LCA‐based classification performed com-
parably to the commonly used RDP classifier on our test dataset and 
was not very sensitive to parameter choice. This indicates that our 
implementation is working as well as commonly used approaches 
and can be used to study the advantage of using multiple markers as 
well as the influence of an incomplete database. Unlike using a single 
‘best’ (e.g., lowest e‐value) blast hit for identification which is prob-
lematic due to stochastic ranking of top hits (Shah, Nute, Warnow, & 
Pop, 2018) and can easily lead to wrong classifications if the query 
species is missing from the database, our approach uses a certain 

TA B L E  1   Water and sediment OTU classification (17,514 OTUs, based on ITS2 clustering) using ITS2 and 5.8S markers individually and in 
combination

  Unclassified Fungi Ascomycota Basidiomycota Chytridiomycota Rozellomycota

Other 
fungal 
phyla Non‐fungi

ITS2 12,071 5,262 2,983 1,946 111 60 68 181

5.8S 4,123 11,263 3,649 2,439 3,030 339 215 2,128

ITS2 + 5.8S 4,107 11,262 3,651 2,441 3,031 339 215 2,145

Abbreviations: ITS, internal transcribed spacer; OTU, operational taxonomic unit.



1708  |    Methods in Ecology and Evolu
on HEEGER et al.

proportion of top blast hits to try and quantify the uncertainty of our 
classifications by choosing a higher taxonomic rank. Nevertheless, 
we found a substantial amount of wrong assignments in the in silico 
analysis, when the database was not complete (Figure 2).

Third generation sequencing technologies currently available 
allow for the sequencing of longer amplicons. These include stud-
ies of the full‐length 16S for bacteria (Mosher et al., 2014; Schloss, 
Jenior, Koumpouras, Westcott, & Highlander, 2016; Singer et al., 
2016), the full ITS region (Schlaeppi et al., 2016; Tedersoo, Ave, 
& Sten, 2017) and most of the rRNA operon (Heeger et al., 2018). 

Longer amplicons with multiple gene regions could be analysed using 
the approach we have developed here. Although longer amplicons 
can increase identification success (Tedersoo, Ave, et al., 2017), they 
typically result in lower sequencing depth because of the higher 
cost per base and can therefore increase the risk of missing rare 
taxa (Kennedy, Cline, & Song, 2018). Primer pairs to target longer 
amplicons have also not yet been optimized to prevent primer and 
long‐range amplification bias (Heeger et al., 2018). We suggest that 
explicitly including the partial 5.8S gene into the analysis of shorter 
amplicons (as used in second‐generation sequencing technologies 

F I G U R E  3   Classification of OTUs from lake water and sediments when using ITS2 (top left) or 5.8S (top right) and combined classification 
with our pipeline (bottom left). Concentric circles from the inside out represent levels of taxonomic classification from kingdom to species. 
Hatched areas contain more specific classifications that are not shown. Segments are colored by kingdoms and for fungi by phyla and 
classes. Abbreviations: ITS, internal transcribed spacer; OTU, operational taxonomic unit
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such as applied here) can dramatically improve the high level classi-
fication of new species and poorly studied clades without increasing 
cost or reducing read depth.
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