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Abstract
Extreme temperatures affect populous regions, like eastern China, causing substantial socio-economic
losses. It is beneficial to explore whether the frequencies of absolute or threshold-based extreme
temperatures have been changed by human activities, such as anthropogenic emissions of greenhouse
gases (GHGs). In this study, we compared observed and multi-model-simulated changes in the
frequencies of summer days, tropical nights, icy days and frosty nights in eastern China for the years
1960–2012 by using an optimal fingerprinting method. The observed long-term trends in the regional
mean frequencies of these four indices were +2.36, +1.62, −0.94, −3.02 days decade−1. The models
performed better in simulating the observed frequency change in daytime extreme temperatures than
nighttime ones. Anthropogenic influences are detectable in the observed frequency changes of these
four temperature extreme indices. The influence of natural forcings could not be detected robustly in
any indices. Further analysis found that the effects of GHGs changed the frequencies of summer days
(tropical nights, icy days, frosty nights) by +3.48± 1.45 (+2.99± 1.35, −2.52± 1.28, −4.11± 1.48)
days decade−1. Other anthropogenic forcing agents (dominated by anthropogenic aerosols) offset the
GHG effect and changed the frequencies of these four indices by −1.53± 0.78, −1.49± 0.94,
+1.84± 1.07, +1.45± 1.26 days decade−1, respectively. Little influence of natural forcings was found
in the observed frequency changes of these four temperature extreme indices.

1. Introduction

Extreme temperatures cause substantial risk to human
health, agriculture and the ecosystem (Field et al 2012).
The associations betweenhumanactivities and extreme
temperatures are often studied, especially after so many
places on the globe have encountered unprecedented
extreme weather, such as Europe in the summer of
2003 (Stott et al 2004) and eastern USA in the win-
ter of 2014 (Trenary et al 2015). Extreme temperatures
spread over central-eastern China in the summer of
2013 and eastern China in the winter of 2016 caused
unprecedented death tolls and socio-economical losses
(Sun et al 2014, Wang et al 2017, Qian et al 2017).
Exploring the roles of external drivers in the frequency
changes of extreme temperatures is urgent, in order

to provide reliable projections of extreme tempera-
tures and indicative references for the adaptation and
mitigation of regional climate change.

Previous detection and attribution studies focused
on the changes in annual maxima/minima of daily
temperatures (Christidis et al 2011, 2015, Wen et al
2013, Kim et al 2016, Yin et al 2017) and percentile-
based extreme temperatures (Christidis et al 2005,
Morak et al 2011, 2013, Lu et al 2016), and indicated
that the influence of human activities has contributed
to these changes at global and regional scales (Stott
et al 2016). A pioneering study conducted by Hegerl
et al (2004) examined whether the changes in extreme
temperatures are detectable in a perfect model con-
figuration. They found that the difficulty in detecting
changes in extreme temperatures is no more than the
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detection of changes in its mean state. Christidis
et al (2005) first used the optimal fingerprinting
method to detect the anthropogenic influences on
the changes in extreme temperatures during the sec-
ond half of the last century. As for China, Wen et al
(2013) and Yin et al (2017) used an optimal detec-
tion method to detect human influence on the changes
in annual maxima and minima of daily temperatures
in China. They found that anthropogenic influences
are detectable in the changes of extreme temperatures
in China. Lu et al (2016) conducted detection anal-
ysis on the frequencies of percentile-based extreme
temperatures in China during the period 1958–2002,
and also found clear anthropogenic signals in the
observed frequency changes in relatively warmer and
colder days and nights.

However, socio-economic stress from extreme
temperatures is mostly felt through the changes in
absolute or threshold-based extreme high or low tem-
peratures. We focus especially on absolute extreme
temperatures, precisely because of their practical signif-
icance. Threshold-based extreme temperatures directly
contribute to increased discomfort and mortality
rates, and agricultural and hydrological disaster losses
(Basu and Samet 2002, Bai et al 2014, Lesk et al 2016).
Current detection and attribution studies require sig-
nals from climate model simulations. One of the
major challenges faced by the attribution studies of
changes in threshold-based extreme temperatures is
that current climate models cannot well represent the
mean state of surface air temperature at regional scales
(Sun et al 2015). Simulated frequency changes in the
threshold-based extreme temperatures tend to be sen-
sitive to this model potential bias. Therefore, before
calculating the frequency of these extreme tempera-
tures, we need to evaluate the model performance.
In addition, changes in daily maximum (Tmax) and
minimum (Tmin) temperatures are dominated by the
variations of surface solar radiation and net longwave
radiation, respectively (Zhou and Wang 2016). Human
influence on the changes in the daytime and night-
time temperatures is unlikely to be identical, as is
the case for extreme temperatures.

In this study, we choose four indices of absolute
extreme temperatures as defined by the Expert Team
on Climate Change Detection and Indices (ETCCDI;
www.climdex.org/indices.html) and previous studies
(Alexander et al 2006, Zhang et al 2011) and study the
frequency changes in daytime and nighttime extreme
temperatures separately. We measure the days with
Tmax higher than 25 ◦C as summer days and the night
with Tmin higher than 20 ◦C as tropical nights. We also
count thedayswithTmax andTmin lower than0 ◦Cas icy
days and frosty nights, respectively. We employ anopti-
mal fingerprinting technique to detect and attribute the
influences of human activities, including greenhouse
gases and other anthropogenic forcings (dominated by
anthropogenic aerosols), and natural external forcings
(combined effect of total solar irradiance variations and

aerosols from volcanic eruptions), on these long-term
changes.

2. Data and methods

2.1. Observations
We use a newly homogenized daily Tmax and Tmin
dataset observed at 753 Chinese meteorological sta-
tions for 1960–2012 (figure S1, available at stacks.iop.
org/ERL/13/014012/mmedia). The temperature obser-
vations we use have been quality-controlled and
adjusted for most non-climatic biases due to the
changes in the local observing system, such as station
relocation (Li and Yan 2009, Li et al 2016).

Since the horizontal resolutions of climate models
are in the range of 1◦−3◦, we divide the mainland of
eastern China into 2◦ × 2◦ resolution grid boxes and
construct a regional gridded temperature dataset using
available observations within each grid box. Specifi-
cally, we first calculate the climatological mean annual
cycle (base period: 1960–2012) and daily temperature
anomalies at each station. Given that temperature is
dependent on elevation, for the boxes where topog-
raphy has a wide range and stations are unevenly
distributed, there might be certain deviation in the
extreme temperatures if the gridded temperature is
developed by simple averaging of the individual sta-
tion within each grid box. Hence, we need to correct
the elevation-related bias in the temperature mean
state within each grid box. Considering the lapse rate
of near-surface air temperature is time-varying and
region-dependent, use of a fixed temperature lapse
rate could be problematic on the complex terrains
in China. Following Li et al (2013), we divide the
whole mainland China into 24 sub-regions (figure
S1). We use the multiple linear regression method
including the effects of latitude, longitude and ele-
vation to estimate the lapse rates of Tmax and Tmin
for each sub-region and each month (figure S2).
The terrain-based global 0.25◦ × 0.25◦ land elevation
and ocean depth dataset (TBASE) (http://research.
jisao.washington.edu/data_sets/elevation/) is applied
to estimate the averaged elevation within each grid
box (figure S3). The local elevation bias in climato-
logical mean annual cycle of the individual station is
adjusted based on the spatiotemporal-varying temper-
ature lapse rates. The final gridded dataset is obtained
by adding the station average temperature anoma-
lies to the station average elevation-bias-corrected
climatological mean annual cycle for each grid box.
Furthermore, to estimate the regional averages pre-
cisely, we establish a set of areal weights of land fraction
by considering their latitude-dependent feature and the
influence of coasts and islands (figure S4).

2.2. Model simulations
We use the CMIP5 simulations to estimate the
responses of extreme temperatures to external forcings
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Table 1. The CMIP5 models used in the optimal fingerprinting analyses. Numbers represent the ensemble sizes of the ALL, NAT and GHG
simulations, the years of CTL simulations, and the spatial resolutions of atmospheric component of climate models. Aerosol species
considered in each model are also shown.

Model ALL NAT GHG CTL Spatial resolution (lat and lon) Aerosol species

CanESM2 5 5 5 636 2.7906o 2.8125o SO4 , BC, OA, DS, SS
CNRM-CM5 10 6 6 636 1.4008o 1.4063o SO4 , BC, OA, DS, SS
CSIRO-Mk3–6-0 10 5 5 424 1.8653o 1.875o SO4 , BC, OA, DS, SS
HadGEM2-ES 4 4 4 530 1.25o 1.875o SO4 , AN, BC, OA, DS, SS
IPSL-CM5A-LR 4 3 3 954 1.8947o 3.75o SO4 , BC, OA, DS, SS

Total 33 23 23 3180

Notes: SO4 , sulfate; AN, ammonium nitrate; BC, black carbon; OA, organic carbon (including primary and secondary organic carbon); DS,

dust; SS, sea salt.

and the internal climate variability. Table 1 lists all the
available CMIP5 models used in this study. All the
experiments with specific forcings have three or more
members and produce daily outputs. We first evaluate
the skill of climate models with ALL forcing in sim-
ulating the climatological mean of Tmax and Tmin. As
shown in figures S5 and S6, climate models tend to
perform better over eastern China than western China.
There are two explanations for this discrepancy: (1)
the station density in western China is much lower
than eastern China (figure S1); (2) the topography
in western China is much more complex than east-
ern China, which is poorly captured in models with
resolutions of around 1–3 degrees (figure S3). The grid-
ded temperature values can be affected seriously by
individual station with local effects. We focus our anal-
ysis on eastern China (east of 105 ◦E) also because
the majority of China’s people live in the eastern
part of the country.

We calculate the time series of simulated regional
mean frequency of extreme temperatures in eastern
China, and compare them with the observed ones
(figure S7). Results illustrate a good consistency
between the observed and simulated frequencies of
summer days and tropical nights in eastern China,
though models tend to overestimate the frequencies of
icy days and frosty nights in easternChina by onaverage
33.6% (14.1 days) and 13.8% (14.4 days), respectively.
However, in western China, the spread of simu-
lated frequencies of extreme temperatures is very large
(figure S8). It implies that CMIP5 models can hardly
capture themeanstate andvariability of surface air tem-
perature in western China. Based on these evaluations,
we focus on eastern China in this study.

We use 32 simulations from five models driven by
combined anthropogenic and natural forcing (ALL);
23 simulations from five models driven by natural
forcing only (NAT) and greenhouse gas forcing only
(GHG) (table 1). All simulations end in 2012. More
recent years are not included in this study, as most
of the model simulations required for the detection
analyses ended in 2012. It is assumed that the temper-
ature extreme responses to historical anthropogenic
(ANT) and NAT forcings are linearly additive and the
difference between the ALL and NAT responses can
be estimated as an ANT response. Annual anoma-
lies, with respect to 1960–2012, are computed from

the resulting regional average frequency of extreme
temperatures from observations and individual model
runs, using the same sets of space data masks and
areal weights. We compute the ensemble means for
individual models and then average the ensemble
means to give the expected multi-model response to
large-scale external forcings. Thus, the patterns we con-
sider are the annual anomalies of the frequency of
extreme temperatures.

2.3. Optimal fingerprinting method
We use an optimal fingerprinting method in which
observations (y) are expressed as a sum of scaledmodel-
simulated fingerprint patterns (X) plus internal climate
variability (𝜀) as y = X𝛽 + 𝜀. The scaling factors 𝛽 adjust
the magnitude of the fingerprints to best match the
observations. The multi-model ensemble averages of
forced (ALL, GHG and NAT) simulations are used to
estimate the fingerprints, and the pre-industrial control
(CTL) simulations are used to estimate internal climate
variability.Theregression isfittedbasedonequation(4)

in Allen and Tett (1999): 𝛽 =
(
XTC−1

N X
)−1XTC−1

N Y .
We compute non-overlapping 3-year-mean time series
of the multi-model-simulated regional mean frequency
of extreme temperatures as the forced response or
signal for the specific forcing (X), which includes 18
data values for the period 1960–2012. Observations
are processed in the same way as the simulations.
Fitting and testing the regression models need two
independent estimates of the inversed covariance struc-
ture of internal climate variability (C−1

N ). We use
the CTL simulations and the inter-ensemble differ-
ence from forced simulations to estimate them. Time
series from CTL simulations are divided into 60 non-
overlapping 53 year chunks and similarly masked to
be in accord with observations in space. Additional
79 non-overlapping 53 year chunks are constructed
using inter-ensemble differences from forced simula-
tions (ALL: 33; GHG: 23; NAT: 23). We separate each
set of chunks from CTL simulations or forced simu-
lations into two groups sequentially. The first group
of chunks is used to pre-whiten the data and the sec-
ond group is used for the uncertainty analysis on the
estimation of scaling factors (𝛽). Instead of decreasing
the dimension via a projection on the first k leading
empirical orthogonal functions, we use a regularized
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Figure 1. Observed trends (days decade−1) in the frequencies of (a) summer days, (b) tropical nights, (c) icy days, and (d) frosty
nights in eastern China during the years of 1960–2012. Green dots represent the grid boxes where the trend is significant at the 95%
confidence level. Linear trends in the frequencies of extreme temperatures were estimated by using the ordinary least squares method,
with Student’s t test for testing statistical significance.

estimate of the covariance matrix of the internal climate
variability (Ribes et al 2009). Regularized estimation
of the covariance matrix can avoid the underestima-
tion of the lowest eigenvalues that occurs in original
covariance matrix and ensure the covariance matrix
is full rank (Ribes et al 2013). We apply equation
(19) provided by Allen and Tett (1999) to conduct
residual consistency checks to detect model inade-
quacy. The results show that all the regression models
can pass this test, which means that climate mod-
els are able to simulate the internal variability of the
frequency of extreme temperatures in eastern China
reasonably well.

Based on equations (6) and (7) in Allen and
Tett (1999), we estimate the variance-covariance
matrices of the internal variability noise by using
the first set of non-overlapping 53 year chucks.
We obtain the 5%–95% uncertainty range of scal-
ing factors by assuming that the internal variability
noise is normally distributed. To estimate the prob-
ability distribution functions of the contributions
from different forcing agents, we generate random
samples of 10 000 000 values from the normal distri-
bution of estimated scaling factors and multiply the
forced trends in different signals by these random
numbers.

3. Results

3.1. Patterns and one-signal detection analysis
Figure 1 shows the spatial distributions of observed
trends in the frequencies of the four extreme tempera-
ture indices. Summer days have increased significantly
over the northeastern China (120–135◦E, 40–55◦N;
+2.67 days decade−1) and the middle and lower
reaches of the Yangtze River (110–125◦E, 28–32◦N;
+2.99 days decade−1). The occurrences of tropical
nights increased mainly over the Yangtze–Huaihe River
basin (115–125◦E, 28–34◦N; +2.62 days decade−1)
and part of southern China (105–115◦E, 18–24◦N;
+3.91 days decade−1). Significant declining trends in
icy days (−2.24 days decade−1) and frosty nights
(−3.35 days decade−1) are found in the northwest of
north China (105–115◦E, 35–42◦N). Frosty nights have
also decreased significantly over northeastern China
(−3.52 days decade−1) and the Yangtze–Huaihe River
basin (−4.22 days decade−1). Figure 2 displays the
time evolution of the observed and simulated fre-
quency anomalies of the four indices in eastern China.
The observed changes in extreme temperatures keep
pace with the multi-model-simulated responses to
ALL forcing, but not with the simulated responses to
NAT forcing. We first apply the optimal fingerprinting
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Figure 2. Observed and simulated regional average frequency of the four extreme temperature indices ((a) summer days; (b) tropical
nights; (c) icy days; (d) frosty nights) in eastern China. Annual mean anomalies in terms of the frequency of extreme temperatures
are calculated with respect to its 1960–2012 mean. Solid black, red, green and blue lines represent the observations and multi-model
responses to ALL, GHG and NAT forcings, respectively. Thin gray lines show the results from individual simulations of five different
CMIP5 climate models.

Figure 3. Scaling factors for changes in the annual frequencies of the four extreme temperature indices. Best estimates of the scaling
factors that scale ALL signal patterns in one-signal detection analysis to best reproduce the observed annual anomalies of the frequency
of extreme temperatures. The vertical bar marks the 5%–95% uncertainty range for each signal.

method (Allen and Tett 1999) to scale the modeled time
series of extreme temperatures in eastern China with
ALL forcing to best fit the observations. As shown in
figure 3, one-signal analysis suggests that climate mod-
els with ALL forcing can reproduce the observed
frequency changes in summer days and icy days
well, and have scaling factor estimates consistent with
the value one though bear certain internal variabil-
ity. However, climate models tend to overestimate
(underestimate) the frequency change in tropical

nights (frosty nights). This implies that models per-
form better in simulating the observed frequency
change in daytime extreme temperatures than night-
time extremes. Though focusing on percentile-based
extreme temperatures, Lu et al (2016) also found that
climate models with ALL forcing do a better job in
reproducing the frequency changes in daytime extreme
indices than nighttime indices. It may be associated
with the model’s deficiency in reproducing the sea-
sonality of warming trends in Tmin in eastern China.
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Figure 4. Scaling factors for changes in the annual frequencies of the four extreme temperature indices. Best estimates of the scaling
factors that scale ANT and NAT signal patterns in two-signal detection analysis to best reproduce the observed annual anomalies of
the frequency of extreme temperatures. The vertical bars mark the 5%–95% uncertainty range for each signal, and the ellipses mark
the two-dimensional 90% confidence region.

Lewis and Karoly (2013) found that the Tmin trends
are noticeably subdued by the CMIP5 models, partic-
ularly in the boreal winter, when shallow boundary
layers and soil freeze/thaw cycles are likely diffi-
cult to be simulated realistically. On the other hand,
direct visual inspection of figure 3 illustrates that
the uncertainty ranges in the scaling factors for cold
extremes are larger than warm extremes, which implies
smaller variability in the frequency of simulated cold
extremes than that of observed ones. Other studies
also found similar result existing in the changes in the
annual maxima and minimum of daily temperatures
(Morak et al 2013, Wen et al 2013, Yin et al 2017).
A possible cause for this is that the strong internal
variability of winter extreme temperatures in east-
ern China was underestimated by the CMIP5 climate
models (figure 2 and figure S7). Increased GHGs
enhance downward longwave radiation and hence
increase the surface air temperature and change the
frequency of temperature extremes. Meanwhile, the
increased water vapor in warmer atmosphere can fur-
ther increase downward longwave radiation. However,
other anthropogenic forcing agents (e.g. aerosols) can
decrease daytime temperature and change the fre-
quency of daytime extremes directly by obstructing
downward solar radiation and indirectly by chang-
ing the properties of clouds. Natural forcing agents,
such as solar variability and volcanic eruptions, may
also lead to the variations of surface air temperature
and change the frequency of extreme temperatures
by modulating solar radiation at the surface and the
interaction between aerosols and clouds. The respec-
tive roles of anthropogenic and natural forcings in
the change of extreme temperatures remain to be
elucidated.

3.2. Two-signal detection analysis
To detect the effects of ANT and NAT forcings in
the same framework, we conduct two-signal detection
analysis. As shown in figure 4, the 5%–95% uncer-
tainty ranges of ANT scaling factors for the four indices
do not include zero and the 90% confidence ellipse
regions do not cover the origin of x-y coordinates.
This indicates that the effect of ANT forcings can be
clearly detected, and the climate responses of ANT
and NAT forcings can be well separated from each
other. In other words, the influence of human activi-
ties is detectable in the frequency changes of these four
temperature extreme indices. Except for summer days
and frosty nights, the 5%–95% uncertainty ranges of
NAT scaling factors for other two indices include zero,
suggesting that the effects of NAT forcings on their
frequency changes are undetectable.

3.3. Three-signal detection analysis
To examine the influences of individual groups of
anthropogenic forcing agents, we conduct three-signal
analysis to scale the model responses of GHG, OANT
(ALL minus the sum of GHG and NAT) and NAT
for the optimal agreement with observed frequency
changes in extreme temperatures. As shown in figure
5, the results reveal that the effects of anthropogenic
increase in GHGs can be clearly detected in the fre-
quency changes of these four indices. Models appear
to underestimate the effects of GHGs on the changes
in icy days and frosty nights by a factor close to
two. It is inferred that the model’s deficiency in the
effects of GHGs on the changes in cold-season extreme
temperatures is associated with an underestimation
of GHG-forced temperature changes in the cold sea-
son in eastern China. Morak et al (2013) found that
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Figure 5. Scaling factors for changes in the annual frequencies of the four extreme temperature indices. Best estimates of the scaling
factors that scale GHG, OANT and NAT signal patterns in the three-signal detection analysis to best reproduce the observed annual
mean anomalies of the frequency of extreme temperatures, and their 5%–95% confidence intervals.

the HadGEM1 model significantly underestimates the
changes in extreme temperatures in winter across large
parts of Asia. Chen and Frauenfeld (2014) found that
the winter warming in the CMIP5 models is only about
half (one-fourth) of the observed warming in China for
the period of 1901–1999 (1950–1999). The effects of
OANT are also detectable, but with larger uncertainty.
For all extremes indices, OANT effects are underesti-
mated by the models. This may be due to the omission
or simplificationof the indirect effects of anthropogenic
aerosols in some climate models, such as CanESM2
and IPSL-CM5A-LR (Hu et al 2014). Except for sum-
mer days, the influence of NAT forcings on other
indices cannot be detected. These analyses demon-
strate that the human-induced rise in greenhouse gas
has imposed a detectable impact on the frequency
change in extreme temperatures over eastern China.

3.4. Attribution
Based on the estimate results of three-signal analyses,
we quantify contributions to the frequency changes
of extreme temperatures to individual factors through
multiplying the simulated trends in GHG, OANT
and NAT signals by the respective scaling factors. As
shown in figure 6, we find that the observed frequency
changes in extreme temperatures are the net result of
the counteracting effects from GHG and OANT forc-
ing agents, since NAT forcing imposes little influence
on these changes. Among three individual compo-
nents of ALL forcings, the effect of anthropogenic
emission of GHGs is dominant and has changed the
frequencies of summer days (tropical nights, icy days,
frosty nights) by rates of +3.48± 1.45 (+2.99± 1.35,
−2.52± 1.28, −4.11± 1.48) days decade−1. Other
anthropogenic forcing agents (dominated by anthro-
pogenic aerosols) partly offset the effect from

GHGs and changed the frequencies of these four
indices by −1.53± 0.78, −1.49± 0.94, +1.84± 1.07,
+1.45± 1.26 days decade−1, respectively.

3.5. Robustness test
To further evaluate the robustness of above results, we
repeat these analyses based on the 5-year-mean series.
As shown infigure S9, results from two-signal detection
analyses are generally in line with those with 3-year-
mean series. The influence of human activities can be
clearly detected in the observed frequency changes of
the four extreme indices. However, the effects of NAT
forcing can no longer be detected in the change in
summer days and frosty nights. Three-signal detection
analyses based on 5-year-mean series also indicate that
ANT influences (GHG and OANT) are detectable in
the frequency changes of extreme temperatures (fig-
ure S10). And the influence of natural forcings cannot
be robustly detected in any indices. All the detec-
tion analyses suggest that anthropogenic influences are
responsible for the observed frequency changes of these
four temperature extreme indices.

4. Summary

In this study, we use an optimal fingerprinting method
to compare the observed and multi-model-simulated
frequency changes in four absolute extreme tempera-
tures indices in easternChina for theperiod 1960–2012.
Our detection analyses include two-signal analysis
using climate responses to ANT and NAT forcings,
and three-signal analysis using the signals of GHG,
OANT and NAT forcings. We find that the influ-
ences of human activities and natural external forcing
can be clearly separated from each other. The anthro-
pogenic influenceson the frequency changesof extreme

7



Environ. Res. Lett. 13 (2018) 014012

Figure 6. The attributable trends (days decade−1) in the annual frequencies of the four extreme temperature indices. Best estimate of
the observed trends in the frequency of extreme temperatures (bold black lines) and attributable trends due to GHG (red lines), OANT
(green lines) and NAT (blue lines) from three-signal analysis. The solid (dashed) colored line indicates that the attributed frequency
change is statistically significant (insignificant from zero) at a confidence level of 95%. The colored dots represent the mean attributed
frequency change due to different external forcings.

temperatures can be detected both in two-signal and
three-signal detection analyses. The influence of natu-
ral forcings cannot be robustly detected in any indices.
This indicates that only the effects of human activi-
ties can explain observed frequency changes in extreme
temperatures in eastern China.

We further quantify the contributions of GHG,
OANT and NAT forcings to the observed frequency
trends of absolute extreme temperatures in east-
ern China during 1960–2012. Results show that the
influence of GHGs are dominant in the observed
changes in extreme temperatures, and part of which
are offset by the effects of other anthropogenic forc-
ing agents. The combined effects of GHG and OANT
forcings explain most of observed changes in the
frequencies of extreme temperatures, since the contri-
butions of NAT forcing are quite small in the long-term
changes of extreme temperatures in eastern China.

It is worth pointing out some caveats of uncertainty
existing in this study, which deserve future considera-
tion. One source of uncertainty is the systematic bias
in the mean state of surface air temperature between
observations and simulations. We use elevation data
and spatiotemporal-varying temperature lapse rates to
correct the topography-related bias in the climatolog-
ical mean annual cycle of each grid box. However,
model simulations still have a small systematic bias
in the climatological annual mean temperature in east-
ern China (figures S5 and S6). This discrepancy may
partly be attributed to regional land use change, which
may have substantial effect on the observed change in
extreme temperatures. The previous study suggested

that the effects of land use change were detectable
from other anthropogenic forcings on a quasi-global
scale (Christidis et al 2013). For eastern China, the
most typical land use change is urbanization, which
could change the climatology and long-term trend of
near-surface air temperature. However, it remains con-
troversial as to how urbanization has contributed to
the observed warming trends in Chinese urban stations
(Wang and Yan 2016, Sun et al 2016, Ren et al 2017).
A recent study quantified the relationship between
trends in urban fraction and local urban warming rates
in temperature records in China (Wang et al 2017).
They found that regional average trendofurban-related
warming in eastern China is less than 10% of over-
all warming trend. Nevertheless, a robust technique
used for correcting local urban warming bias in tem-
perature records is urgently required for the detection
and attribution of climate change in rapidly urbanizing
regions.

Our conclusions based on trend attribution anal-
yses are consistent with the case studies of event
attribution of recent extreme hot and cold tempera-
tures in eastern China: anthropogenic influence has
caused a substantial increase (decrease) in the likeli-
hood of extreme hot (cold) temperatures (Sun et al
2014, Qian et al 2017). In summer 2017, many densely
populated and economically developed cities in eastern
China suffered extremely hot temperatures for more
than 2 weeks. The city of Shanghai even experienced
a record-breaking high temperature on 21 July 2017
since the establishment of the benchmark meteorolog-
ical station (Xujiahui) in 1872. The rapid development
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of urbanization in the region might further enhance
the heatwave events in urban areas (Wang et al 2017).
Undoubtedly, human-induced increase in extreme hot
temperatures, combined with the explosive growth in
population and wealth, will cause enhanced risks for
ecosystems, agriculture, energy production and human
health if timely and sufficient adaptation measures are
not taken.
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