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1  | INTRODUCTION

Anthocyanins are a group of water- soluble pigments with a 
2- phenylbenzophyrylium (flavylium) structure, which not only provide 
vivid colors, but also present many physiological functions, such as an-
tioxidant, antiobesity, antimutagenic, and anticarcinogenic capacities 
(Abdel- Aal, Young, & Rabalski, 2006; Kähkönen & Heinonen, 2003; 
Katsube, Iwashita, Tsushida, Yamaki, & Kobori, 2003; Tsuda, Horio, 
Uchida, Aoki, & Osawa, 2003). Jingzi No. 1 (Zea mays L.) is a newly 
bred variety of purple corn. The entire plant of Jingzi No. 1 is dark red 

and rich in anthocyanins (Figure 1), which makes it a good resource for 
anthocyanin extraction (Aoki, Kuze, & Kato, 2002). Remarkably, the 
anthocyanin content of the plant increased with the growth after pol-
lination, but then decreased. Consequently, the proper harvest time 
became the key for anthocyanin extraction. Traditionally, the anthocy-
anin content is either determined via pH differential or HPLC methods 
(Zhao, Corrales, Zhang, Hu, & Ma, 2008). Both methods destroy the 
sample and extract the anthocyanin before determination. Specifically, 
the pH differential method typically takes 2–3 hr for anthocyanin ex-
traction and 10 min for the spectroscopic measurement, while the 
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Abstract
To date, the foliar anthocyanin content was either determined via the pH differential 
or HPLC methods, both of which are slow and destructive. Here, a hyperspectral 
model was established to estimate the foliar anthocyanin content of purple corn (Zea 
mays L. var. Jingzi No. 1). The reflectivity (P) of the foliar hyperspectral was inverted to 
1/P, lg P, 1/lg P, 

(

P
)′, 

(

1∕P
)�, 

(

lgP
)′, and 

(

1∕ lgP
)�. The correlation coefficient between 

these inversions and the foliar anthocyanin content was plotted against the hyper-
spectral wavelength. The wavelength of inversions around 650 nm was sensitive to 
the foliar anthocyanin content. The hyperspectral model was fitted via linear, polyno-
mial, power, exponential, and logarithmic functions with the sensitive band as inde-
pendent variable and the anthocyanin content as function. The hyperspectral model (
y = 3,000,000,000 × W685

4.5896) fitted via inversion of 
(

lgP
)′ showed the highest de-

termination coefficients (0.768) among all models. The hyperspectral model was well 
validated with a determination coefficient of 0.932 and an RMSE of 0.0065. Moreover, 
the accuracy and stability of the hyperspectral model were further enhanced with a 
determination coefficient of 0.954 and RMSE of 0.0047 when the anthocyanin con-
tent of the sample was below 20 mg/g. Hence, the hyperspectral model estimated the 
foliar anthocyanin content of purple corn quickly and nondestructively.
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HPLC method takes 2–3 hr for anthocyanin extraction and 10–60 min 
for HPLC elution.

In contrast, a hyperspectrum technique is a nondestructive, quick, 
and simple method to measure the pigment of plants (Palmer et al., 
2006; Qin & Lu, 2008). The technique measures the foliar nitrogen 
content (He et al., 2016), chlorophyll content (Croft et al., 2015; 
Zhang, Chen, Miller, & Noland, 2008), and moisture content (Clevers, 
Kooistra, & Schaepman, 2010). However, the hyperspectral model of 
the anthocyanin content was not plotted due to a weak relationship 
between the foliar anthocyanin content and the hyperspectrum. One 
possible reason for this was the overlap between the chlorophyll and 
anthocyanin absorption peaks (Sims & Gamon, 2002). The other rea-
son was the influence of the moisture and leaf scattering absorption 
(Hatfield, Gitelson, Schepers, & Walthall, 2008).

Therefore, a hyperspectral model was developed to evaluate the 
foliar anthocyanin content of Jingzi No. 1. To reduce the influence of 
chlorophyll and moisture as well as leaf scattering, a sensitive band 
was selected via multiple linear regressions. Then, the hyperspectral 
model was inversed via linear, polynomial, power, exponential, and 
logarithmic functions with the sensitive band as independent variable 
and the anthocyanin content as function. The hyperspectral model will 
provide nondestructive and quick support for the harvest of purple 
corn. Moreover, the further application of the hyperspectral model 
based on the geographic information will provide instant and reliable 
support for the harvest decision at large scale.

2  | MATERIALS AND METHODS

2.1 | Foliar sampling

Jingzi No. 1 (Zea mays L.) was harvested 85 days after sowing in 
September 2014 and 2015 in Yanqing Farmer. The whole leaf was 
dark red with a moisture content of 6%–12%. A piece of leaf was ran-
domly picked from a strain of the corn and was cut into an 8 cm × 6 cm 

blade in the middle. The cut leaf was immediately scanned via mobile 
hyperspectral radiometer (ASD Field Spec Pro FR, US), which was 
coupled with a LI- Cor1800- 12S external integrating sphere. After 
calibration with the white board, the hyperspectrum was collected 
from 350 to 2,500 nm at an interval of 1 nm. The hyperspectrum 
was scanned with a distance between sample and radiometer of 5 cm 
and a view angle of 25° on a sunny and clear day from 10:00 a.m. to 
2:00 p.m. The foliar spectral was repeated 10 times, and the obtained 
results were averaged. The external integrating sphere was used to 
ensure the repeatability of the spectra. The data were processed with 
the software ViewSpec Pro, Version 2.14 (Analytical Spectral Device, 
Inc5335 Sterling Drive Suite A, Boulder, CO 80301). The scanned leaf 
was numbered and sealed in a polyethylene bag for anthocyanin con-
tent determination in the laboratory. A total of 500 pieces of leaves 
were collected.

2.2 | Measurement of pH differential method

The anthocyanin content of samples was determined via pH dif-
ferential method previously described (Zhao et al., 2008). The 
leaf (10 g) was smashed and stirred in 50 ml liquid (a solution of 
60% (v/v) ethanol acidified with citric acid (1%, w/v)) at 60°C for 
120 min. The ethanol extracts were centrifuged at 9,000 rpm and 
20°C for 10 min. The supernatants were evaporated to dryness at 
46°C with a rotary evaporator Büchi R- 3000 (Büchi Labortechnik 
AG, Switzerland). Then, the concentrate was freeze- dried. An 
aliquot of the dried concentrate (1 mg) was placed into a 25- ml 
volumetric flask and filled to the final volume with pH 1.0 buffer. 
Another 1 mg of the sample was placed into a 25- ml volumetric 
flask and filled to a final volume with pH 4.5 buffer. Absorbance 
was measured via spectrophotometer (UV- 1800, Shimadzu, Japan) 
at 510 and 700 nm, respectively. Absorbance was calculated as 
Abs = (A510 nm − A700 nm) pH1.0 − (A510 nm − A700 nm) pH4.5 with the 
molar extinction coefficient for cyanidin 3- glucoside of 26,900. 
Total anthocyanin content was calculated using the following equa-
tion and expressed as grams of cyanidin 3- glucoside equivalents per 
1 g sample (Equation 1).

where Abs represents the absorbance, e represents the cyanidin 
3- glucoside molar absorbance [26,900 ml/(mmol·cm)], L represents 
the cell path length (1 cm), MW represents the molecular weight of 
anthocyanin (449.2 Da), D is a dilution factor, V represents the final 
volume (ml), and G represents the dry material (mg).

2.3 | Screening of the sensitive band

The reflectivity of the hyperspectrum (P) was inverted to the recip-
rocal of the reflectivity (1/P), the logarithm of the reflectivity (lg P), 
the reciprocal of the logarithm of the reflectivity (1/lg P), the first- 
order differential of the reflectivity 

(

P
)′, the first- order differential 

of the reciprocal of the reflectivity 
(

1∕P
)�, the first- order differential 

(1)Anthocyanin content (mg/g)=
Abs

eL
×MW×D×

V

G

F IGURE  1 Purple corn leaf (a) and whole purple corn plant (b)

(b)(a)
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of the logarithm of the reflectivity (
(

lgP
)′), and the first- order differ-

ential of the reciprocal of the logarithm of the reflectivity 
(

1∕ lgP
)�
.

The differential inversion of spectral reflectance was calculated via 
Equation 2.

where P represents the reflectance of a band of λ and Δλ represents 
the interval from λi to λi−1.

The correlation coefficient between the foliar anthocyanin content 
and hyperspectral vectors or the inverted vectors was evaluated via 
Equation 3. The sensitive bands were selected depending on the cor-
relation coefficient.

where Pni represents the reflectivity or its transforms of No. i band i 
of No. n leaf sample, ̄Pi represents the average reflectivity or its trans-
forms of No. i of all leaf samples, LACn represents the anthocyanin 
content of No. n leaf sample, ̄LAC represents the measured average 
anthocyanin content of all purple leaf samples, and N represents the 
number of all samples.

2.4 | Establishment and validation of the 
hyperspectral model

The hyperspectral model for the anthocyanin content was fitted via lin-
ear, polynomial, power, exponential, and logarithmic functions with the 
sensitive band as independent variable and the anthocyanin content as 
function. Specifically, the reflectivity value of the sensitive band was 
plotted against the foliar anthocyanin content via linear (Y = a × X + b), 
polynomial (Y = a × X2 + b × X + c), power (Y = a × Xb), exponential 
(Y = a × eb×X), and logarithmic (Y = a × Ln(X) + b) functions. A total of 400 
samples were used to train the hyperspectral model, and the remaining 
100 samples were used to validate the accuracy via both the determina-
tion coefficient (R2) and the root mean square error (RMSE, Equation 4).

where LACi and PLACi represent the anthocyanin content and pre-
dicted anthocyanin content of the purple corn leaf, respectively; N 
represents the number of the validation.

3  | RESULTS AND DISCUSSION

3.1 | Screening of sensitive bands

Hyperspectrals usually contain noise due to atmospheric, instrumen-
tal, and geometric distortions (Gomez, Oltra- Carrió, Bacha, Lagacherie, 
& Briottet, 2015). Consequently, reducing the atmospheric influences 
and shortening the hyperspectrum range reduced the noises of the 
hyperspectral. Specifically, the LI- C or 1800- 12S external integrating 

sphere was coupled with the hyperspectral radiometer. The exter-
nal integrating sphere provided stable illumination and appropriate 
reflection for the sample, thus reducing the noise of the reflectivity. 
Moreover, moisture is another factor that enhanced the noise of the 
reflectivity (Croft et al., 2015; Zhang et al., 2008). The hyperspectrum 
of 1,400~2,500 nm is sensitive to the moisture content, especially to 
the bands of 1,450 and 1940 nm (Clevers et al., 2010). Consequently, 
only the hyperspectrum of 400~1,400 nm was used in the following 
inversions to reduce noise.

Prof. Zhou, a reviewer, suggested that the reflectivity of chloro-
phyll will overlap with that of anthocyanin, and the moisture and some 
other factors would affect the determination coefficient and RMSE 
of the model. A nonlinear model could remove the effect of the foliar 
chlorophyll and moisture. His groups used a nonlinear model to es-
tablish the relationship between the anthocyanin/chlorophyll content 
and reflectance of 400–750 nm spectrum and excluded the influence 
of atmospheric environments. The nonlinear model is well- predicted 
anthocyanin and chlorophyll content in grapevine leaves (Qin, 2011; 
Qin, Rundquist, Gitelson, Tan, & Steele, 2010). Hence, a nonlinear 
model could be a better model to predict the foliar anthocyanin con-
tent in purple corn. We carefully evaluated the foliar anthocyanin, 
chlorophyll, and moisture of purple corns. Being different to the grape 
leaves, purple corn leaves were rich in anthocyanins but lack of chlo-
rophyll and moisture. The foliar anthocyanin content ranged from 
0.09 to 44.3 mg/g with an average value of 17.8 mg/g, while the foliar 
chlorophyll content was 0.056 ± 0.026 mg/g. The foliar anthocyanin 
content was about 300 times higher than the chlorophyll content. The 
reflective spectrum of the chlorophyll would be covered by that of the 
anthocyanin from 548 to 760 nm (Moharana & Dutta, 2016; Schlerf 
et al., 2010). On the other hand, the foliar moisture content of pur-
ple corn was 8.6 ± 1.76%. The reflectivity of the moisture is usually 
presented at 1,080~1,270 nm, which would not influence the reflec-
tivity of the anthocyanin at 570~685 nm (Schlerf et al., 2010). Hence, 
the presence of chlorophyll and moisture would not affect the model 
of the foliar anthocyanin content in the current model. However, we 
would like to try a nonlinear model and compare that with our current 
model in a future study.

The reflectivity (P) of the hyperspectral was inverted to 1/P, lg 
P, 1/lg P, 

(

P
)′, 

(

1∕P
)�, 

(

lgP
)′, and 

(

1∕ lgP
)�. The correlation coeffi-

cient between reflectivity and foliar anthocyanin content was plotted 
against the wavelength of the hyperspectral (Figure 2). The P of the 
hyperspectral was negatively correlated with the foliar anthocyanin 
content of the purple corn. The correlation coefficient of the visible 
light band was higher than that of both the near- infrared and middle- 
infrared bands. Specifically, the correlation coefficient in the blue and 
green band (400~560 nm) was relative stable in the range from −0.41 
to −0.43. The maximal absolute value of the correlation coefficient 
reached 0.60 at 667 nm. The band at 667 nm was the most sensitive 
band of the plot P versus correlation coefficient.

The 1/P of the hyperspectral was positively correlated with the 
foliar anthocyanin content of purple corn. The correlation coefficient 
of the visible light band was higher than that of both the near- infrared 
and middle- infrared bands. The correlation coefficient of 1/P was 

(2)(P)� = [P(λi)−P(λi−1)]∕2Δλ

(3)R=

∑N

n=0
(Pni−

̄Pi)(LACn−LAC)
�

∑N

n=1
(Pni−

̄Pi)
2
∑N

n=1
(LACn−LAC)2

(4)RMSE=

�

∑N

i=1
(LACi−PLACi)

2

N
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higher than that of the P in the corresponding band. The maximal 
absolute value of the correlation coefficient reached 0.76 at 607 nm. 
Consequently, the band at 607 nm was the most sensitive band of the 
plot 1/P versus correlation coefficient.

The lg P of the hyperspectral was negatively correlated with the 
foliar anthocyanin content of purple corn. The correlation coefficient 
of the visible light band was higher than that of the near- infrared and 
middle- infrared bands. The maximal absolute value of the correla-
tion coefficient reached 0.70 at 626 nm. Consequently, the band of 
626 nm was the most sensitive band of the plot lg P versus correlation 
coefficient.

The 1/lg P of the hyperspectral was positively correlated with the 
foliar anthocyanin content of purple corn. The correlation coefficient 
of the visible light band was higher than that of the near- infrared and 
middle- infrared band. The maximal absolute value of the correla-
tion coefficient reached 0.73 at 613 nm. Consequently, the band of 
613 nm was the most sensitive band of the plot 1/lg P versus correla-
tion coefficient.

The P′ of the hyperspectral was negatively correlated with 
the foliar anthocyanin content of the purple corn in the 400–670, 
1,110–1,250, and 1,330–1,400 nm and was positively correlated 
with the other bands. The correlation of the visible light band was 
significantly enhanced compared to that of the transform of the 
1/P, lg P, and 1/lg P. The maximal absolute value of the correla-
tion coefficient reached 0.56 at 773 nm. Consequently, the band at 
773 nm was the most sensitive band of the plot P′ versus correlation 
coefficient.

The correlation coefficient of the 
(

1∕P
)� was better than that of 

the nondifferential- transferred reflectivity. The correlation coefficient 
of the visible light band was enhanced compared to that of the trans-
form of the lg P, and 1/lg P and P′. The maximal absolute value of 
the correlation coefficient reached 0.77 at 648 nm. Consequently, the 

band of 648 nm was the most sensitive band of the plot 
(

1∕P
)� versus 

correlation coefficient.
The tendency of the correlation coefficient of the 

(

lgP
)′ was simi-

lar to that of P′. The correlations of the visible light band, near- infrared, 
and middle- infrared band were all enhanced. Similar to our results, 
chlorophyll (another plant pigment) is sensitive to the blue band, near- 
infrared, and middle- infrared band (Hunt et al., 2013). The maximal 
absolute value of the correlation coefficient reached 0.75 at 685 nm. 
Consequently, the band of 685 nm was the most sensitive band of the 
plot 

(

lgP
)

′ versus correlation coefficient.
The tendency of the correlation coefficient of the 

(

1∕ lgP
)�’ was 

similar to that of the 
(

1∕P
)�. The correlation of the visible light band, 

near- infrared, and middle- infrared band was in the range of 0.4~0.6. 
The maximal absolute value of the correlation coefficient reached 
−0.77 at 648 nm. Consequently, the band of 648 nm was the most 
sensitive band of the plot 

(

1∕ lgP
)� versus correlation coefficient.

The inversion of the hyperspectral enhanced the correlation coef-
ficient compared to the original reflectivity of the hyperspectral. The 
band of 570–685 nm was strongly correlated with the foliar anthocy-
anin content among the band from 400 to 1,400 nm.

3.2 | Modeling

The hyperspectral model was fitted via linear, polynomial, power, expo-
nential, and logarithmic functions with the sensitive band as the inde-
pendent variable and the anthocyanin content as the function (Table 1). 
Each model was randomly trained by a total of 400 samples to ensure 
its independence. The sensitive bands of the inversions were mainly lo-
cated in the range of blue, red, and near- infrared length from 570 to 
685 nm. The model fitted via the power function of the inversion 

(

lgP
)′ 

showed the highest determination coefficients (0.768) among all hyper-
spectral models. Hence, the hyperspectral model of “y = 3,000,000,00

F IGURE  2 Plots of the correlation 
coefficient versus P (a), 1/P (b), lg P (c), 1/lg 
P (d), P′ (e), 

(

1∕P
)�(f), 

(

lgP
)′ (g), and

(

1∕ lgP
)� 

(h)
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0 × W685
4.5,896” was used to estimate the foliar anthocyanin content of 

purple corn.

3.3 | Validation of the hyperspectral model

The hyperspectral model based on the inversion of the 
(

lgP
)′ was vali-

dated via the remaining 100 samples (Figure 3). The RMSE and deter-
mination coefficient of the training samples were 0.0065 and 0.932, 
respectively, while those of the validating sample were 0.0074 and 

0.927, respectively. Hence, the foliar anthocyanin content of purple 
corn was successfully estimated via the hyperspectral model.

Remarkably, the accuracy and stability of the hyperspectral model 
in the range of 0~20 mg/g were higher than that in the range of 
0~40 mg/g. The anthocyanin content of most plants is below 20 mg/g, 
for example, the blueberry (Vacciniumspp) with 10.2 mg/g, the cran-
berry (Vacciniumoxycoccus) with 4.8 mg/g, the mulberry (Morusnigra) 
with 16.1 mg/g, the red currant (Ribesrubrum) with 2.5 mg/g, the 
strawberry (Fragaria × ananassa) with 5.2 mg/g (Ogawa et al., 2008) 

Inversion
Sensitive band 
(nm) Hyperspectral model R2

P 667 y = −0.0009 × W667
a + 0.0377 .355

y = 0.00003 × W667
2 − 0.0025 × W667 + 0.0577 .420

y = −0.025 × ln(W667) + 0.0931 .411

y = 0.162 × e−0.124×W667 .546

y = 57.038 × W667
−2.83 .470

1/P 607 y = 0.2753 × W607 − 0.0116 .527

y = −1.9742 × W607
2 + 0.7213 × W607 − 0.0339 .576

y = 0.0291 × ln(W607) + 0.0847 .566

y = 0.0006 × e26.43×W607 .432

y = 7.8861 × W607
2.8711 .490

lg P 626 y = −0.05 × W626 + 0.072 .485

y = 0.0481 × W626
2 − 0.1663 × W626 + 0.1406 .537

y = −0.06 × ln(W626) + 0.0221 .514

y = 10.89 × e−6.313×W626 .688

y = 0.0188 × W626
−7.025 .634

1/lg P 613 y = 0.06 × W613 − 0.042 .528

y = −0.0145 × W613
2 + 0.0884 × W613 − 0.0556 .530

y = 0.0561 × ln(W613) + 0.0187 .519

y = 0.00001 × e6.8067×W613 .604

y = 0.0127 × W613
6.7945 .678

P′ 570 y = −0.6429 × W570 + 0.031 .274

y = 16.559 × W570
2 − 1.6483 × W570 + 0.0439 .321

y = −0.017 × ln(W570) − 0.0494 .311

y = 0.0463 × e−69.88×W570 .287

y = 0.00001 × W570
−1.73 .285

(1/P)′ 648 y = −57.598 × W648 − 0.0071 .577

y = −85933 × W648
2 − 140.12 × W648 − 0.0235 .648

y = 0.001 × e−5359×W648 .444

(lg P)′ 685 y = 21.257 × W685 − 0.0267 .567

y = 3565.6 × W685
2 + 7.3416 × W685 − 0.0139 .574

y = 0.0345 × ln(W685) + 0.2314 .489

y = 0.00006 × e2482.8×W685 .687

y = 3,000,000,000 × W685
4.5896 .768

(1/lg P)′ 648 y = −13.3 × W648 − 0.0092 .585

y = −453.13 × W648
2 − 15.064 × W648 − 0.0106 .586

y = 0.0005 × e−1529×W648 .688

aW667 mean the reflectivity in the hyperspectral band of 667 nm.

TABLE  1 Hyperspectral model based 
on the different inversions
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(Bechtold, Mahmud- Ali, & Mussak, 2007), and purple wheat with 
9 mg/g (Escribano- Bailón, Santos- Buelga, & Rivas- Gonzalo, 2004). 
Consequently, the hyperspectral model was further trained with the 
sample whose foliar anthocyanin content was below 20 mg/g. The 
RMSE and determination coefficient of the training samples were 
0.0047 and 0.954, respectively. Hence, the accuracy and stability of 
the hyperspectral model were further enhanced when the anthocy-
anin content of the sample was below 20 mg/g.

4  | CONCLUSION

The visible light band of purple corn around 650 nm was sensitive to 
the foliar anthocyanin content. Specifically, the hyperspectral model 
based on 685 nm fitted via the power function of the inversion 

(

lg P
)′ 

showed the highest determination coefficients of 0.768 among all hy-
perspectral models. The optimum hyperspectral model was validated 
with the determination coefficient of 0.932 and RMSE of 0.0065. 
Moreover, the accuracy and stability of the hyperspectral model were 
further enhanced with a determination coefficient of 0.954 and an 
RMSE of 0.0047 when the anthocyanin content of the sample was 
below 20 mg/g. Hence, the hyperspectral model has potential to esti-
mate the foliar anthocyanin content of purple corn or related plants.
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