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Abstract
Modelling dietary data, and especially 24-hr dietary recall (24HDR) data, is a chal-

lenge. Ignoring the inherent measurement error (ME) leads to biased effect estimates

when the association between an exposure and an outcome is investigated. We pro-

pose an adapted simulation extrapolation (SIMEX) algorithm for modelling dietary

exposures. For this purpose, we exploit the ME model of the NCI method where we

assume the assumption of normally distributed errors of the reported intake on the

Box-Cox transformed scale and of unbiased recalls on the original scale. According

to the SIMEX algorithm, remeasurements of the observed data with additional ME

are generated in order to estimate the association between the level of ME and the

resulting effect estimate. Subsequently, this association is extrapolated to the case of

zero ME to obtain the corrected estimate. We show that the proposed method fulfils

the key property of the SIMEX approach, that is, that the MSE of the generated data

will converge to zero if the ME variance converges to zero. Furthermore, the method

is applied to real 24HDR data of the I.Family study to correct the effects of salt and

alcohol intake on blood pressure. In a simulation study, the method is compared with

the NCI method resulting in effect estimates with either smaller MSE or smaller bias
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in certain situations. In addition, we found our method to be more informative and

easier to implement. Therefore, we conclude that the proposed method is useful to

promote the dissemination of ME correction methods in nutritional epidemiology.

K E Y W O R D S
24-hr dietary recall, measurement error correction method, NCI method, non-linear mixed model, salt

intake

1 INTRODUCTION

Measurement error (ME) can lead to seriously wrong conclusions about associations between exposures and health outcomes

(Carroll, Ruppert, Stefanski, & Crainiceanu, 2006). Correction methods can reduce the negative consequences of ME. These

methods play a big role in modelling exposures based on data from dietary assessment tools as from the 24-hr dietary recall

(24HDR) (Souverein et al., 2011). The 24HDR is used to repeatedly record the participant’s dietary intake of entire days based on

self-reports delivered on the following day. Since the self-reports are both error-prone and assessed on a daily basis, the data are

strongly affected by intra-individual variation and do not reflect the usual intake nutritional epidemiologist are primary interested

in (Boeing & Margetts, 2014). Furthermore, the intake distributions are usually positively skewed and sometimes zero-inflated.

The most commonly used method for modelling exposures based on 24HDR data that accounts for their special characteristics

is the NCI method (Tooze et al., 2006; Kipnis et al., 2009). This method follows the regression calibration approach which

consists of two parts. First, following a ME model for 24HDR data, the estimated conditional expectation of the usual intake

given the observed 24HDR and other covariates is calculated. The ME model accounts for the skewness of the intake distributions

by using the Box-Cox transformation. Second, in a health model, the estimated usual intake is used instead of the unknown true

usual intake. The assumed ME model of the NCI method describes the association between the true and measured intake and

the health model describes the association between usual intake and health outcome. Therefore, the NCI method provides nearly

unbiased estimates for the association between dietary intake and health outcome (Kipnis et al., 2009) and has been used in

various studies (Börnhorst et al., 2014; Liese et al., 2015; Hebestreit et al., 2017; Intemann et al., 2018).

However, a recent study by Shaw et al. (2018) about the usage of ME correction methods shows that studies with inadequate

correction for ME remain common in nutritional epidemiology. Following the Measurement Error and Misclassification Topic

Group of the STRATOS Initiative, it is important to raise awareness for ME problems and to further promote correction methods

and their use (Freedman & Kipnis, 2018).

The simulation extrapolation (SIMEX) method (Cook & Stefanski, 1994; Stefanski & Cook, 1995), a promising, clear, and

easy to implement correction method, has not been used for modelling 24HDR data, although it is, aside from regression cali-

bration, one of the most prominent approaches. Basically, this method can be used in any situation where the underlying error

model can be simulated by Monte Carlo methods. The idea of SIMEX is to add well-defined error terms to the observed vari-

able, determine its association with a health outcome, and extrapolate the resulting effect estimates back to zero ME. For this

purpose, remeasurements of the original data with varying level of additional error are generated. Based on the generated data,

effect estimates are calculated and the functional association between these estimates and the level of ME is estimated. For some

common error models, SIMEX is implemented in statistical software packages, for example, in the R package simex (Lederer

& Küchenhoff, 2006).

Therefore, the aim of this paper is to adapt the SIMEX algorithm for a model of 24HDR data, to provide a theoretical

justification for SIMEX in this situation, and to investigate the algorithm in an application as well as in a simulation study. The

paper is structured as follows. Section 2 describes the error and health model throughout. In Sections 3, 4, and 5, the SIMEX

algorithm is introduced in the context of 24HDR data, its properties are discussed and its extension for episodically consumed

foods is given. The proofs of the properties can be found in Appendices A.1 and A.2. The focus of these proofs is on the mean

squared error (MSE) for the generated SIMEX data in case that the ME converges to zero. In Section 6, the SIMEX algorithm

is applied to real 24HDR data of the I.Family study (Ahrens et al., 2017) to investigate the association between salt and alcohol

intake and blood pressure. These studies serve as template for the simulation study in Section 7 where the SIMEX algorithm is

compared with the NCI method. Finally, the results are discussed.
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2 MEASUREMENT ERROR AND HEALTH MODEL

The ME and health model for 24HDR data used in this paper were developed by Dodd et al. (2006), Tooze et al. (2006), and

Kipnis et al. (2009). The reported intake of individual 𝑖 on day 𝑗 is denoted as 𝑅𝑖𝑗 and the true individual usual intake as 𝑇𝑖,

𝑖 = 1,… , 𝐼, 𝑗 = 1,… , 𝐽𝑖. We assume that 𝑅𝑖𝑗 is unbiased for 𝑇𝑖 on the original scale following the convention in nutritional

epidemiology (Dodd et al., 2006). Furthermore, we assume that (i) there exists a Box-Cox transformation 𝑔𝜆(𝜈) = (𝜈𝜆 − 1)∕𝜆 if

𝜆 > 0 and 𝑔𝜆(𝜈) = log(𝜈) if 𝜆 = 0 such that

𝑔𝜆(𝑅𝑖𝑗) = E(𝑔𝜆(𝑅𝑖𝑗)) + 𝜀𝑖𝑗 (1)

with independent random variables 𝜀𝑖𝑗 ∼  (0, 𝜎2
𝜀
), and (ii) the regression model E(𝑔𝜆(𝑅𝑖𝑗)) = 𝛽0 + 𝜷𝐗𝑖 + 𝑢𝑖 holds, where 𝑢𝑖 ∼ (0, 𝜎2

𝑢
) are independent random variables, 𝛽0 and 𝜷 are parameters, and 𝐗𝑖 are vectors of error free covariates. Combing both

gives the non-linear mixed effects error model

𝑔𝜆(𝑅𝑖𝑗) = 𝛽0 + 𝜷𝐗𝑖 + 𝑢𝑖 + 𝜀𝑖𝑗 . (2)

The random variables 𝑢𝑖 and 𝜀𝑖𝑗 are assumed to be mutually independent. The former reflects the inter-individual and the latter

the intra-individual variation. It is important to note that 𝑔𝜆(𝑅𝑖𝑗) is biased for 𝑔𝜆(𝑇𝑖) since it is assumed that 𝑅𝑖𝑗 is unbiased for

𝑇𝑖 on the original scale.

For modelling the association between the usual intake 𝑇𝑖 and a health outcome 𝐻𝑖 the so-called health model is defined as

the following regression model

E(𝐻𝑖|𝑇𝑖,𝐗′
𝑖
) = 𝛼0 + 𝛼𝑇 𝑇𝑖 + 𝜶𝑋𝐗′

𝑖
(3)

with the parameters 𝛼0, 𝛼𝑇 , and 𝜶𝑋 and the error free covariates 𝐗′
𝑖

which are all included in 𝐗𝑖. If the error model is ignored

and the individual mean �̄�𝑖∙ is used instead of 𝑇𝑖 in the naïve health model

E(𝐻𝑖|�̄�𝑖∙,𝐗′
𝑖
) = 𝛼0 + 𝛼𝑅�̄�𝑖∙ + 𝜶𝑋𝐗′

𝑖
(4)

the least-square estimator of 𝛼𝑅 (the naïve estimator) will be biased for 𝛼𝑇 . To reduce this bias, an adapted SIMEX algorithm is

proposed in the next section.

3 ADAPTED SIMEX ALGORITHM

The classical SIMEX algorithm is based on the assumption of normally distributed error on the original scale. Therefore, an

adaption is necessary to account for the transformation 𝑔𝜆 in error model (2). The proposed adapted algorithm consists of the

following steps:

(i) If 𝜆 and 𝜎2
𝜀

are unknown, the parameters of the non-linear mixed model (2) will be estimated using a maximum likelihood

(ML)-like and a restricted ML approach (for details see Appendix A.3).

(ii) Following Carroll et al. (2006) in the simulation step, the equation

𝑅
(𝑙)
𝑖𝑗
(𝜁 ) = 𝑔−1

𝜆

(
𝑔𝜆(𝑅𝑖𝑗) +𝑍

(𝑙)
𝑖𝑗
(𝜁 )

)
(5)

is used to generate remeasurements of 𝑅𝑖𝑗 in the 𝑙-th data set, 𝑙 = 1,… , 𝐿. The function 𝑔−1
𝜆
(𝜈) = (𝜆𝜈 + 1)1∕𝜆 if 𝜆 > 0 and

𝑔−1
𝜆
(𝜈) = exp(𝜈) if 𝜆 = 0 is the inverse function of 𝑔𝜆, the pseudo-random variable 𝑍

(𝑙)
𝑖𝑗
(𝜁 ) follows a normal distribution

with  (𝜇𝑖(𝜁 ), 𝜁𝜎2𝜀 ) and 𝜁 ∈ . For the choice of values for 𝐿 and  see, for example, the study in Section 4. For the

calculation of the corrective expected value 𝜇𝑖(𝜁 ), we refer to Section 4. It guarantees for each individual that 𝑅
(𝑙)
𝑖𝑗
(𝜁 ) is

(approximately) unbiased for 𝑅𝑖𝑗 on the original scale.

Using the Box-Cox transformation with 𝜆 > 0 Equation (5) leads to

𝑅
(𝑙)
𝑖𝑗
(𝜁 ) =

(
𝑅𝜆
𝑖𝑗
+ 𝜆𝑍(𝑙)

𝑖𝑗
(𝜁 )

)1∕𝜆
. (6)
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F I G U R E 1 The typical SIMEX plot shows the naïve

effect estimate (at 𝜁 = 0), the mean effect estimates for

𝜁 ∈  and the SIMEX-Q corrected estimate �̂�SIMEX−𝑄 (at

𝜁 = −1) which is based on the plotted quadratic

extrapolation function

(iii) The naïve health model (4) where �̄�𝑖∙ is replaced by �̄�
(𝑙)
𝑖∙ (𝜁 ) is fitted to the # × 𝐿 generated data sets. The corresponding

effect estimates are denoted as �̂�
(𝑙)
𝑅
(𝜁 ).

(iv) This and the following steps are conducted according to the classical SIMEX algorithm. First, for each 𝜁 ∈ , the arithmetic

mean of the estimates �̂�
(𝑙)
𝑅
(𝜁 ) of all generated data sets is calculated. It is denoted by �̂�𝑅(𝜁 ).

(v) Then, the �̂�𝑅(𝜁 ) are plotted against 𝜁 ∈ . The estimate for 𝛼𝑅 based on the naïve health model, �̂�𝑅, is denoted as �̂�𝑅(0) and

is plotted against 𝜁 = 0. Using a regression model, the association between 𝜁 ∈  ∪ {0} as independent variable and the

corresponding �̂�𝑅(𝜁 ) as dependent variable is estimated. For this purpose, the polynomial function 𝑘(𝜁 ) = 𝜂1 + 𝜂2𝜁1 +
⋯ + 𝜂𝑘+1𝜁𝑘 or the rational linear function 𝑅𝐿(𝜁 ) = 𝜂1 + 𝜂2∕(𝜂3 + 𝜁 ) are used. For 𝑘 = 2 the algorithm is called SIMEX-

Q, for 𝑘 = 3 SIMEX-C, for 𝑘 = 4 SIMEX-Q4, and for 𝑘 = 5 SIMEX-Q5. If 𝑅𝐿 is used, the algorithm will be called

SIMEX-RL, which has the following advantageous theoretical property under the classical error model. In a multiple

linear regression model, the effect estimator depends on the error-prone variable and has the form of 𝑅𝐿(𝜁 ) (for details

see Carroll et al. 2006). However, the rational linear function has two drawbacks, (i) the success of the model fit depends

on the choice of start parameters for 𝜂1, 𝜂2, and 𝜂3 and (ii) 𝜂3 ∈ [0, 1] leads to a singularity for 𝜁 ∈ [−1, 0] (Carroll et al.,

2006).

(vi) The extrapolation step is the last step. The argument 𝜁 = −1 is inserted in the estimated function ̂(𝜁 ). The result ̂(−1) =
�̂�SIMEX
𝑅

is denoted as SIMEX estimate. The justification for the extrapolation is given in the following section. If corrected

effect estimates for the intercept and remaining covariates �̂�SIMEX
0 and �̂�SIMEX

𝑋′ are required, the steps (iii)–(vi) will be

repeated for the parameters 𝛼0 and 𝜶𝑋′ .

Steps (v) and (vi) are illustrated in Figure 1 for SIMEX-Q using the example introduced in Section 6. Furthermore, it is to

be noted that in step (ii) if 𝑟𝜆
𝑖𝑗
+ 𝜆𝑧(𝑙)

𝑖𝑗
(𝜁 ) < 0 for realisations of 𝑅𝜆

𝑖𝑗
and 𝑍

(𝑙)
𝑖𝑗
(𝜁 ), the realisation of 𝑅

(𝑙)
𝑖𝑗
(𝜁 ) will not exist for all 𝜆.

Since 𝑅𝜆
𝑖𝑗

is assumed to be greater than zero, this can only occur for very small values of 𝑍
(𝑙)
𝑖𝑗
(𝜁 ), which may in particular occur

when the variance of𝑍
(𝑙)
𝑖𝑗
(𝜁 ) is large. In this case, a positive constant 𝑐 must be added to𝑅𝑖𝑗 and the algorithm must be restarted

with 𝑅𝑖𝑗 + 𝑐 instead of 𝑅𝑖𝑗 . Since this procedure is always feasible, we assume that all realisations of 𝑅
(𝑙)
𝑖𝑗
(𝜁 ) exist without loss

of generality.
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3.1 Another measurement error correction: The NCI method
Here, we briefly describe the NCI method (Tooze et al., 2006; Kipnis et al., 2009) used in this paper for comparison with

the SIMEX approach. The method follows a regression calibration approach under the measurement error model presented in

Section 2. As in the proposed SIMEX algorithm, the non-linear measurement error model (2) is fitted first. Then, based on the

estimated parameters �̂�, �̂�2
𝑢
, �̂�2
𝜀
, 𝛽0, and �̂�, the usual intake 𝑇𝑖 is estimated using the formula

𝑇𝑖 = E(𝑅𝑖𝑗|𝐗𝑖, 𝑢𝑖) = E
(
𝑔−1
𝜆
(𝛽0 + 𝜷𝐗𝑖 + 𝑢𝑖 + 𝜀𝑖𝑗)|𝐗𝑖, 𝑢𝑖), (7)

which can be approximated by a Taylor series expansion:

E
(
𝑔−1
𝜆
(𝛽0 + 𝜷𝐗𝑖 + 𝑢𝑖) +

1
2
𝜎2
𝜀
(𝑔−1
𝜆
)′′(𝛽0 + 𝜷𝐗𝑖 + 𝑢𝑖)|𝐗𝑖, 𝑅𝑖1,… , 𝑅𝑖𝐽𝑖

)
, (8)

where 𝑔−1
𝜆

denotes the inverse Box-Cox transformation as introduced above. This approach can be extended taking into account

the consumption probabilities 𝑃 (𝑅𝑖𝑗 > 0), if episodically consumed food data with excess zeros are investigated. Adaptive

Gaussian Quadrature is used to estimate (8) (for details see Kipnis et al. 2009). Once the usual intake is estimated, it is plugged

into in the health model (3) in place of the true usual intake 𝑇𝑖 to derive the corrected estimate for 𝛼𝑇 .

4 PROPERTIES OF THE GENERATED DATA 𝑹
(𝒍)
𝒊𝒋
(𝜻)

When investigating the properties of the SIMEX algorithm, only the ME terms of all random variables are of interest. Therefore,

𝑇𝑖 and E(𝑔𝜆(𝑅𝑖𝑗)) are assumed to be given in what follows. The focus is on the MSE of 𝑅
(𝑙)
𝑖𝑗
(𝜁 ) for each individual for 𝜁 → −1.

The question is if in this case the key property

MSE
(
𝑅
(𝑙)
𝑖𝑗
(𝜁 )

)
→ 0 (9)

holds. If yes, the SIMEX algorithm with the extrapolation to 𝜁 = −1 will be justified. In this hypothetical case, the generated

data would be error-free for 𝜁 = −1 and the parameter estimate for these data corresponds to the parameter estimate of the

unknown true data. It is important to note that according to the SIMEX algorithm, the 𝑅
(𝑙)
𝑖𝑗
(𝜁 ) itself is not extrapolated but the

corresponding parameter estimate of the health model is.

In Appendix A.1, using the ME model (2), it is shown that the key property (9) holds under the assumption that the corrective

expected value 𝜇𝑖(𝜁 ) guarantees 𝑅
(𝑙)
𝑖𝑗
(𝜁 ) to be unbiased if 𝜁 → −1. This assumption will be justified if the corrective expected

value, is calculated using the equation

E(𝑅𝑖𝑗) = (𝜆(E(𝑔𝜆(𝑅𝑖𝑗)) + 𝜇𝑖(𝜁 )) + 1)
1
𝜆 + 1 − 𝜆

2
(𝜆(E(𝑔𝜆(𝑅𝑖𝑗)) + 𝜇𝑖(𝜁 )) + 1)

1
𝜆
−2(1 + 𝜁 )𝜎2

𝜀
(10)

for 𝜆 > 0 and 𝜇𝑖(𝜁 ) = −𝜁𝜎2
𝜀
∕2 for 𝜆 = 0. This is shown in Appendix A.2. Equation (10) is well-defined if 𝜆(𝐸(𝑔𝜆(𝑅)) + 𝜇(𝜁 )) +

1 > 0 or equivalently 𝜇(𝜁 ) > −((1∕𝜆) + 𝐸(𝑔𝜆(𝑅))). Furthermore, Equation (10) ensures that bias𝑇𝑖(𝑅
(𝑙)
𝑖𝑗
(𝜁 )) ≈ 0, that is, that

𝑅
(𝑙)
𝑖𝑗
(𝜁 ) is a remeasurement of 𝑇𝑖 at least approximatively. For the special cases 𝜆 = 0, 1∕2, and 1, it even leads to the exact value,

for example, for 𝜆 = 1 the corrective expected value simplifies to 𝜇𝑖(𝜁 ) = 0. This is also shown in Appendix A.2.

To calculate 𝜇𝑖(𝜁 ) given the realisations 𝑟𝑖𝑗 of𝑅𝑖𝑗 , 𝑖 = 1,… , 𝐼 , 𝑗 = 1,… , 𝐽𝑖, and parameters 𝜆, 𝜁 , and 𝜎2
𝜀
, the unknown E(𝑅𝑖𝑗)

and E(𝑔𝜆(𝑅𝑖𝑗)) are replaced by the individual naïve estimates �̄�𝑖∙ and �̄�
(𝑔)
𝑖∙ = (1∕𝐽𝑖)

∑𝐽𝑖
1 𝑔𝜆(𝑟𝑖𝑗) using the empirical equation

�̄�𝑖∙ = (𝜆(�̄�(𝑔)
𝑖∙ + 𝜇𝑖(𝜁 )) + 1)

1
𝜆 + 1 − 𝜆

2
(𝜆(�̄�(𝑔)

𝑖∙ + 𝜇𝑖(𝜁 )) + 1)
1
𝜆
−2
𝜁𝜎2

𝜀
(11)

which can be solved numerically using an optimisation algorithm such as implemented in the R function optimise (R Core

Team, 2017) (taking into account the exact corrective value for 𝜆 = 0 and 𝜆 = 1 and the well-definedness of (11), the corrective

expected value should be searched in the interval (max{−𝜁𝜎2
𝜀
∕2; −((1∕𝜆) + �̄�(𝑔)

𝑖∙ )}, 0) for 𝜆 ∈ (0, 1)). If Equation (11) cannot be

satisfied, 𝜇𝑖(𝜁 ) can still be used to ensure that the difference between �̄�𝑖∙ and the right-hand side is minimised. In Figure 2, the

corrective expected value 𝜇𝑖(𝜁 ) is plotted for different values of 𝜁 and 𝜆.
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F I G U R E 2 Plot of the corrective expected value 𝜇(𝜁)
depending on different values of 𝜆 and 𝜁 : for

𝜁 = 1∕2, 1, 3∕2, 2; 𝜆 = 1∕5, 2∕5, 3∕5, 4∕5, 1; 𝜎2
𝜀
= 4.5; and

𝑟 = �̄� = 18 calculated from the empirical Equation (11). For

𝜆 = 0 the equation 𝜇(𝜁) = −𝜁𝜎2
𝜀
∕2 is used

5 EXTENSION OF THE ERROR AND HEALTH MODEL

The health model is not restricted to multiple linear regression models. Depending on the outcome variable or the study design,

the health model can be applied to logistic regression models or mixed models.

The error model can be extended in two different ways. The first extension will be useful for episodically consumed dietary

components, such as alcohol or fish, which show a high proportion of zeros in daily consumption. According to the error model

described in Kipnis et al. (2009), the true individual usual intake 𝑇𝑖 is given by the product of the consumption probability

P(𝑇𝑖𝑗 > 0) and the expected intake on a consumption day E(𝑇𝑖𝑗|𝑇𝑖𝑗 > 0) :

𝑇𝑖 = P(𝑇𝑖𝑗 > 0) × E(𝑇𝑖𝑗|𝑇𝑖𝑗 > 0),

where 𝑇𝑖𝑗 denotes the true individual daily intake. The case 𝑅𝑖𝑗 = 0 is allowed and occurs if and only if 𝑇𝑖𝑗 is also zero. This

implies that 𝑅𝑖𝑗 is error free for 𝑇𝑖𝑗 if 𝑅𝑖𝑗 = 0 as 𝑇𝑖𝑗 = 𝑅𝑖𝑗 when 𝑅𝑖𝑗 = 0 and further P(𝑇𝑖𝑗 > 0) = P(𝑅𝑖𝑗 > 0). To take this into

account, the first and second step of the SIMEX algorithm have to be adapted as follows.

(i) Since the error model (2) is only true for 𝑅𝑖𝑗 > 0, the required parameters are then estimated using only data with 𝑅𝑖𝑗 > 0
in the first step. This model is called the amount model.

(ii) According to the extended error model, 𝑅
(𝑙)
𝑖𝑗
(𝜁 ) is defined in the second step as follows: 𝑅

(𝑙)
𝑖𝑗
(𝜁 ) = 0 if 𝑅𝑖𝑗 = 0, and 𝑅

(𝑙)
𝑖𝑗
(𝜁 )

as in Equations (5) and (6) if 𝑅𝑖𝑗 > 0.

From steps (i) and (ii), it follows that𝑅
(𝑙)
𝑖𝑗
(𝜁 ) = 𝑇𝑖𝑗 if𝑅𝑖𝑗 = 0 and also P(𝑇𝑖𝑗 > 0) = P(𝑅(𝑙)

𝑖𝑗
(𝜁 ) > 0). Given 𝑇𝑖𝑗 , the key property

(9) holds for each individual 𝑖 on each day 𝑗; this is obvious for 𝑇𝑖𝑗 = 0 since 𝑇𝑖𝑗 = 𝑅
(𝑙)
𝑖𝑗
(𝜁 ) = 0, and is shown in Appendix A.1

for 𝑇𝑖𝑗 > 0. Subsequently, in step three the full data set with𝑅𝑖𝑗 > 0 and𝑅𝑖𝑗 = 0 are again used to calculate the individual means

�̄�
(𝑙)
𝑖∙ (𝜁 ). The remaining steps of the algorithm are then carried out without further modifications.

It is worth noting that in a recently proposed error model for 24HDR data, the consumption probability is modelled as in the

NCI method and only the amount model is modelled differently (Agogo, 2017). For an extensive discussion of alternatives for

modelling excess zeros in 24HDR data, see Kipnis et al. (2009).
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If the constant term 𝑐 is used to avoid the transformation error mentioned in Section 3, there are no more zeros in the data.

Nevertheless, 𝑅𝑖𝑗 = 𝑐 is then treated as 𝑅𝑖𝑗 = 0 and the data set must be split into two subsets accordingly. When �̄�
(𝑙)
𝑖∙ (𝜁 ) is

calculated, 𝑐 can again be subtracted though, this is not strictly necessary since the estimation of 𝛼𝑇 is not affected.

The second extension can be used if the error variance 𝜎2
𝜀

is assumed to differ between groups. For example, this could be

the case if different age groups are included in the study population. Then each of the 𝐺 groups is assumed to have its own error

variance: 𝜀𝑖𝑗 ∼  (0, 𝜎2
𝜀𝑔
), 𝑔 = 1,… , 𝐺. This can be easily incorporated in the first and second step of the SIMEX algorithm.

6 APPLICATION: ASSOCIATION OF BLOOD PRESSURE WITH SALT AND
ALCOHOL INTAKE

For illustrative purposes, the adapted SIMEX algorithm was applied to real data from the I.Family study, which is a multi-centre

study described in detail in Ahrens et al. (2017). It is a follow-up of the IDEFICS study aiming to investigate the causes of diet-

and lifestyle-related diseases in children from eight European countries (Italy, Estonia, Cyprus, Belgium, Sweden, Germany,

Hungary, and Spain) (Ahrens et al., 2011). As part of the I.Family study, a web-based 24HDR was used to assess the diet of

children and their parents (Hebestreit, Wolters, Jilani, Eiben, & Pala, 2018). In addition, systolic blood pressure (SBP) and

the body mass index (BMI) were assessed. All institutional and governmental regulations concerning the ethical use of human

volunteers were followed. Each survey centre obtained ethical approvals from the local responsible authorities in accordance

with the ethical standards of the 1964 Declaration of Helsinki and its later amendments. In this study, data from 878 male

adults were used to investigate the association between salt intake and blood pressure and between alcohol intake and blood

pressure. The analyses were based on 1856 recalls, in which the intake of at least 500 kcal of energy was reported. The number

of recalls per participant varied (38% recalled one day, 16% two days, 42% three days, and 4% four or more days). Even though

no one reported zero salt consumption, the intake of less than 1 g of salt was assumed to be implausibly low. Therefore these

recalls were excluded from the salt intake analysis which slightly reduces the number of included individuals and recalls to 873

and 1834.

The adapted SIMEX algorithm was applied to the salt and alcohol intake data. The covariates age, BMI, and country were

used in both the ME and the health models. Since alcohol is not consumed daily (the percentage of zeros was 56%), the extended

approach of Section 5 was applied to the alcohol intake data. For each value of 𝜁 ∈ , the number of generated data sets was set

to𝐿 = 200 and  = {1∕4, 2∕4, 3∕4, 1, 5∕4, 6∕4, 7∕4, 2}. In the extrapolation step, the quadratic and quartic functions were used

to calculate different SIMEX effect estimates. To illustrate the influence of the corrective expected value, the SIMEX data for

salt intake were also generated with 𝜇𝑖(𝜁 ) = 0 for 𝜁 = 2. Furthermore, the naïve and the NCI effect estimates, using the estimated

usual intakes, assuming the same health and error models, were calculated for comparison with the SIMEX effect estimates.

The variability of the estimates of 𝛼𝑇 was assessed via the Bootstrap (Efron & Tibshirani, 1993). We drew 𝐵 = 500 bootstrap

samples with replacement each containing the same number of individuals as the original salt and alcohol intake data set. Then,

we applied the same methods as for the original data sets to the bootstrap samples and estimated the sample standard deviations

of the 500 resulting effect estimates.

The estimated parameters of the error models can be found in Appendix A.3. Figure 3 shows that the inclusion of the corrective

expected value resulted in a reduced bias of the generated data with regard to the true observations. The bias of the generated

data using the corrective expected value was much smaller than that of the generated data without the corrective expected

value.

All the different effect estimates suggest positive associations of SBP with salt and alcohol intake (Table 1). The lowest effect

estimates resulted from the naïve method. Ignoring the ME led to an estimated expected increase of 0.24 mmHg in SBP per 1

gram salt intake, whereas the corrected effect estimates were 1.7–2.7 times higher than the naïve estimate. Similar results were

observed for alcohol intake. Ignoring the ME led to an estimated increase of 0.339 mmHG in SBP per 10 grams alcohol intake,

whereas the corrected effect estimates were 1.4–2.8 times higher than the naïve estimate. In the salt and alcohol intake analyses,

the estimated standard errors were lowest for the naïve estimates and highest for the NCI estimates. The SIMEX-Q4 standard

errors were comparable with those of the NCI method and 1.4–1.5 times higher than those of SIMEX-Q. That means SIMEX-Q4

and the NC -method led to the same amount of uncertainty. Although statistically significant associations could be proven in

other applications using the NCI method, this was not the case for the correction methods in the applications investigated in

this paper if 95% confidence intervals based on the estimated standard errors were used. Nevertheless, the correction methods

led to more relevant associations from a public health perspective compared to the naïve approach and the uncertainty can be

attenuated by increasing the sample size in future studies.
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F I G U R E 3 Comparison of 𝑟𝑖𝑗 and average 𝑟
(𝑙)
𝑖𝑗
(𝜁) for 𝜁 = 2

according to the adapted SIMEX algorithm based on 𝐿 = 200
generated SIMEX data sets (A) without bias correction using

𝜇𝑖(𝜁) = 0 and (B) with bias correction using 𝜇𝑖(𝜁) according to

Equation (11). The regression lines are 𝑦 = 0.426 + 1.096𝑥 and

𝑦 = 0.036 + 1.034𝑥

T A B L E 1 Effect estimates calculated with different methods (naïve, NCI method and SIMEX with quadratic and quartic extrapolation

function) and corresponding bootstrap standard errors (SE) for the association between salt intake (in grams) and the systolic blood pressure (in

mmHg) and between alcohol intake (in 10 grams) and systolic blood pressure (in mmHG) in male adults adjusted for age, body mass index, and

country

Exposure Salt intake Alcohol intake
Method Estimated effect �̂�𝑻 SE(�̂�𝑻 ) Estimated effect �̂�𝑻 SE(�̂�𝑻 )
Naïve 0.240 0.145 0.339 0.252

NCI 0.428 0.373 0.955 0.603

SIMEX-Q 0.404 0.237 0.474 0.378

SIMEX-Q4 0.658 0.372 0.769 0.559
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T A B L E 2 Comparison of effect estimates resulting from different methods (based on the true usual intake, naïve method, NCI method, and

SIMEX with quadratic and quartic extrapolation functions) for two different simulation scenarios (daily and episodically consumed dietary

component) with 1,000 individuals regarding empirical (emp.) mean, bias, standard error, and mean squared error based on 500 simulation

data sets

Scenario Method Emp. mean Emp. bias Emp. SE Emp. MSE
Salt intake (𝛼𝑇 = 0.5) True usual intake 0.508 0.008 0.221 0.049

NCI 0.514 0.014 0.337 0.114

SIMEX-Q4 0.422 −0.078 0.336 0.119

SIMEX-Q 0.315 −0.185 𝟎.𝟐𝟏𝟑 𝟎.𝟎𝟕𝟗
Naïve 0.193 −0.307 0.132 0.111

Alcohol intake (𝛼𝑇 = 0.9) True usual intake 0.887 −0.013 0.334 0.111

NCI 0.937 0.037 0.532 0.284

SIMEX-Q4 0.659 −0.241 0.472 0.280

SIMEX-Q 0.531 −0.369 𝟎.𝟑𝟏𝟓 𝟎.𝟐𝟑𝟔
Naïve 0.352 −0.548 0.206 0.343

7 SIMULATION STUDY

The set-up of the simulation study was based on the studies conducted by Kipnis et al. (2009) and Agogo (2017) while the

data came from the I.Family study and the models from the applications above. In total 500 data sets were simulated for each

scenario and each sample size. The sample sizes were 𝐼 = 1,000; 500; 300; 200; and 100 individuals. As in the above applica-

tions, the number of recalls was assumed to vary per individual to roughly represent the distribution found in the intake data

(35% with one recall, 20% with two recalls, 40% with three recalls, and 5% with four recalls), that is, the data sets consist

of 2, 150; 1, 075; 645; 430; and 215 observations. For each individual, the combined covariate information for age, BMI, and

country were sampled with replacement from the original data set of the application studies. For each data set and each indi-

vidual, 1,000 recalls were simulated on the 𝑔𝜆-transformed scale based on the error models described in Appendix A.3. These

values were back-transformed and the individual average was calculated, which was used as true usual intake 𝑇𝑖. The same

procedure (without averaging) was conducted to simulate one, two, three, or four recalls for each individual. The health out-

come SBP was generated from the health models of the application studies based on the simulated true intake (for details see

Appendix A.3). The true coefficients of the salt and alcohol intake 𝛼𝑇 were chosen to be 0.5 and 0.9 (cf. Table 1) which corre-

spond to an expected increase of 0.5 mmHg in SBP per 1 gram salt intake and of 0.9 mmHG in SBP per 10 grams alcohol intake,

respectively.

The same correction methods as for the real data were applied to these simulated data sets. Furthermore, the estimates based on

the true usual intake were calculated. As mentioned in Section 3, a problem occurs if 𝑟𝜆
𝑖𝑗
+ 𝜆𝑧(𝑙)

𝑖𝑗
(𝜁 ) < 0. This problem could not

be completely avoided in the simulation study, since a total of 2 × 500 × (2, 150 + 1, 075 + 645 + 430 + 215) × 8 × 200 = 7.2 ×
109 observations were generated in the SIMEX algorithm. The proportion of negative values of 𝑟𝜆

𝑖𝑗
+ 𝜆𝑧(𝑙)

𝑖𝑗
(𝜁 ) in the generated

observations ranged from 1.0 × 10−5% to 5.1 × 10−3% in the salt intake scenario and from 1.3% to 1.4% in the alcohol intake

scenario. It was solved by using the minimum of the corresponding generated data set instead. In the alcohol intake scenario

with 200 and 100 individuals, the NCI method failed for 4 and 8 data sets, respectively, due to convergence errors when fitting

the non-linear mixed effects error model or failure of the Adaptive Gaussian Quadrature optimisation. These data sets were

excluded from the assessment of the NCI method.

Subsequently, the performance of the different effect estimates was measured in terms of mean empirical bias, the empirical

standard error (SE), and the empirical MSE. The results are summarised in Table 2 for 𝐼 = 1,000 and in Table 3 for 𝐼 =
1,000; 500; 300; 200; and 100. For 𝐼 = 1,000, the NCI method was nearly unbiased (0.014 and 0.037), while SIMEX-Q4 and

SIMEX-Q underestimated the effects (−0.078 and −0.186 for salt intake; −0.241 and −0.369 for alcohol intake). The empirical

bias of the naïve approach was most serious (−0.307 and −0.548). With respect to the empirical MSE, SIMEX-Q outperformed

the other correction methods while the NCI method and SIMEX-Q4 performed equally well.

For 𝐼 = 500, the NCI method was still superior regarding empirical bias, but if the sample size was further reduced this

superiority vanished, while that of the SIMEX-Q regarding empirical MSE remained. The performance of SIMEX-Q and -Q4

regarding empirical bias seems to be independent of the sample size. SIMEX-Q4 was even less or as biased as the NCI method

for 𝐼 = 300, 200, and 100 in the salt intake scenario and for 𝐼 = 100 in the alcohol intake scenario. The fact that the NCI
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T A B L E 3 Comparison of effect estimates resulting from the NCI method and SIMEX with quadratic and quartic extrapolation functions for

two different simulation scenarios (daily and episodically consumed dietary component) for different sample sizes (𝐼 = 1,000; 500; 300; 200; 100)

regarding empirical (emp.) mean, bias, standard error and mean squared error based on 500 simulation data sets

Scenario Sample size Method Emp. mean Emp. bias Emp. SE Emp. MSE
Salt intake (𝛼𝑇 = 0.5) 1,000 NCI 0.514 0.014 0.337 0.114

SIMEX-Q4 0.422 −0.078 0.336 0.119

SIMEX-Q 0.315 −0.185 0.213 𝟎.𝟎𝟕𝟗
500 NCI 0.541 0.041 0.505 0.256

SIMEX-Q4 0.418 −0.082 0.477 0.234

SIMEX-Q 0.316 −0.184 0.313 𝟎.𝟏𝟑𝟐
300 NCI 0.616 0.116 0.689 0.488

SIMEX-Q4 0.453 −0.047 0.634 0.404

SIMEX-Q 0.345 −0.155 0.411 𝟎.𝟏𝟗𝟑
200 NCI 0.599 0.099 1.026 1.060

SIMEX-Q4 0.372 −0.128 0.798 0.652
SIMEX-Q 0.298 −0.202 0.512 𝟎.𝟑𝟎𝟐

100 NCI 1.201 0.701 6.170 38.489

SIMEX-Q4 0.428 −0.072 1.162 1.352

SIMEX-Q 0.293 −0.207 0.737 𝟎.𝟓𝟖𝟒
Alcohol intake (𝛼𝑇 = 0.9) 1,000 NCI 0.937 0.037 0.532 0.284

SIMEX-Q4 0.659 −0.241 0.472 0.280

SIMEX-Q 0.531 −0.369 0.315 𝟎.𝟐𝟑𝟔
500 NCI 0.936 0.036 0.669 0.448

SIMEX-Q4 0.672 −0.228 0.643 0.464
SIMEX-Q 0.530 −0.370 0.422 𝟎.𝟑𝟏𝟒

300 NCI 0.982 0.082 0.988 0.980

SIMEX-Q4 0.655 −0.245 0.881 0.835

SIMEX-Q 0.531 −0.369 0.553 𝟎.𝟒𝟒𝟏
200 NCI 0.985 0.085 1.363 1.862

SIMEX-Q4 0.550 −0.350 1.119 1.373

SIMEX-Q 0.501 −0.399 0.721 𝟎.𝟔𝟕𝟕
100 NCI 1.270 0.370 2.425 6.005

SIMEX-Q4 0.738 −0.162 1.579 2.514

SIMEX-Q 0.642 −0.258 1.045 𝟏.𝟏𝟓𝟔

method led to an overestimation of the effect in the salt intake scenario for 𝐼 = 100 can be partly explained by seven outliers. In

these cases, 𝜎2
𝑢

of the ME model (2) was severely underestimated. All methods demonstrated decreasing empirical MSE with

increasing sample size.

8 DISCUSSION

In this paper, we proposed an alternative, easy-to-use method for ME correction of dietary exposure derived from a 24HDR.

The method is based on the SIMEX approach and the assumptions of the error model described in Kipnis et al. (2009). We gave

the justification for this method by proving the key property of the adapted SIMEX algorithm. It was shown that the MSE of the

generated data converges to zero if the total ME variance converges to zero (i.e., 𝜁 converges to −1). Furthermore, we introduced

a so-called corrective expected value which ensures the generated data to be approximately unbiased on the original scale.

The underlying ME model assumes that the 24HDR is unbiased on the original scale for the true usual intake, which is not

always true. Nevertheless, this is a common working assumption in this field (Dodd et al., 2006). Formally, the unbiasedness can

be justified by the definition of the true usual intake as the average of daily assessed 24HDRs over a long period, since this is the
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best possible measure for dietary components in practice if a gold standard is not available or known (Carroll et al., 2006). Dodd

et al. (2006) discussed extensively whether the unbiasedness should be assumed on the transformed or on the original scale.

They are in favour of the latter. Among others, arguments for this choice are (i) that the estimated group mean usual intake and

overall average of the 24HDRs coincide and (ii) that the assumption is independent of the estimated Box-Cox parameter 𝜆, that

is, it does not change by analysis group or over time. Nevertheless, if a gold standard for one specific component is available, it

can be used to check the robustness of the assumption and of the proposed SIMEX algorithm and to derive new error models

which may better reflect reality.

One advantage of the adapted SIMEX algorithm is the easy implementation, which is mainly based on generating the data

𝑅
(𝑙)
𝑖𝑗
(𝜁 ), 𝑙 = 1,… , 𝐿, 𝜁 ∈ , and fitting the health model to these data repeatedly. We applied the proposed method successfully

to real data of daily and episodically consumed food. Furthermore, in a simulation study, we compared the proposed method

with the NCI method for both scenarios and for varying sample sizes. In all scenarios, SIMEX-Q had lower empirical MSE.

Although reducing bias is usually considered more important, methods aiming at a partial correction to reduce the MSE are also

justified (Carroll et al., 2006). We therefore recommend applying SIMEX-Q in situations where a small MSE is considered as

more important than a small bias. Otherwise, if the bias is the decisive criterion, the NCI method should be used if the sample

size is sufficiently large (𝐼 ≥ 500 or 𝐼 ≥ 200 in the investigated scenarios). If this is not the case, the SIMEX-Q4 seems to be a

more attractive choice, since for smaller sample size, the method appears less biased than the NCI method. One reason for the

relatively good performance of SIMEX-Q4 in these situations is the number of parameters on which SIMEX depends. In case

of daily consumed food, the same ME model must be estimated for the NCI method and the adapted SIMEX algorithm, but

subsequently SIMEX only uses two parameters (𝜆 and 𝜎2
𝜀
) whereas the NCI methods needs all model parameters, that is, 13 in

the salt intake scenario, to estimate the usual intake. This makes the SIMEX approach more stable if one of the parameters is

heavily under- or overestimated, which happened 7 out of 500 times in the salt intake scenario with 𝐼 = 100 individuals. This

unfavourable property of the NCI method is particularly relevant if the sample size is small.

The number of required parameters is also crucial when using SIMEX for sensitivity analyses. This technique, which was

proposed by He, Yi, and Xiong (2007), has been recommended for situations where the ME model cannot be estimated but

external information about the measurement error is available or can reasonably be assumed. This could, for example, be the

case if repeated measurements are missing and values for 𝜆 and 𝜎2
𝜀

can be found in the literature. Then these parameter values

can be used in the adapted SIMEX algorithm to obtain corrected effects estimates.

The proposed SIMEX modification has two drawbacks. The first is well-known from the classical SIMEX approach and was

already noted by Cook and Stefanski (1994) when it was first introduced. The extrapolation is the Achilles heel of SIMEX,

making it an approximative procedure (Carroll et al., 2006). That is why additional extrapolation functions were considered in

the simulation study: the cubic (C) and quintic polynomial (Q5), the rational linear (RL) and spline function (Table SM1). The

performance of SIMEX-C regarding empirical bias and MSE was between that of the quadratic and the quartic function, that

is, inferior to SIMEX-Q4 regarding empirical bias and inferior to SIMEX-Q regarding empirical MSE. The empirical bias of

SIMEX-Q5 was of similar size as the empirical bias of SIMEX-Q4, but the empirical MSE of SIMEX-Q5 was always several

times higher than that of SIMEX-Q. Besides the practical problems of SIMEX-RL (see Section 3), we also observed sometimes

a erratic behaviour of the rational linear extrapolation, which was already mentioned in other studies (Küchenhoff & Carroll,

1997; Carroll et al., 2006) and which resulted in an unacceptably high empirical bias and MSE in the simulation study. Instead,

the spline extrapolation resulted in conservative estimates comparable to those of SIMEX-Q. From a theoretical point of view, it

might also be interesting to find the exact form of the extrapolation function for the adapted SIMEX algorithm, that is, the form

of the effect estimator of the health model taking into account the complex error model for 24HDRs. This will be addressed in

future research. However, the practical benefit might be small considering how badly the rational extrapolation works in cases

where it is actually the true form (Carroll et al., 2006).

The second drawback is due to the Box-Cox transformation in the error model in which a strictly positive variable is mod-

elled by a normal distribution. This could mean that 𝑅
(𝑙)
𝑖𝑗
(𝜁 ) cannot be calculated for some 𝑖 = 1,… , 𝐼 and 𝑗 = 1,… , 𝐽𝑖. In

practice, this issue can be solved by either adding a positive constant 𝑐 to 𝑅𝑖𝑗 and applying the SIMEX algorithm to 𝑅𝑖𝑗 + 𝑐
or if only a very few observations are affected by just setting these observations to the minimum of the observations in the

specific generated data set. A theoretical solution for this could be a modified error model, for example, the truncated normal

distribution. However, this makes the model more complicated and the practical benefit is low. For example, in our appli-

cation on salt intake the difference between the truncated and the untruncated distribution is negligible even in the simula-

tion step for 𝜁 = 2 since P(𝑊salt < −1∕𝜆) = 10−11 if 𝑊salt is conservatively estimated by 𝑊salt ∼  (17, �̂�2
𝑢
+ 2�̂�2

𝜀
) (as men-

tioned in Section 3, this negligible difference can always be achieved by adding a positive constant.). Another approach

was proposed by Agogo (2017) using the generalized gamma distribution in the ME model which also increases the model

complexity.
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In conclusion, the proposed method is theoretically justified and led in practice to a reasonable correction. In a simulation

study, the proposed method led either to estimates with smaller empirical MSE, or to estimates with smaller empirical bias for

small samples than the NCI method. Furthermore, the adapted SIMEX approach can be useful in sensitivity analyses as well as

graphically illustrating the measurement error correction.
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APPENDIX

A.1 Proof of the key property

For sake of clarity, we will omit the indices 𝑖 and 𝑗 below. We assume that 𝑇 and E(𝑔𝜆(𝑅)) are given and define a random

variable 𝑊 as 𝑊 = E(𝑔𝜆(𝑅)) + 𝜀 +𝑍(𝑙)(𝜁 ) which follows a normal distribution with parameters 𝜇𝑊 = E(𝑔𝜆(𝑅)) + 𝜇(𝜁 ) and

𝜎2
𝑊

= (1 + 𝜁 )𝜎2
𝜀
. According to (1) and (5), it follows that 𝑅(𝑙)(𝜁 ) = 𝑔−1

𝜆
(𝑊 ).

To show that the key property holds (under the assumption that 𝑅(𝑙)(𝜁 ) is unbiased for each individual), we first consider the

case 𝜆 = 0. Then, 𝑅(𝑙)(𝜁 ) = 𝑔−1
𝜆
(𝑊 ) = exp(𝑊 ) which is logarithmically normally distributed. Therefore, it follows

Var(𝑅(𝑙)(𝜁 )) = [exp(𝜎2
𝑊
) − 1] exp(2𝜇𝑊 + 𝜎2

𝑊
) = [exp((1 + 𝜁 )𝜎2

𝜀
) − 1] exp(2𝜇𝑊 + (1 + 𝜁 )𝜎2

𝜀
)).

If 𝜁 → −1, the first factor will converge to zero and the second to a constant and thus lim𝜁→−1 Var(𝑅(𝑙)(𝜁 )) = 0.

Now, we consider the case 𝜆 > 0. Then the density function of 𝑔−1
𝜆
(𝑊 ) is

𝑓𝑅(𝑙) (𝑥) = 1√
2𝜋𝜎2

𝑊

𝑥𝜆−1 exp

(
−
(𝑔𝜆(𝑥) − 𝜇𝑊 )2

2𝜎2
𝑊

)
.

We consider the second moment of 𝑅(𝑙)(𝜁 ) using the substitution 𝑥 = 𝑔−1
𝜆
(𝜑), the inequality (𝜆𝑥 + 1) ≤ exp(𝜆𝑥) and again the

variance of the logarithmic normal distribution:

E(𝑅(𝑙)(𝜁 )2) = ∫
∞

0
𝑥2𝑓𝑅(𝑙) (𝑥)𝑑𝑥
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= 1√
2𝜋𝜎2

𝑊

∫
∞

0
𝑥𝜆+1 exp

(
−
(𝑔𝜆(𝑥) − 𝜇𝑊 )2

2𝜎2
𝑊

)
𝑑𝑥

= 1√
2𝜋𝜎2

𝑊

∫
∞

−1
𝜆

(𝜆𝜑 + 1)
2
𝜆 exp

(
−
(𝜑 − 𝜇𝑊 )2

2𝜎2
𝑊

)
𝑑𝜑

≤ 1√
2𝜋𝜎2

𝑊

∫
∞

−1
𝜆

exp(𝜑)2 exp

(
−
(𝜑 − 𝜇𝑊 )2

2𝜎2
𝑊

)
𝑑𝜑

≤ 1√
2𝜋𝜎2

𝑊

∫
∞

−∞
exp(𝜑)2 exp

(
−
(𝜑 − 𝜇𝑊 )2

2𝜎2
𝑊

)
𝑑𝜑

= exp(2𝜇𝑊 + 2𝜎2
𝑊
). (A.1)

It follows the existence of the second moment and the existence of the expected value and variance of 𝑅(𝑙)(𝜁 ).
Freeman and Modarres (2006) found an alternative representation for the moments of 𝑔−1

𝜆
(𝑊 ) using the Taylor expansion

for (𝑔−1
𝜆
)𝑟 at 𝜇𝑊 :

E(𝑅(𝑙)(𝜁 )𝑟) = (𝜆𝜇𝑊 + 1)
𝑟

𝜆 +
∞∑
𝜄=1

1
𝜄!
(𝜆𝜇𝑊 + 1)

𝑟

𝜆
−𝜄
𝜎𝜄
𝑊

E(Ψ𝜄)
𝜄−1∏
𝑗=0

(𝑟 − 𝑗𝜆), (A.2)

where Ψ denotes the standardized random variable Ψ = (𝑊 − 𝜇𝑊 )∕𝜎𝑊 . Thus the variance has the following form:

Var(𝑅(𝑙)(𝜁 ))

= E(𝑅(𝑙)(𝜁 )2) −
(
E(𝑅(𝑙)(𝜁 ))

)2
= (𝜆𝜇𝑊 + 1)

2
𝜆 +

∞∑
𝜄=1

1
𝜄!
(𝜆𝜇𝑊 + 1)

2
𝜆
−𝜄(1 + 𝜁 )

𝜄

2 𝜎𝜄E(Ψ𝜄)
𝜄−1∏
𝑗=0

(2 − 𝑗𝜆)

−

(
(𝜆𝜇𝑊 + 1)

1
𝜆 +

∞∑
𝜄=1

1
𝜄!
(𝜆𝜇𝑊 + 1)

1
𝜆
−𝜄(1 + 𝜁 )

𝜄

2 𝜎𝜄E(Ψ𝜄)
𝜄−1∏
𝑗=0

(1 − 𝑗𝜆)

)2

= (𝜆𝜇𝑊 + 1)
2
𝜆 +

∞∑
𝜄=1

1
𝜄!
(𝜆𝜇𝑊 + 1)

2
𝜆
−𝜄(1 + 𝜁 )

𝜄

2 𝜎𝜄E(Ψ𝜄)
𝜄−1∏
𝑗=0

(2 − 𝑗𝜆)

− (𝜆𝜇𝑊 + 1)
2
𝜆

− 2(𝜆𝜇𝑊 + 1)
1
𝜆

∞∑
𝜄=1

1
𝜄!
(𝜆𝜇𝑊 + 1)

1
𝜆
−𝜄(1 + 𝜁 )

𝜄

2 𝜎𝜄E(Ψ𝜄)
𝜄−1∏
𝑗=0

(1 − 𝑗𝜆)

−

( ∞∑
𝜄=1

1
𝜄!
(𝜆𝜇𝑊 + 1)

1
𝜆
−𝜄(1 + 𝜁 )

𝜄

2 𝜎𝜄E(Ψ𝜄)
𝜄−1∏
𝑗=0

(1 − 𝑗𝜆)

)2

=
∞∑
𝜄=1

1
𝜄!
(𝜆𝜇𝑊 + 1)

2
𝜆
−𝜄(1 + 𝜁 )

𝜄

2 𝜎𝜄E(Ψ𝜄)
𝜄−1∏
𝑗=0

(2 − 𝑗𝜆) (A.3)

−2(𝜆𝜇𝑊 + 1)
1
𝜆

∞∑
𝜄=1

1
𝜄!
(𝜆𝜇𝑊 + 1)

1
𝜆
−𝜄(1 + 𝜁 )

𝜄

2 𝜎𝜄E(Ψ𝜄)
𝜄−1∏
𝑗=0

(1 − 𝑗𝜆) (A.4)
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−

( ∞∑
𝜄=1

1
𝜄!
(𝜆𝜇𝑊 + 1)

1
𝜆
−𝜄(1 + 𝜁 )

𝜄

2 𝜎𝜄E(Ψ𝜄)
𝜄−1∏
𝑗=0

(1 − 𝑗𝜆)

)2

. (A.5)

As shown before in (A.1), the infinite sums (A.3), (A.4), and (A.5) converge. Thus, considering (A.3) and 𝜁 → −1, it follows:

lim
𝜁→−1

∞∑
𝜄=1

1
𝜄!
(𝜆𝜇𝑊 + 1)

2
𝜆
−𝜄(1 + 𝜁 )

𝜄

2 𝜎𝜄E(Ψ𝜄)
𝜄−1∏
𝑗=0

(2 − 𝑗𝜆)

= lim
𝜁→−1

lim
𝑛→∞

𝑛∑
𝜄=1

1
𝜄!
(𝜆𝜇𝑊 + 1)

2
𝜆
−𝜄(1 + 𝜁 )

𝜄

2 𝜎𝜄E(Ψ𝜄)
𝜄−1∏
𝑗=0

(2 − 𝑗𝜆)

= lim
𝑛→∞

lim
𝜁→−1

𝑛∑
𝜄=1

1
𝜄!
(𝜆𝜇𝑊 + 1)

2
𝜆
−𝜄(1 + 𝜁 )

𝜄

2 𝜎𝜄E(Ψ𝜄)
𝜄−1∏
𝑗=0

(2 − 𝑗𝜆)

= lim
𝑛→∞

𝑛∑
𝜄=1

1
𝜄!
(𝜆𝜇𝑊 + 1)

2
𝜆
−𝜄 ⋅ 0 ⋅ 𝜎𝜄E(Ψ𝜄)

𝜄−1∏
𝑗=0

(2 − 𝑗𝜆)

= 0. (A.6)

The same argument applies also for the infinite sums (A.4) and (A.5). Therefore, lim𝜁→−1 Var(𝑅(𝑙)(𝜁 )) = 0 for any 𝜇𝑊 .

In the important canonical case 𝜆 = 1, that is, 𝑔𝜆(𝜈) = 𝜈 − 1, it simplifies to 𝑅(𝑙)(𝜁 ) = E(𝑅) + 𝜀 +𝑍(𝑙)(𝜁 ) and therefore

Var(𝑅(𝑙)(𝜁 )) = (1 + 𝜁 )𝜎2. This converges to zero for all E(𝑅).

A.2 Calculation of the corrective expected value 𝝁𝒊(𝜻) and proofs of implications

In general 𝑅(𝑙)(𝜁 ) given 𝑇 and E(𝑔𝜆(𝑅)) for each individual will be biased if 𝜁 → −1. Therefore, a specific so-called corrective

expected value 𝜇(𝜁 ) is calculated in order to ensure unbiasedness. In the case 𝜆 = 0, 𝑔𝜆 = log, the corrective expected value is

−𝜁𝜎2
𝜀
∕2 (cf. Carroll et al. 2006), since using the expected value of the log-normal distribution gives

E
(
𝑅(𝑙)(𝜁 )

)
= E

(
exp

(
log (𝑅) +𝑍(𝑙)(𝜁 )

))
= E(𝑅)E

(
exp

(
𝑍(𝑙)(𝜁 )

))
= E(𝑅) exp

(
𝜇(𝜁 ) +

𝜁𝜎2
𝜀

2

)

= E(𝑅).

In order to calculate the corrective expected value to ensure E(𝑅(𝑙)(𝜁 )) = E(𝑅) at least approximately, we use the Taylor

approximation for E(𝑔−1
𝜆
(𝑊 )) at 𝜇𝑊 :

E(𝑔−1
𝜆
(𝑊 )) ≈ E

(
𝑔−1
𝜆
(𝜇𝑊 ) + (𝑔−1

𝜆
)′(𝜇𝑊 )(𝑊 − 𝜇𝑊 ) +

(𝑔−1
𝜆
)′′(𝜇𝑊 )
2

(𝑊 − 𝜇𝑊 )2
)

= 𝑔−1
𝜆
(𝜇𝑊 ) +

(𝑔−1
𝜆
)′′(𝜇𝑊 )
2

(1 + 𝜁 )𝜎2
𝜀

= (𝜆𝜇𝑊 + 1)
1
𝜆 + 1 − 𝜆

2
(𝜆𝜇𝑊 + 1)

1
𝜆
−2(1 + 𝜁 )𝜎2

𝜀

= (𝜆(𝐸(𝑔𝜆(𝑅)) + 𝜇(𝜁 )) + 1)
1
𝜆

+ 1 − 𝜆
2

(𝜆(𝐸(𝑔𝜆(𝑅)) + 𝜇(𝜁 )) + 1)
1
𝜆
−2(1 + 𝜁 )𝜎2

𝜀
.
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Therefore, Equation (10) is used to calculate 𝜇(𝜁 ). In the following, we show desirable properties for the three special cases,

𝜁 → −1, 𝜆 = 1, and 𝜆 = 1∕2 using this equation.

In the first case, on the one hand Equation (10) simplifies to𝐸(𝑅) = (𝜆(𝐸(𝑔𝜆(𝑅)) + 𝜇(−1)) + 1)
1
𝜆 = 𝑔−1

𝜆
(𝐸(𝑔𝜆(𝑅)) + 𝜇(−1)).

It follows that 𝜇(−1) = 𝑔𝜆(𝐸(𝑅)) − 𝐸(𝑔𝜆(𝑅)). On the other hand, if 𝜁 → −1 and using Equation (A.2) and the same argumenta-

tion as in (A.6) it follows that E(𝑅(𝑙)(𝜁 )) = (𝜆𝜇𝑊 + 1)
1
𝜆 . Using the definition of 𝜇𝑊 , it follows E(𝑅(𝑙)(𝜁 )) = (𝜆(𝑔𝜆(E(𝑅))) + 1)

1
𝜆

= 𝑔−1
𝜆
(𝑔𝜆((E(𝑅))) = E(𝑅).

In the second case, 𝜆 = 1, 𝑔1(𝜈) = 𝜈 − 1, Equation (10) simplifies to 𝜇(𝜁 ) = 𝑔1(𝐸(𝑅)) − 𝐸(𝑔1(𝑅)) = E(𝑅) − 1 − E(𝑅 − 1) =
0. Obviously, this is the exact solution for 𝜇(𝜁 ) to ensure E(𝑅(𝑙)(𝜁 )) = E(𝑅).

In the third case, 𝜆 = 1∕2, on the one hand Equation (10) simplifies to𝐸(𝑅) = (0.5(𝐸(𝑔0.5(𝑅)) + 𝜇(𝜁 )) + 1)2 + 0.25(1 + 𝜁 )𝜎2
𝜀

which is equivalent to 𝜇(𝜁 ) = ±2
√
𝐸(𝑅) − 0.25(1 + 𝜁 )𝜎2

𝜀
− 2 − 𝐸(𝑔0.5(𝑅)). On the other hand, E(𝑅(𝑙)(𝜁 )) = E(𝑔−10.5(𝑊 )) with

𝑔−10.5(𝜈) = (0.5𝜈 + 1)2 simplifies to E(0.25𝑊 2 +𝑊 + 1) and using the first and second moment of the normal distribution will

lead to 𝜇(𝜁 ) as calculated before if E(𝑅(𝑙)(𝜁 )) = E(𝑅).

A.3 Estimated measurement error and health models

To estimate the non-linear mixed model (2), the R-functions lmer and the powerTransform of the R-packages lme4 (Fox &

Weisberg, 2011) and car (Bates, Mächler, Bolker, & Walker 2015) were used in the SIMEX algorithm. In the salt intake analysis

the estimated parameters were

�̂� = 0.197,

�̂�2
𝑢
= 1.781,

�̂�2
𝜀
= 4.526,

𝛽0 = 18.349 and

�̂� = (−0.016, 0.015,−0.341,−0.521, 0.938, 0.791,−0.061, 1.055,−0.255),

where �̂� includes the parameter estimates of the covariates age, BMI and the countries Estonia, Cyprus, Belgium, Sweden,

Germany, Hungary, and Spain (Italy serves as reference category.). To estimate the error model for the NCI methods, the SAS-

macros mixtran and indivint were used (Kipnis et al., 2009) resulting in slightly different parameter estimates, for example,

�̂� = 0.2005. The estimated parameters of the health model using the usual salt intake calculated with the NCI method were:

�̂�0 = 88.28

�̂�𝑋 = (0.18, 0.92, 1.09, 0.36,−3.75,−0.97, 2.36, 3.35, 2.47) and

�̂�2
𝐻

= 143.12,

where 𝜎2
𝐻

is the variance of the error term of health model. The parameter vector 𝜶𝑋 has the same structure as 𝜷.

Analogously, for the alcohol intake analysis, the parameters in the amount model, that is, for 𝑅𝑖𝑗 > 0, were estimated as

follows using the SAS-macro mixtran:

�̂� = 0.314,

�̂�2
𝑢
= 3.634,

�̂�2
𝜀
= 5.931,

𝛽0 = 5.409 and

�̂� = (0.005,−0.045,−0.429,−1.111, 0.766, 0.309,−1.961,−2.442,−1.939).

Again, the estimates obtained with the R-functions for the SIMEX algorithm only slightly differed (e.g., �̂� = 0.313).
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For the NCI method, the probability of the (reported) alcohol intake needed to be estimated using the mixed effects logistic

regression model:

𝑃 (𝑅𝑖𝑗 > 0|𝑋𝑖, 𝑢′𝑖) = logit−1
(
𝛽′0 + 𝜷′𝐗𝑖 + 𝑢′𝑖

)
,

with the parameters 𝛽′0 and 𝜷′ and the random variable 𝑢′
𝑖
∼  (0, 𝜎2

𝑢′
) (𝑋𝑖 as before). Furthermore, the correlation 𝜌 between

𝑢′
𝑖

and 𝑢𝑖 (of model (2)) needed to be estimated to allow the probability and the amount of intake to be correlated (for details see

Kipnis et al. 2009). The estimated parameters were:

�̂�2
𝑢′ = 2.048,

𝛽′0 = 0.747,

�̂�
′ = (0.048,−0.077,−0.145,−0.479, 0.446,−1.231,−0.031,−0.720, 0.874) and

�̂� = 0.348.

The estimated parameters of the corresponding health model using the usual alcohol intake calculated with the NCI method

were:

�̂�0 = 89.65

�̂�𝑋 = (0.16, 0.96, 1.13, 0.52,−3.85,−0.22, 2.75, 4.73, 2.63) and

�̂�2
𝐻

= 143.30.


