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Abstract. Biodiversity is one of the key mechanisms that fa-
cilitate the adaptive response of planktonic communities to a
fluctuating environment. How to allow for such a flexible re-
sponse in marine ecosystem models is, however, not entirely
clear. One particular way is to resolve the natural complexity
of phytoplankton communities by explicitly incorporating a
large number of species or plankton functional types. Alter-
natively, models of aggregate community properties focus on
macroecological quantities such as total biomass, mean trait,
and trait variance (or functional trait diversity), thus reduc-
ing the observed natural complexity to a few mathematical
expressions. We developed the PhytoSFDM modelling tool,
which can resolve species discretely and can capture aggre-
gate community properties. The tool also provides a set of
methods for treating diversity under realistic oceanographic
settings. This model is coded in Python and is distributed as
open-source software. PhytoSFDM is implemented in a zero-
dimensional physical scheme and can be applied to any loca-
tion of the global ocean. We show that aggregate community
models reduce computational complexity while preserving
relevant macroecological features of phytoplankton commu-
nities. Compared to species-explicit models, aggregate mod-
els are more manageable in terms of number of equations
and have faster computational times. Further developments
of this tool should address the caveats associated with the
assumptions of aggregate community models and about im-
plementations into spatially resolved physical settings (one-
dimensional and three-dimensional). With PhytoSFDM we
embrace the idea of promoting open-source software and en-

courage scientists to build on this modelling tool to further
improve our understanding of the role that biodiversity plays
in shaping marine ecosystems.

1 Introduction

Numerical models are simplified abstractions of complex
phenomena. They are engineered for the problem at hand
and cannot be designed to maximize simultaneously the three
key requirements of generality, precision, and realism, be-
cause one of these must be sacrificed in favour of the other
two (Levins, 1966). Marine ecosystem models are no excep-
tions, and the scientific community has questioned the trend
towards increasing model complexity in terms of large num-
bers of state variables and parameters (Fulton et al., 2003;
Anderson, 2005; Hood et al., 2006; Anderson, 2010). Alter-
natives such as trait-based models have been put forward as
a way to simplify overly parameterized ecosystem models
(Follows and Dutkiewicz, 2011).

In the past 2 decades, trait-based models of planktonic
ecosystems have become important tools for elucidating the
fundamental mechanisms behind emergent patterns of com-
munity structure and diversity. Most of these models describe
the phytoplankton community by a discrete representation of
many species or functional groups (Baird and Suthers, 2007;
Follows et al., 2007; Bruggeman and Kooijman, 2007; Bar-
ton et al., 2010; Banas, 2011; Ward et al., 2012; Smith et
al., 2015). Alternatively, models have been developed that
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treat the whole phytoplankton species assemblage as a sin-
gle entity (Wirtz and Eckhardt, 1996; Norberg et al., 2001;
Merico et al., 2009; Bruggeman, 2009; Wirtz, 2013; Wirtz
and Sommer, 2013; Terseleer et al., 2014; Acevedo-Trejos
et al., 2015). These models use aggregate community prop-
erties such as total biomass, mean trait, and trait variance
to describe changes in phytoplankton community composi-
tion. Hence, by approximating the full spectrum of species
or functional types with just a few macroecological proper-
ties, these models present a way of reducing the complexity
of natural communities (Merico et al., 2009).

The simplification of both types of trait-based models (i.e.
discrete and aggregate) relies on the use of a key trait, for
which relationships with other traits can be formulated. Cell
size is recognized as one of the most important traits for
characterizing phytoplankton communities (Litchman and
Klausmeier, 2008; Litchman et al., 2010; Finkel et al., 2010;
Marañón, 2015), and it has been commonly used in plankton
ecosystem models (Baird and Suthers, 2007; Banas, 2011;
Ward et al., 2012; Wirtz, 2013; Wirtz and Sommer, 2013;
Terseleer et al., 2014; Acevedo-Trejos et al., 2015; Smith et
al., 2015). This morphological trait affects trophic organiza-
tion of foodwebs and the sequestration of CO2 into the ocean
interior (Chisholm, 1992). Phytoplankton size also impacts
on many ecological and physiological functions and is linked
to other relevant traits via trade-off relationships (see reviews
by Litchman and Klausmeier, 2008; Litchman et al., 2010;
Finkel et al., 2010). Therefore, studies on how cell size is as-
sociated with ecological and physiological processes and on
the impact that these associations have on the structure and
functioning of planktonic communities are of fundamental
importance (Marañón, 2015; Andersen et al., 2015).

Here we present the new Phytoplankton Size and Func-
tional Diversity Model (called PhytoSFDM) that allows for
five different ways of describing the size composition of phy-
toplankton communities in the upper mixed layers of the
world oceans. In the first variant, the phytoplankton com-
munity is described according to the classical approach that
resolves the discrete assemblage of many different species
and then we present four alternative ways of expressing ag-
gregate community properties of phytoplankton based on
four different ways of treating size diversity. We provide this
model as open-source so that it can be used, modified, and
redistributed freely with the aims of fostering reproducibility
and encouraging investigations about the impact of environ-
mental conditions on properties of phytoplankton commu-
nity structure and diversity.

2 Model description

PhytoSFDM is developed from the study of Acevedo-Trejos
et al. (2015), which used a size-based model of aggregate
community properties to investigate the phytoplankton size
structure and size diversity in two environmentally contrast-

ing regions of the Atlantic Ocean. In this model, the phyto-
plankton community self-assembles according to a trade-off
emerging from relationships between cell size and (1) nitro-
gen uptake, (2) zooplankton grazing, and (3) phytoplankton
sinking. In PhytoSFDM we have extended this work by pro-
viding four ways of treating size diversity using a moment-
based approximation (see Smith et al., 2011; Bonachela et
al., 2015, and Sect. 2.1.3 in this study). In addition, we in-
clude a discrete version of the model (hereafter referred to as
the full model) to better illustrate the potential of using aggre-
gate models as compared to the equivalent discrete version.
In the following, we present the mathematical equations, a
description of the code structure, and easy-to-follow exam-
ples of how to use the model.

2.1 Mathematical formulations

2.1.1 Mixed-layer scheme

The zero-dimensional physical set-up consists of two vertical
layers, the upper mixed layer containing the pelagic ecosys-
tem and the abiotic bottom layer with nitrogen concentration
as forcing. Following Evans and Parslow (1985) and Fasham
et al. (1990), we describe material exchange between the two
layers (K) as a function of the mixed-layer depth (M),

K =
κ +h+(t)

M(t)
, (1)

where κ is a constant that parameterizes diffusive mixing
across the thermocline and h+(t) is a function that describes
entrainment and detrainment of material. The latter is given
by h+(t)=max[h(t),0], with h(t)= dM(t)/dt .

Zooplankton are considered capable of maintaining them-
selves within the upper mixed layer; thus, their mixing term
simplifies to KZ = h(t).

2.1.2 Dynamics of the full phytoplankton community

The description of the phytoplankton community is a
trait-based variant of the classical nutrient–phytoplankton–
zooplankton–detritus (NPZD) model (Fasham et al., 1990).
We consider only one nutrient, nitrogen, which constitutes
the currency of our model, one zooplankton population
(composed of individuals assumed to be identical), and a sin-
gle detritus pool. We define n morphologically distinct phy-
toplankton types (hereafter referred to as morphotypes), and
we consider n equal to either 10 or 100. Each morphotype is
characterized by a biomass Pi and a cell size Si , in units of
µm equivalent spherical diameter (ESD). The distribution of
biomass along the size dimension is known to be positively
skewed (i.e. an asymmetrical size distribution with a pro-
nounced right tail compared to its left tail), due to physiologi-
cal, morphological, and ecological constraints that limit phy-
toplankton from a minimum size of around 0.15 µm ESD to
a maximum size of about 575 µm ESD (Marañón, 2015; An-
dersen et al., 2015). Consequently, we assume a log-normal

Geosci. Model Dev., 9, 4071–4085, 2016 www.geosci-model-dev.net/9/4071/2016/



E. Acevedo-Trejos et al.: PhytoSFDM 4073

distribution of size to represent the size of each morphotype,
thus transforming the cell size Si as follows:Li = ln(Si). The
net growth rate of the whole phytoplankton community (P) is
then given by

dP
dt
=

n∑
i=1

fi(Li,E) ·Pi, (2)

where fi(Li,E) is the net growth rate of size class i, which
we assume to be a proxy for fitness (Smith et al., 2011).
Hence fi accounts for the gains and losses of each morpho-
type as a function of cell size Li and environment E. The
latter includes changes in nitrogen, irradiance, temperature,
and grazing. The equation describing the fitness functions of
each size class i is thus given by

fi = µP ·F(T ) ·H(I) ·U(Li,N)−µZ ·G(Li,Pi) ·Z
−V (Li,M)−mP−K, (3)

where µP indicates the maximum growth rate and F(T )=
e0.063·T is Eppley’s formulation for temperature-dependent
growth (Eppley, 1972). The light-limiting term, H(I), rep-
resents the total light I available in the upper mixed layer.
According to Steele’s formulation (Steele, 1962),

H(I)=
1

M(t)

M∫
0

[
I (z)

Is
· e

(
1− I (z)

Is

)]
dz, (4)

where Is is the light level at which photosynthesis saturates
and I (z) is the irradiance at depth z. The exponential de-
cay of light with depth is computed according to the Beer–
Lambert law with a generic extinction coefficient kw:

I (z)= I0 · e
−kw ·z. (5)

The current version of our model does not specify any size
dependence for light absorption, although we provided sug-
gestions on how this could be done (Sects. 4 and 6).

The nutrient-limiting term U in Eq. (3) is determined by
a Monod function with a half-saturation constant KN, which
scales allometrically with phytoplankton cell size L (Litch-
man et al., 2007),

U(Li,N)=
N

N+KN
=

N
N+ (βU · eLi ·αU )

, (6)

with βU and αU , respectively, intercept and slope of the KN
allometric function (i.e. the power law βU ·S

αU ). This empir-
ical relationship is based on observations of different phyto-
plankton groups (see Fig. 3b in Litchman et al., 2007), with
the regression parameters rescaled from cell volume to ESD.

The loss term G(Li,Pi) in Eq. (3) represents zooplankton
grazing. As mentioned above, here we consider a single zoo-
plankton population, which is assumed to be an assemblage

of identical individuals with a size-selective feeding prefer-
ence given by

G(Li,Pi)=
eLi ·αG

n∑
i=1
Pi · eLi ·αG +KP

, (7)

where αG is the slope for size-dependent grazing (or the
power law 1 · SαG ) and KP is the half-saturation constant.
This formulation is inspired by meta-analyses of laboratory
data (Hansen et al., 1994, 1997) and reflects a grazing pref-
erence of zooplankton for smaller phytoplankton cells. For
demonstration purposes, we use here a simple formulation
for zooplankton grazing; however, other functional relation-
ships can be implemented and tested in future versions of
PhytoSFDM (see also Sects. 4 and 6).

The loss term V (Li,M) in Eq. (3) represents the sinking
of phytoplankton as a function of size and depth of the mixed
layer,

V (Li,M)=
βV · e

Li ·αV

M(t)
, (8)

where the constants αV and βV are the parameters of the
function relating phytoplankton cell size to sinking veloc-
ity according to Stokes’ law (Kiørboe, 1993) or the power
law βV ·S

αV . These parameters are expressed here in units of
metres per day.

Our model formulation does not specify an explicit size
dependence for the phytoplankton maximum growth rate
(µP). Various compilations of data from laboratory experi-
ments reveal different size scalings for µP, either as a power
law of cell volume (Litchman et al., 2007; Edwards et al.,
2012) or as a unimodal distribution in terms of cell size
(Wirtz, 2011; Ward et al., 2012; Marañón et al., 2013). There-
fore, we adopted an approach similar to that of Smith et al.
(2015), who reproduced the unimodal distribution of realized
growth rate over size using two physiological trade-offs. We
specified our trade-off in terms of three allometric relation-
ships, and this results in an indirect size dependence of phy-
toplankton growth rate.

The loss termmP in Eq. (3) accounts for all phytoplankton
losses other than those from grazing and mixing.

Differential equations for the nutrient (N), zooplankton
(Z), and detritus (D) complete the model system:

dN
dt
=−

n∑
i=1

µP ·F(T ) ·H(I) ·U(Li,N) ·Pi

+ δD ·D+K · (N0−N), (9)

dP
dt
=

n∑
i=1

(
µP ·F(T ) ·H(I) ·U(Li,N)

−µZ ·G(Li,Pi) ·Z−V (Li,M)−mP−K
)
Pi, (10)
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Table 1. Parameter definitions, their units, and their default values as provided in PhytoSFDM.

Definition Symbol (units) Value

Diffusive mixing across the thermocline κ (m day−1) 0.1
Light attenuation constant kw (m−1) 0.1
Optimum irradiance Is (E m−2 day−1) 30
P max growth rate µP (day−1) 1.5
P mortality rate mP (day−1) 0.05
Z grazing rate µZ (day−1) 1.35
Z mortality rate mZ (day−1) 0.3
P half-saturation KP (mmol N m−3) 0.1
P assimilation coefficient δZ (–) 0.31
Mineralization rate δD (day−1) 0.1
Immigration rate δI (mmol N day−1) 0.008
Trait diffusivity parameter ν (–) 0.008
Slope for allometric grazer preference αG ([µm ESD]−1) −0.75
Intercept of the KN allometric function βU (mmol N m−3) 0.14257
Slope of the KN allometric function αU (mmol N m−3 [µm ESD]−1) 0.81
Intercept of the V allometric function βV (m day−1) 0.01989
Slope of the V allometric function αV (m day−1 [µm ESD]−1) 1.17
Size variance of immigrating P V0 (Ln [µm ESD]2) 0.58
Number of morphotypes n (–) 10 or 100

dZ
dt
=

n∑
i=1

δZ ·µZ ·Z ·G(Li,Pi) ·Pi −mZ ·Z2

−KZ ·Z, (11)

dD
dt
=

n∑
i=1
(1− δZ) ·µZ ·Z ·G(Li,Pi) ·Pi

+

n∑
i=1

mP ·Pi +mZ ·Z2
− δD ·D−K ·D, (12)

where δD is the mineralization rate and N0 is the nitrogen
concentration below the upper mixed layer. µZ, δZ, and mZ
are, respectively, maximum growth rate, prey assimilation
coefficient, and mortality rate of zooplankton. All parameter
values and their units are reported in Table 1.

2.1.3 Dynamics of the aggregate phytoplankton
community

The phytoplankton community comprising many distinct
morphotypes (Eqs. 2 to 8) can be approximated with the so-
called moment-based approach (Wirtz and Eckhardt, 1996;
Norberg et al., 2001; Merico et al., 2009; Terseleer et al.,
2014; Acevedo-Trejos et al., 2015). Wirtz and Eckhardt
(1996), Norberg et al. (2001), and Merico et al. (2009) used a
Taylor expansion together with a moment closure technique
to approximate the whole community with three macroscopic
properties, which correspond to the first three order moments
of the approximated biomass distribution. These properties
are total biomass, mean trait, and trait variance. These works

(Wirtz and Eckhardt, 1996; Norberg et al., 2001; Merico et
al., 2009) were inspired by earlier applications in quantita-
tive genetics (Abrams et al., 1993) and have been reviewed
by Smith et al. (2011) and more recently by Bonachela et al.
(2015).

Here the whole phytoplankton community is character-
ized by the morphological trait cell size and by a trade-off
that emerges from three allometric relationships described
by Eqs. (6)–(8). The equations of the respective macroscopic
properties are

dP
dt
≈ P · (f +

1
2
· f (2) ·V ), (13)

dL
dt
≈ f (1) ·V, (14)

dV
dt
≈ f (2) ·V 2, (15)

where f is the net growth rate (or the fitness function; see
Eq. 3) and f (n) is the nth derivative of the net growth with
respect to the trait. Due to competitive exclusion, however,
the phytoplankton community loses functional diversity over
time, i.e. the variance declines to zero with time, in both full
and aggregate model formulations (Merico et al., 2014). We
name this standard formulation “unsustained variance”.

Alternatively, one can use the approximated model to fo-
cus only on changes in the mean trait, thus ignoring changes
in the variance by fixing it to an arbitrary constant value:

dP
dt
≈ P · (f +

1
2
· f (2) ·V ), (16)
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dL
dt
≈ f (1) ·V, (17)

dV
dt
= 0. (18)

While using these two formulations (i.e. unsustained and
fixed variance) can be acceptable in some special cases (e.g.
in experiments that lead to competitive exclusion or where
diversity is being manipulated), it is clear that they fail to
account for changes in the adaptive capacity of the commu-
nity, which requires allowing the size variance, and thereby
functional diversity, to vary over time (Merico et al., 2014).

Within our modelling tool we also provide two alternative
ways of treating the size variance: immigration (following
Norberg et al., 2001) and trait diffusion (following Merico
et al., 2014). The treatment with immigration considers the
introduction of biomass and new trait values from hypothet-
ical adjacent communities into the resident community. The
addition of incoming amount of biomass per day is named
immigration I ,

dP
dt
≈ P[f +

1
2
· f (2) ·V ] + I, (19)

dL
dt
≈ f (1) ·V +

I

P
(LI−L), (20)

dV
dt
≈ f (2) ·V 2

+
I

P
[(VI−V )+ (LI−L)

2
], (21)

where LI and VI are, respectively, the mean size and the size
variance of the immigrating community. As implemented
by Acevedo-Trejos et al. (2015), we treat I as a density-
dependent process (i.e. I = δI ·P), and set LI equal to the
mean size of the resident community (i.e. LI = L). Thus, we
assume that phytoplankton immigrating from adjacent areas
are characterized by sizes similar to the simulated commu-
nity, implying that the immigrating community has been ex-
posed to the same selection pressures as the simulated com-
munity (Terseleer et al., 2014). We also assume that the rate
of immigration increases proportionally to the concentration
of phytoplankton, consistent with observations of diversity
patterns along the Atlantic Ocean (Chust et al., 2013).

The treatment of the size variance based on trait diffusion
(Merico et al., 2014) gives

dP
dt
≈ P ·

[
f +

1
2
· f (2) ·V +

1
2
· ν(r4 ·V − 3 · r2)

]
, (22)

dL
dt
≈ f (1) ·V + ν(r3 ·V − 3 · r1), (23)

dV
dt
≈ f (2) ·V 2

+ ν(r4 ·V
2
− 5 ·V · r2+ 2 · r), (24)

where ν is the trait diffusivity parameter, r is the reproduction
rate (or gross growth), and rn is the nth derivative of gross
growth with respect to the trait. Note that the process of trait
diffusion (last term in Eq. 24) depends on the gross growth r ,
via the trait diffusivity constant ν; thus, an increase in phy-

toplankton gross growth causes an increase in trait variance
(Merico et al., 2014).

The system of differential equations for all variance treat-
ments is completed by equations describing gains and losses
in nitrogen (N), zooplankton (Z), and detritus (D):

dN
dt
=−µP ·F(T ) ·H(I) ·U(L,N) ·P+ δD ·D

+K · (N0−N), (25)
dZ
dt
= δZ ·µZ ·Z ·G(L,P) ·P−mZ ·Z2

−KZ ·Z, (26)

dD
dt
= (1− δZ) ·µZ ·Z ·G(L,P) ·P+mP ·P

+mZ ·Z2
− δD ·D−K ·D. (27)

The first term in Eq. (25) represents a reduction of the ni-
trogen pool due to phytoplankton growth, which is a function
of temperature, light, nitrogen, and mean size (see the de-
scription of Eq. 3 in the previous section). The last two terms
in Eq. (25) represent sources of nitrogen due to remineral-
ization and mixing. The first term in Eq. (26) describes size-
dependent grazing, while the last two terms describe losses
of zooplankton due to mortality and mixing. The first term
in Eq. (27) represents a fraction of phytoplankton biomass
that is not assimilated by zooplankton and the following two
terms represent the mortality of phytoplankton and zooplank-
ton, respectively. The detritus pool is reduced by remineral-
ization and mixing. Parameter values and their units are re-
ported in Table 1.

2.2 Environmental forcing

We compiled monthly climatological forcing data for mixed-
layer depth (MLD), photosynthetic active radiation (PAR),
sea surface temperature (SST), and concentration of nitro-
gen immediately below the upper mixed layer (N0). The
MLD data were obtained from Monterey and Levitus (1997)
using the variable density criterion and are openly acces-
sible from https://www.nodc.noaa.gov/OC5/WOA94/mix.
html. The PAR data were obtained from the Moderate Res-
olution Imaging Spectroradiometer (MODIS), for the time
period 2002–2011. This dataset is managed and distributed
by the NASA’s Ocean Biology Processing Group (http://
oceancolor.gsfc.nasa.gov/cms/). SST and N0 were obtained
from the World Ocean Atlas 2009 (WOA09), which is main-
tained and distributed by NOAA (https://www.nodc.noaa.
gov/OC5/WOA09/pr_woa09.html). For consistency and effi-
ciency, all data were transformed from their original formats
(e.g. TXT and HDF) to NetCDF. All monthly forcings were
spatially averaged over the selected location (square boxes in
Fig. 1) and then interpolated to obtain daily values (Fig. 2).
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Figure 1. Environmental forcing variables considered in Phy-
toSFDM. The data shown are the annual average of mixed-layer
depth (MLD), photosynthetic active radiation (PAR), sea surface
temperature (SST), and nitrogen concentration below the mixed
layer (N0). The square boxes mark the location of the test-case sim-
ulation.

3 Test-case simulation

A test-case model configuration is provided for a location of
the North Atlantic Ocean at 47.5◦ N 15.5◦W (Fig. 1), a re-
gion where seasonal changes in mean size and size diversity
are well known (Acevedo-Trejos et al., 2015). This region
presents the typical oceanographic conditions of a temperate
environment (Fig. 2). The environmental conditions produce
a pronounced phytoplankton bloom in spring, which stim-
ulates secondary production and almost the full depletion of
nitrogen (Fig. 3). Overturning of the water column in autumn
restocks the pool of nitrogen and light limitation together
with lower temperatures halt primary production (Figs. 2 and
3).

3.1 Comparison of full and aggregate models

Within PhytoSFDM, we provide a practical example of how
to implement and compare phytoplankton community mod-
els that aim to describe (a) a full assemblage of species or
morphotypes (see Sect. 2.1.2), and (b) an aggregate com-
munity (see Sect. 2.1.3). The aggregate community model
is an approximation of the full assemblage of species or mor-
photypes (Wirtz and Eckhardt, 1996; Norberg et al., 2001;
Merico et al., 2009).

Figures 3 and 4 show the results of, respectively, the full
model and the aggregate model for the unsustained variance
case. N, P, Z, and D are unaffected by the type of model con-
sidered. As expected, the dynamics of P, L, and V produced
by the aggregate model are good approximations of those
produced by the full model. Both models exhibit competi-
tive exclusion, as indicated by the reduction in the number

of morphotypes and consequently in the loss of size variance
over time (Fig. 4). The phytoplankton community evolves to-
wards the optimal trait value, which is expressed by the fittest
few morphotypes for the chosen parameterization and the
prevailing environmental conditions. Although competitive
exclusion is well established theoretically (Hardin, 1960),
natural communities of phytoplankton are typically very di-
verse; hence, we will explore in the following the effects of
different ways of sustaining the variance.

3.2 Comparison of variance treatments

The key aspect of trait-based models is their ability to de-
scribe the phytoplankton community in terms of mean trait
and trait variance. Figures 5 and 6 show the results of 1-year
simulation after an initial spin-up phase of 4 years. While the
four treatments produce very similar, if not identical, dynam-
ics for N, P, Z, and D (Fig. 5), the results for the mean size
and the size variance differ considerably among treatments
(Fig. 6).

As already discussed, the system loses diversity over time
when variance is unsustained. The loss of diversity reduces
the capacity of the community to adapt to changing environ-
mental conditions via shifts in species composition, as a flat
year-round mean trait shows (Fig. 6, grey lines). Under fixed
variance, size diversity is locked at an arbitrary value. If this
value is high enough, the mean size can adapt in response to
changes in nutrient availability and grazing regimes (Fig. 6).
This treatment can be useful for studies focusing only on the
size structure of the community, but it is otherwise based on
an arbitrarily fixed level of diversity and cannot offer mean-
ingful insights, for example about biodiversity and ecosys-
tem functioning relationships.

Trait diffusion and immigration show similar results for
the mean size but not for the size variance (Fig. 6). Since the
mechanism of trait diffusion depends on reproduction, i.e.
gross growth (see Eq. 24), the highest diversity of the com-
munity is reached in spring under high growth rates and de-
clines when moving towards winter. Size diversity also peaks
in spring for the case of immigration because this mechanism
is density-dependent (see Eq. 21), but the variances predicted
in autumn and winter are, respectively, lower and higher than
those obtained with trait diffusion (Fig. 6). As mentioned
above, this originates from the different assumptions under-
lying the trait diffusion and immigration treatments, which
consider, respectively, an internal or external source of phy-
toplankton biomass, mean trait, and trait variance. In the case
of trait diffusion, such an internal source is gross growth be-
cause the size variance of the phytoplankton community is
proportional to it via the diffusivity constant ν (last terms in
Eqs. 22, 23, and 24). In contrast, immigration represents a
source of biomass (I ) and size variance (I/P[V I −V ]) ex-
ternal to the phytoplankton community being simulated (e.g.
from an adjacent patch). Hence, during the autumn–winter
transition, the size variance tends to decline in the trait dif-
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Figure 2. Temporal variation of the environmental variables. The monthly climatology data (red dots) are spatially averaged over the test
location (square boxes in Fig. 1). The interpolation (continuous line) is obtained with a third- (MLD and PAR) and a fifth-order (SST and
N0) polynomial.

Table 2. Computation time in seconds for the full model with 10 and 100 morphotypes and the four variants of the aggregate model.

System Full10 Full100 Unsustained Fixed Trait diffusion Immigration

MacOS 2.8 GHz Intel i7 282.515 6696.503 16.012 20.374 15.177 16.644
Windows 3.0 GHz Intel i5 369.597 8722.753 20.236 22.485 20.736 20.298

fusion case as phytoplankton gross growth is reduced by
growth-limiting processes. Instead, the trait variance keeps
building up to values similar to the variance of the immigrat-
ing community in the case of immigration.

3.3 Sensitivity to changes in parameter values

We tested the sensitivity of the annual mean in P, L, and V
to variations of ±25 % in parameter values. To quantify this
sensitivity, we formulated an index S that accounts for rela-
tive changes in model results:

S =
X(p)−X(p′)

X(p)
· 100, (28)

whereX(p) is the result of the state variableX obtained with
the standard parameter p and X(p′) is the result of the state
variable X obtained with the modified parameter p′ = p±
25 %.

The four treatments of size variance respond similarly to
changes in parameter values (Fig. 7). The annual means of all
three state variables (P, L, and V ) are sensitive to changes in
the parameters controlling zooplankton grazing (i.e. µZ, mZ,

KP, δZ). However, P also shows a sensitive response to pa-
rameters affecting phytoplankton gross growth, such as kw,
Is , µP, and mP. Mean size is the most robust variable, with
less than 10 % relative change compared to the standard run.
The size variance treatments for immigration and trait dif-
fusion are affected by the parameters controlling the input
of exogenous (i.e. δI for immigration) or endogenous vari-
ance (i.e. ν for trait diffusion). The results of the unsustained
variance model are very sensitive to changes in µZ, and the
case of fixed variance shows a sensitivity that is similar to the
other cases, except for the variance itself.

3.4 Computational efficiency

Trait-based models that aim at resolving the complexity of
natural communities by incorporating many different species
or functional types can be expensive in terms of computa-
tional time (Baird and Suthers, 2007; Follows et al., 2007;
Bruggeman and Kooijman, 2007; Banas, 2011; Ward et al.,
2012). Alternatively, trait-based models that focus on aggre-
gate community properties such as total biomass, mean trait,
and trait variance can be more computationally efficient. In
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Figure 3. NPZD dynamics of the full model (Sect. 2.1.2) and of its equivalent aggregate model (Unsustained variance, Sect. 2.1.3) for the last
year of the simulations. The total phytoplankton in the full model corresponds to the sum of all Pn. The red dots are observations of nitrogen
concentrations (monthly data obtained from the World Ocean Atlas) and the green dots are remotely sensed Chl-a data (8-day composite
obtained from MODIS).

Table 2 we report a quantification of the computation time
required for calculating the full and aggregate models pre-
sented here. We obtained a more than 10-fold longer compu-
tation time for the full model than for the aggregate model. In
addition, when we increase the resolution of the full model
from 10 to 100 morphotypes, the difference in computation
time increases by more than 20-fold. Thus, increasing the re-
alism in terms of number of species or morphotypes comes
at a significant computational cost.

4 Strength and weakness of moment-based
approximations

Models are simplifications of reality and, as such, are based
on assumptions. For example, the simple exponential growth
model is based on a number of assumptions that do not hold
in all circumstances (many factors affect the intrinsic growth
rate, which is often not time-invariant, not all individuals
within a population are identical, nothing can grow indefi-
nitely, etc.). However, this model is widely used within its
range of validity. Likewise, the approximation of full mod-
els with moment-based approaches requires an assumption
about the shape of the phytoplankton trait distribution (Wirtz
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Figure 4. Number of morphotypes and size variance over the first year of the simulation. Here we included the morphotypes with a biomass
greater than 0.01 mmol N m−3. Models that do not consider a mechanism to sustain variance exhibit competitive exclusion of morphotypes
and a rapid decline of size diversity.

Figure 5. Nutrient, phytoplankton, zooplankton, and detritus dynamics over a seasonal cycle for the four variants of the aggregate model
(see Sect. 2.1.3), named unsustained and fixed variance, trait diffusion, and immigration.
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Figure 6. Dynamics of the size-structured phytoplankton community and its functional size diversity for the four variance treatments (see
Sect. 2.1.3), named unsustained and fixed variance, trait diffusion, and immigration.

Figure 7. Sensitivity of four variance treatments to an increase and a decrease by 25 % in the default parameter values. The values and
definitions of all parameters are given in Table 1.
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Figure 8. Components of the size variance (V ), where f (2) is the second derivative of the fitness function with respect to the trait;
f (2)U(L,N), f (2)G(L,P), and f (2)V (L,M) are, respectively, nitrogen uptake, zooplankton grazing, and phytoplankton sinking compo-
nents of f (2).

and Eckhardt, 1996; Norberg et al., 2001; Merico et al.,
2009). Typically, unimodal distributions, e.g. normal or log-
normal, are assumed. However, depending on how the fitness
function (i.e. the net growth rate of the phytoplankton com-
munity) is constructed and parameterized, the value of f (2),
that is the rate of change of the variance (Eqs. 15, 18, 21,
and 24), can be positive, implying a disruptive selection or
branching. This represents an indication that the unimodal-
ity assumption does not hold (Bonachela et al., 2015). Alter-
natively, f (2) can remain negative over time, implying that
the community continually loses variance, thus constituting
a strong indication against the occurrence of disruptive se-
lection. Therefore, models based on moment approximations
require careful checks about the validity of the unimodality
assumption throughout the time of the simulations. Figure 8
shows, for our test case, the predicted variance V , f (2), and
its components for the four variance treatments. In our test
case, f (2) is negative for all treatments and its changes are
jointly driven by bottom-up, f (2)U(L,N), and top-down pro-
cesses, f (2)G(L,P), i.e. the second derivatives with respect
to the trait for nitrogen uptake (Eq. 6) and grazing (Eq. 7)
terms. Sinking plays a role mainly during spring, but its in-
fluence is minor compared to the effects of nitrogen uptake
and grazing.

It is unclear whether unimodality in size distributions is
a robust feature in the oceans. Observational evidence from
recent work (Downing et al., 2014) suggests that at large tem-
poral scales, from 5 to 20 years, unimodality of size distribu-
tions is a consistent feature of phytoplankton communities

of the North Sea. By contrast, multimodality is typically ob-
served on temporal scales of less than 1 year (Downing et al.,
2014). We consider that the observational evidence available
remains insufficient to identify general patterns. However,
the ocean is a highly variable environment and we consid-
ered it more likely that multimodality, for example because
of size-selective grazing events, is a short-term, transient sit-
uation rather than the norm, because mixing would contin-
uously reshuffle plankton assemblages and restore homoge-
neous conditions.

An aspect that our model does not include in its current
version is the dependency of light acquisition on phytoplank-
ton cell size. Given that the effect of cell size on light har-
vesting is well understood (Augusti, 1991; Finkel and Irwin,
2000; Finkel, 2001), it could be implemented in the model.
Future versions of PhytoSFDM could address this gap by
considering the vertical attenuation of light as a function of
both phytoplankton biomass and cell size, following the ap-
proach proposed by Baird and Suthers (2007).

Uncertainty remains about how to describe the zooplank-
ton population, which we simplified as an assemblage of
identical individuals. This has been the standard approach in
plankton ecosystem modelling for decades and we based the
first version of PhytoSFDM on this simple and classical for-
mulation. In recent years, however, significant efforts have
been made to increase the level of detail of the zooplankton
component in ecosystem models. Approaches are numerous
and include the consideration of different zooplankton func-
tional types, different size classes, and different feeding pref-
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erences and strategies (Banas, 2011; Ward et al., 2012; Prowe
et al., 2012; Wirtz, 2012; Mariani et al., 2013; Vallina et al.,
2014; Ryabov et al., 2015). A trait-based description of zoo-
plankton can help in reducing model complexity while main-
taining an adequate representation of diversity. The selection
of traits to consider for ecosystem models will depend on the
questions under scrutiny. For example, traits that could char-
acterize zooplankton-related processes in ecosystem models
that focus on nutrient cycling are maximum growth rates, sto-
ichiometric requirements, and the size distribution of food
particles (Litchman et al., 2013). Since many zooplankton
traits scale allometrically with body size, scaling laws should
be considered because they are effective ways to generalize
the relationships among different traits and thus to reduce
model complexity (i.e. add size-related functionality without
the need for discretely parameterized zooplankton classes).
Implementing such a diversity of grazing mechanisms and
processes is a natural step forward in the development of
ecosystem models. However, a consistent representation of
different grazing strategies remains an aspect under develop-
ment (Litchman et al., 2013; Smith et al., 2014). PhytoSFDM
constitutes a starting model platform for gradually building
model complexity at different trophic levels.

5 Concluding remarks

Biological communities are complex adaptive systems
(Levin, 1998) characterized by many components and inter-
connections that lead to emergent properties and non-linear
responses. Models help us to formalize and simplify the com-
plexity we observe in nature. This simplification allows us
to render natural phenomena treatable and testable (Levins,
1966; Anderson, 2005, 2010). Over time, however, phyto-
plankton models have grown more complex, computation-
ally more complicated, and often inaccessible to the wider
scientific community, aspects that can all hamper advance-
ments in the field. To help reverse this trend we developed
PhytoSFDM as a tool to promote the use of trait-based mod-
els (whether species-explicit or aggregate models) of marine
ecosystems.

A key decision in modelling is choosing an appropri-
ate level of detail for the problem at hand. For example, a
species-explicit model offers obvious advantages, which ag-
gregate models cannot offer, when the interest lies in under-
standing the relative importance of particular species in pro-
viding certain ecological services or in quantifying the effect
of disruptive selection. Aggregate models, instead, can be
more useful at a higher level of abstraction, when the interest
lies in macroecological properties. In addition, as we have
shown, aggregate models present an advantage with respect
to computation time when compared to full models. The ad-
vantages in terms of reducing complexity and computation
time remain unproven in spatially explicit settings (e.g. in 1-

D and 3-D), although preliminary applications have shown
promising results (Bruggeman, 2009).

PhytoSFDM provides a set of methods, under the open-
source concept, to quantify macroecological properties of
phytoplankton communities, as an alternative to the tradi-
tional discrete, species-explicit approach. This effort, we
hope, will foster our understanding about the role that bio-
diversity plays in shaping marine ecosystems.

6 Code availability

PhytoSFDM is written in Python (version 2.7.x) as a
lightweight and user-friendly package to facilitate use and re-
distribution. We provide PhytoSFDM as free software under
GNU General Public License version 2. The python pack-
age is hosted in (a) GitHUB (https://github.com/SEGGroup/
PhytoSFDM), a software repository that allows for version
control, (b) Zenodo (https://zenodo.org/record/49849), an
open scientific repository, and (c) PyPI (https://pypi.python.
org/pypi/PhytoSFDM), one of the most popular Python pack-
age repositories. To be able to install and operate the pack-
age, the user should be familiar with the Python language
and should have a running Python distribution (preferably
version 2.7.x) that includes the latest versions of the pip
and setuptools libraries. Additional required libraries are
matplotlib, numpy, scipy, and sympy. PhytoSFDM can then
be conveniently installed by typing the following command
from a terminal window:

$ pip install PhytoSFDM

or by downloading the tarball from the GitHub repository.
This is installed using the source file setup.py contained
in the PhytoSFDM folder by typing

$ python setup.py install

The package consists of three main modules: Example,
SizeModels, and EnvForcing. Example is the entry point: it
computes and compares full and aggregate models with the
four treatments of variance (unsustained, fixed, trait diffu-
sion, and immigration) at the testing location in the North
Atlantic Ocean (centred at 47.5◦ N and 15.5◦W). The exam-
ple is run from a terminal by typing

$ PhytoSFDM_example

or from an interactive python shell by typing

>>> import phytosfdm.Example.example
as exmp

>>> exmp.main()

The module SizeModels contains the model variants. Here
the user can (a) modify the default parameters, (b) sym-
bolically solve the derivatives with respect to the trait, and
(c) log-transform mean trait and trait variance. To run the
model at a specific location in an interactive Python shell,
one should type
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>>> from phytosfdm.SizeModels.sizemodels
import SM

>>> Lat=47.5
>>> Lon=344.5
>>> RBB=2.5
>>> SM1= SM(Lat,Lon,RBB,"Imm")

In the above example, the model is executed at a location
in the North Atlantic Ocean centred at 47.5◦ N and 15.5◦W
(here transformed to a scale of 0 to 360◦). RBB (range of
the bounding box) specify the range of the bounding box (in
degrees) for averaging the environmental forcing variables.
The fourth argument SM1 is an object that contains the call
of the function SM, which runs the size model at the specified
location and with the desired treatment for the size variance,
in this case immigration.

The last module, EnvForcing, consists of a class contain-
ing spatially averaged forcing data. The climatological data
have monthly resolution, but we include a method to inter-
polate the data to a daily time step. Spatially averaged and
temporally interpolated forcing at a specific location can be
extracted by typing

>>> MLD=ExtractEnvFor(Lat,Lon,RBB,’mld’)

Additional information on the usage of the package is
contained in the Readme file and in the repository web-
page in GitHUB. The source code of our model is fully
and freely accessible. Users can modify or add new model
variants. This can be done by manipulating the SizeModels
module, which contains model variants as separated meth-
ods within the class SM. By using a version control system
such as GitHUB, users can fork our repository, i.e. create
a copy, which allows one to freely change and experiment
without affecting the original code. Users can also modify
the original code and submit a new version by pulling a
request. More details can be found in our GitHUB reposi-
tory (https://github.com/SEGGroup/PhytoSFDM; Acevedo-
Trejos et al., 2016).

Acknowledgements. We would like to thank Jorn Bruggeman
for his support on earlier versions of the model and for his
suggestions while we were preparing the draft of this paper.
Esteban Acevedo-Trejos and Agostino Merico are supported by the
German Research Foundation (DFG) through priority programme
DynaTrait (DFG-Schwerpunktprogramm 1704, subproject 19).
S. Lan Smith received support from the Japan Science and
Technology Agency (JST) through a CREST project. We are also
grateful to Andrew Yool, Mark Baird, and an anonymous reviewer
whose constructive suggestions helped improve our manuscript.

Edited by: A. Yool
Reviewed by: M. Baird and one anonymous referee

References

Abrams, P., Matsuda, H., and Harada, Y.: Evolutionarily unstable
fitness maxima and stable fitness minima of continuous traits,
Evol. Ecol., 7, 465–487, 1993.

Acevedo-Trejos, E., Brandt, G., Bruggeman, J., and Merico, A.:
Mechanisms shaping phytoplankton community structure and di-
versity in the ocean, Sci. Rep., 5, 8918, doi:10.1038/srep08918,
2015.

Acevedo-Trejos, E., Brandt, G., Smith, S. L., and Merico, A.: Phy-
toSFDM: Phytoplankton Size and Functional Diversity Model,
available at: https://github.com/SEGGroup/PhytoSFDM (last ac-
cess: 10 November 2016), 2016.

Andersen, K. H., Berge, T., Gonçalves, R. J., Hartvig, M.,
Heuschele, J., Hylander, S., Jacobsen, N. S., Lindemann, C.,
Martens, E. A., Neuheimer, A. B., Olson, K., Palacz, A., Prowe,
F., Sainmont, J., Traving, S. J., Visser, A. W., Wadhwa, N., and
Kiørboe, T.: Characteristic sizes of life in the oceans, from bac-
teria to whales, Annu. Rev. Mar. Sci., 8, 1–25, 2015.

Anderson, T. R.: Plankton functional type modelling: running be-
fore we can walk?, J. Plankton Res., 27, 1073–1081, 2005.

Anderson, T. R.: Progress in marine ecosystem modelling and the
unreasonable effectiveness of mathematics, J. Mar. Syst., 81, 4–
11, 2010.

Agustí, S.: Allometric scaling of light absorption and scattering by
phytoplankton cells, Can. J. Fish. Aquat. Sci., 48, 763–767, 1991.

Baird, M. E. and Suthers, I. M.: A size-resolved pelagic ecosystem
model, Ecol. Modell., 203, 185–203, 2007.

Banas, N. S.: Adding complex trophic interactions to a size-spectral
plankton model: Emergent diversity patterns and limits on pre-
dictability, Ecol. Model., 222, 2663–2675, 2011.

Barton, A. D., Dutkiewicz, S., Flierl, G., Bragg, J. G., and Follows,
M. J.: Patterns of diversity in marine phytoplankton, Science,
327, 1509–1511, 2010.

Bonachela, J. A., Klausmeier, C. A., Edwards, K. F., Litchman, E.,
and Levin, S. A.: The role of phytoplankton diversity in the emer-
gent oceanic stoichiometry, J. Plankton Res., 38, 1021–1035,
2015.

Bruggeman, J.: Succession in plankton communities: A trait-based
perspective, PhD thesis, Department of Theoretical Biology,
Vrije Universiteit Amsterdam, the Netherlands, 2009.

Bruggeman, J. and Kooijman, S. A. L. M.: A biodiversity-inspired
approach to aquatic ecosystem modeling, Limnol. Oceanogr., 52,
1533–1544, 2007.

Chisholm, S. W.: Phytoplankton Size in Primary productivity and
biogeochemical cycles in the sea, edited by: Falkowski, P. G. and
Woodhead, A. D., Plenum Press, 213–237, 1992.

Chust, G., Irigoien, X., Chave, J., and Harris, R. P.: Latitudinal
phytoplankton distribution and the neutral theory of biodiversity,
Glob. Ecol. Biogeogr., 22, 531–543, 2013.

Downing, A. S., Hajdu, S., Hjerne, O., Otto, S. A., Blenckner, T.,
Larsson, U., and Winder, M.: Zooming in on size distribution pat-
terns underlying species coexistence in Baltic Sea phytoplank-
ton, Ecol. Lett., 17, 1219–1227, 2014.

Edwards, K. F., Thomas, M. K., Klausmeier, C. A., and Litchman,
E.: Allometric scaling and taxonomic variation in nutrient utiliza-
tion traits and maximum growth rate of phytoplankton, Limnol.
Oceanogr., 57, 554–566, 2012.

Eppley, R.: Temperature and phytoplankton growth in the sea, Fish.
Bull., 70, 1063–1085, 1972.

www.geosci-model-dev.net/9/4071/2016/ Geosci. Model Dev., 9, 4071–4085, 2016

https://github.com/SEGGroup/PhytoSFDM
http://dx.doi.org/10.1038/srep08918
https://github.com/SEGGroup/PhytoSFDM


4084 E. Acevedo-Trejos et al.: PhytoSFDM

Evans, G. and Parslow, J.: A model of annual plankton cycles, Biol.
Oceanogr., 3, 327–347, 1985.

Fasham, M., Ducklow, H. W., and Mckelvie, S. M.: A nitrogen-
based model of plankton dynamics in the oceanic mixed layer, J.
Mar. Res., 48, 591–639, 1990.

Finkel, Z. V. and Irwin, A. J.: Modeling size-dependent photosyn-
thesis: Light absorption and the allometric rule, J. Theor. Biol.,
204, 361–369, 2000.

Finkel, Z. V.: Light absorption and size scaling of light-limited
metabolism in marine diatoms, Limnol. Oceanogr., 46, 86–94,
2001.

Finkel, Z. V., Beardall, J., Flynn, K., Quigg, A., Rees, T. A. V., and
Raven, J. A.: Phytoplankton in a changing world: cell size and
elemental stoichiometry, J. Plankton Res., 32, 119–137, 2010.

Follows, M. J. and Dutkiewicz, S.: Modeling diverse communities
of marine microbes, Annu. Rev. Mar. Sci., 3, 427–451, 2011.

Follows, M. J., Dutkiewicz, S., Grant, S., and Chisholm, S. W.:
Emergent biogeography of microbial communities in a model
ocean, Science, 315, 1843–1846, 2007.

Fulton, E. A., Smith, A. D. M., and Johnson, C. R.: Effect of com-
plexity on marine ecosystem models, Mar. Ecol. Prog. Ser., 253,
1–16, 2003.

Hansen, B., Bjørnsen, P. K., and Hansen, P. J.: The size ratio be-
tween planktonic predators and their prey, Limnol. Oceanogr.,
39, 395–403, 1994.

Hansen, P. J., Bjørnsen, P. K., and Hansen, B. W.: Zooplankton graz-
ing and growth: Scaling within the 2–2,000-µm body size range,
Limnol. Oceanogr., 42, 687–704, 1997.

Hardin, G.: The competitive exclusion principle, Science 131,
1292–1297, 1960.

Hood, R. R., Laws, E. A., Armstrong, R. A., Bates, N. R., Brown,
C. W., Carlson, C. A., Chai, F., Doney, S. C., Falkowski, P. G.,
Feely, R. A., Friedrichs, M. A. M., Landry, M. R., Moore, J. K.,
Nelson, D. M., Richardson, T. L., Salihoglu, B., Schartau, M.,
Toole, D. A., and Wiggert, J. D.: Pelagic functional group mod-
eling: Progress, challenges and prospects, Deep-Sea Res. Pt. II,
53, 459–512, 2006.

Kiørboe, T.: Turbulence, phytoplankton cell size, and the structure
of pelagic food webs, Adv. Mar. Biol., 29, 1–72, 1993.

Levin, S. A.: Ecosystems and the biosphere as complex adaptive
systems, Ecosystems, 1, 431–436, 1998.

Levins, R.: The strategy of model building in population biology,
Am. Sci., 54, 421–431, 1966.

Litchman, E. and Klausmeier, C. A.: Trait-based community ecol-
ogy of phytoplankton, Annu. Rev. Ecol. Evol. Syst. 39, 615–639,
2008.

Litchman, E., Klausmeier, C. A., Schofield, O., and Falkowski, P.
G.: The role of functional traits and trade-offs in structuring
phytoplankton communities: scaling from cellular to ecosystem
level, Ecol. Lett., 10, 1170–1181, 2007.

Litchman, E., de Tezanos Pinto, P., Klausmeier, C. A., Thomas, M.
K., and Yoshiyama, K.: Linking traits to species diversity and
community structure in phytoplankton, Hydrobiologia, 653, 15–
28, 2010.

Litchman, E., Ohman, M. D., and Kiørboe, T.: Trait-based ap-
proaches to zooplankton communities, J. Plankton Res., 35, 473–
484, 2013.

Norberg, J., Swaney, D. P., Dushoff, J., Lin, J., Casagrandi, R., and
Levin, S. A.: Phenotypic diversity and ecosystem functioning in

changing environments: a theoretical framework, P. Natl. Acad.
Sci. USA, 98, 11376–11381, 2001.

Marañón, E.: Cell Size as a Key Determinant of Phytoplankton
Metabolism and Community Structure, Annu. Rev. Mar. Sci., 7,
1–24, 2015.

Marañón, E., Cermeño, P., López-Sandoval, D. C., Rodríguez-
Ramos, T., Sobrino, C., Huete-Ortega, M., Blanco, J. M., and
Rodríguez, J.: Unimodal size scaling of phytoplankton growth
and the size dependence of nutrient uptake and use, Ecol. Lett.,
16, 371–379, 2013.

Mariani, P., Andersen, K. H., Visser, A. W., Barton, A. D., and
Kiørboe, T.: Control of plankton seasonal succession by adap-
tive grazing, Limnol. Oceanogr., 58, 173–184, 2013.

Merico, A., Bruggeman, J., and Wirtz, K.: A trait-based approach
for downscaling complexity in plankton ecosystem models, Ecol.
Model., 220, 3001–3010, 2009.

Merico, A., Brandt, G., Smith, S. L., and Oliver, M.: Sustaining
diversity in trait-based models of phytoplankton communities,
Front. Ecol. Evol., 2, 1–8, 2014.

Monterey, G. I. and Levitus, S.: Seasonal variability of the mixed
layer depth for the world ocean, US Gov. Printing Office, Wash-
ington, DC, USA, 1997.

Prowe, A. E. F., Pahlow, M., Dutkiewicz, S., Follows, M. J., and Os-
chlies, A.: Top-down control of marine phytoplankton diversity
in a global ecosystem model, Prog. Oceanogr., 101, 1–13, 2012.

Ryabov, A. B., Morozov, A., and Blasius, B.: Imperfect prey selec-
tivity of predators promotes biodiversity and irregularity in food
webs, Ecol. Lett., 18, 1262–1269, 2015.

Smith, S. L., Pahlow, M., Merico, A., and Wirtz, K. W.: Optimality-
based modeling of planktonic organisms, Limnol. Oceanogr., 56,
2080–2094, 2011.

Smith, S. L., Merico, A., Wirtz, K. W., and Pahlow, M.: Leaving
misleading legacies behind in plankton ecosystem modelling, J.
Plankton Res., 36, 613–620, 2014.

Smith, S. L., Pahlow, M., Merico, A., Acevedo-Trejos, E., Sasai,
Y., Yoshikawa, C., Sasaoka, K., Fujiki, T., Matsumoto, K., and
Honda, M.: Flexible phytoplankton functional type (FlexPFT)
model: size-scaling of traits and optimal growth, J. Plankton
Res., 38, 977–992, 2015.

Steele, J.: Environmental control of photosynthesis in the sea, Lim-
nol. Oceanogr., 7, 137–150, 1962.

Terseleer, N., Bruggeman, J., Lancelot, C., and Gypens, N.: Trait-
based representation of diatom functional diversity in a plank-
ton functional type model of the eutrophied Southern North Sea,
Limnol. Oceanogr., 59, 1–16, 2014.

Vallina, S. M., Ward, B. A., Dutkiewicz, S., and Follows, M. J.:
Maximal feeding with active prey-switching: A kill-the-winner
functional response and its effect on global diversity and bio-
geography, Prog. Oceanogr., 120, 93–109, 2014.

Ward, B. A., Dutkiewicz, S., Jahn, O., and Follows, M. J.: A
size-structured food-web model for the global ocean, Limnol.
Oceanogr., 57, 1877–1891, 2012.

Wirtz, K.: Non-uniform scaling in phytoplankton growth rate due to
intracellular light and CO2 decline, J. Plankton Res., 33, 1325–
1341, 2011.

Wirtz, K.: Who is eating whom?: Morphology and feeding type de-
termine the size relation between planktonic predators and their
ideal prey, Mar. Ecol. Prog. Ser., 445, 1–12, 2012.

Geosci. Model Dev., 9, 4071–4085, 2016 www.geosci-model-dev.net/9/4071/2016/



E. Acevedo-Trejos et al.: PhytoSFDM 4085

Wirtz, K. W.: Mechanistic origins of variability in phytoplank-
ton dynamics: Part I: niche formation revealed by a size-based
model, Mar. Biol., 160, 2319–2335, 2013.

Wirtz, K. W. and Eckhardt, B.: Effective variables in ecosystem
models with an application to phytoplankton succession, Ecol.
Model., 92, 33–53, 1996.

Wirtz, K. W. and Sommer, U.: Mechanistic origins of variability in
phytoplankton dynamics. Part II: analysis of mesocosm blooms
under climate change scenarios, Mar. Biol., 160, 2503–2516,
2013.

www.geosci-model-dev.net/9/4071/2016/ Geosci. Model Dev., 9, 4071–4085, 2016


	Abstract
	Introduction
	Model description
	Mathematical formulations
	Mixed-layer scheme
	Dynamics of the full phytoplankton community
	Dynamics of the aggregate phytoplankton community

	Environmental forcing

	Test-case simulation
	Comparison of full and aggregate models
	Comparison of variance treatments
	Sensitivity to changes in parameter values
	Computational efficiency

	Strength and weakness of moment-based approximations
	Concluding remarks
	Code availability
	Acknowledgements
	References

