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A B S T R A C T

The initial investigation by local hospital attributed the outbreak of the novel coronavirus disease (COVID-19) to
pneumonia unknown cause that appeared like the severe acute respiratory syndrome (SARS) that occurred in
2003. The World Health Organization has declared COVID-19 as public health emergency after it spread outside
China to numerous countries. Thus, an assessment of the novel coronavirus disease (COVID-19) with novel ap-
proaches is essential to the global debate. This study is the first to develop both time series and panel data models
to construct conceptual tools that examine the nexus between death from COVID-19 and confirmed cases. We
collected daily data on four health indicators namely deaths, confirmed cases, suspected cases, and recovered
cases across 31 Provinces/States in China. Due to the complexities of the COVID-19, we investigated the unob-
served factors including environmental exposures accounting for the disease spread through human-to-human
transmission. We used estimation methods capable of controlling for cross-sectional dependence, endogeneity,
and unobserved heterogeneity. We predict the impulse-response between confirmed cases of COVID-19 and
COVID-19-attributable deaths. Our study reveals that the effect of confirmed cases on the novel coronavirus
attributable deaths is heterogeneous across Provinces/States in China. We find a linear relationship between
COVID-19 attributable deaths and confirmed cases whereas a nonlinear relationship is confirmed for the nexus
between recovery cases and confirmed cases. The empirical evidence reveals that an increase in confirmed cases
by 1% increases coronavirus attributable deaths by ~0.10%–~1.71% (95% CI). Our empirical results confirm the
presence of unobserved heterogeneity and common factors that facilitates the novel coronavirus attributable
deaths caused by increased levels of confirmed cases. Yet, the role of such a medium that facilitates the trans-
mission of COVID-19 remains unclear. We highlight safety precaution and preventive measures to circumvent the
human-to-human transmission.
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1. Introduction

On 31 December 2020, the World Health Organization (WHO)
received information on an outbreak with unknown aetiology detected in
a seafood market located in the city of Wuhan, Hubei Province, China.
The 2019 novel coronavirus was detected in 44 case-patients with
pneumonia with unknown cause between 31 December 2019 to 3
January 2020 by the Chinese authorities [1]. On 11 February 2020,WHO
named the novel coronavirus disease as COVID-19 and declared the in-
fectious disease as a public health emergency, after spreading from China
to other 24 countries [2]. As of 20 February 2020 (04:00 GMT), 76,498
cases had been reported globally including from China (75,245), “Dia-
mond Princess” cruise ship and others (634), South Korea (104), Japan
(94), Singapore (84), Hong Kong (67), Thailand (35), Taiwan (24),
Malaysia (22), Germany (16), Vietnam (16), Australia (15), the US (15),
.com (S.A. Sarkodie).
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France (12), Macau (10), United Arab Emirates (9), UK (9), Canada (8),
Italy (3), Philippines (3), India (3), Iran (2), Russia (2), Spain (2), Nepal
(1), Cambodia (1), Belgium (1), Finland (1), Sweden (1), Egypt (1), and
Sri Lanka (1).

Following the emergence of COVID-19, several studies have exam-
ined the transmission dynamics of the infectious disease [3]. While
clinical, epidemiological, laboratory, and radiological features of
COVID-19 [4] have been reported, phenomenological models using sta-
tistical methods have been used to examine epidemiological data [5, 6].
The COVID-19 is reported to have spread through human-to-human
transmission [3]. However, it might be possible that other unobserved
environmental exposures may have facilitated the rate the disease
spreads through human-to-human transmission. Earlier studies based on
phenomenological models fail to capture unobserved factors and het-
erogeneity, which are useful in understanding cases with limited
2020
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Figure 1. Descriptive statistics of COVID-19 across Provinces/States in China.

Figure 2. Provinces/States distribution of COVID-19 across China (a) deaths (b) Confirmed cases (c) Recovery cases (d) Suspected cases. Q5
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epidemiological data. The complexities of the unobserved factors ac-
counting for COVID-19 underpin this study. Using publicly available data
for 31 Provinces/States across China, this study is the first to develop
both time series and panel data models to examine the nexus between the
2

novel coronavirus attributable deaths and confirmed cases of COVID-19.
We use novel estimation methods capable of accounting for
Provinces/States-specific fixed-effects and unobserved heterogeneity of
the human-to-human transmission.
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Figure 3. Relationship between (a) death and confirmed cases (b) recovery cases and confirmed cases.
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2. Materials & method

2.1. Data description

Data were collated on 20 February 2020 from the Center for Systems
Science and Engineering at John Hopkins University1. The data spans
from 21 January 2020 to 20 February 2020 and were preprocessed from
wide to long, a replica of panel data and time series setting. The data
consisted four health indicators such as deaths, confirmed cases, sus-
pected cases, and recovered cases across 31 Provinces/States in China
1 https://systems.jhu.edu/research/public-health/ncov/.
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3

namely Anhui, Beijing, Chongqing, Fujian, Gansu, Guangdong, Guangxi,
Guizhou, Hainan, Hebei, Heilongjiang, Henan, Hubei, Hunan, Inner
Mongolia, Jiangsu, Jiangxi, Liaoning, Jilin, Ningxia, Qinghai, Shaanxi,
Shandong, Shanxi, Shanghai, Tianjin, Tibet, Sichuan, Zhejiang, Yunnan
and Xinjiang. Our intial observation of data available and presented in
Figure 1 shows a widespread of case-patients in Hubei Province
compared to other locations (Figure 2). This validates the exact location,
the city of Wuhan, where the outbreak was first reported. We observe a
daily average of about 1000 confirmed cases, 60 deaths and 161 recov-
ered cases.

To use appropriate estimation methods, we examined the character-
istics of the data series. We examined whether the relationship between
the novel coronavirus attributable deaths, recovery cases and confirmed

https://systems.jhu.edu/research/public-health/ncov/


Table 1. Parameter estimation of the nexus between novel coronavirus attributable deaths and confirmed cases of COVID-19.

Variable Model 1a Model 2a Model 3a Model 4a Model 5a Model 6b Model 7b

lnDeathst-1 0.8487*** [0.0274] 0.8617*** [0.0381] 0.8617*** [0.0230] 0.8054*** [0.2906] -0.3121*** [0.0703] — 0.8080*** [0.0271]

lnConfirmedCases 0.1091*** [0.0273] 0.0961*** [0.0346] 0.0961*** [0.0209] 1.7075** [0.6739] 1.0252*** [0.3378] 0.9149*** [0.0384] 0.1329*** [0.0166]

constant -0.4061*** [0.1260] -0.3425** [0.1616] -0.3425** [0.1054] -6.1673 [4.8809] — -2.820*** [0.3843] —

Prob > F 0.0000*** 0.0000*** 0.0000*** 0.0113** 0.0000*** 0.0000*** 0.0000***

RMSE — — — 0.1699 0.1600 0.0546 0.0877

R-squared 0.9877 0.9297 0.9865 0.6800 0.8091 0.9998

Obs 319 340 340 361 340 29 28

No of groups 21 21 21 21 21 — —

F-test 0.0032*** — 0.0007*** — — — —

MWALD — — 0.0000*** — — — —

CD test — — — — 0.7075 — —

Notes: Where [.] is the standard error; a denotes model estimation based on panel data setting; b represents modelling based on time series techniques; ***,** represent
statistical significance at 1% and 5% level. lnDeathst-1 is the lagged dependent variable, RMSE is the Root Mean Square Error, R-squared explains the predictive power of
the estimated model, Obs represents observations. MWALD is the modified wald statistic and CD test examines the independence of the residuals.
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cases of COVID-19 was linear or nonlinear. The plot presented in Figure 3
shows that the nexus between deaths and confirmed cases is perfectly
linear, with a predictive power (R-squared) of almost 100% whereas the
relationship between recovery cases and confirmed cases is nonlinear,
with an R-squared of ~97%.
Figure 4. Impulse-Response of confirmed cases of COVID-19 attributable
deaths. Note: The light blue spikes represent the 95% confidence interval.

91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

4

2.2. Model estimation

We developed 7 models comprising of 5 panel data setting and 2 time
series. The selection of estimation methods was based on real-time
reporting of COVID-19 used as a priori expectation. By confirming a
perfectly linear relationship between deaths and confirmed cases, our
models were constructed on such tangent. Model 1 was developed using
the fixed-effects linear model with first-order autoregressive [AR(1)]
disturbances to accommodate for the unevenly spaced data across China,
rendering the panel setting unbalanced. Model 2 was estimated based on
a fixed-effects model with Driscoll-Kraay standard errors to account for
possible heteroskedasticity, autocorrelation and cross-sectional depen-
dence amid missing data and unbalanced panel setting [7]. Model 3 was
estimated using a fixed-effects model with modified Wald (MWALD)
statistic to examine heteroskedasticity in the residuals. Our model of
interest with fixed-effects can be expressed as [8]:

lnDeathsi;t ¼ lnDeathsi;t�1 þ αþ β*lnConfirmedCasesi;t þ vi þ εi;t (1)

Where ln denotes logarithmic transformation to give the variable a
constant variance, Deaths denotes the novel coronavirus attributable
deaths, ConfirmedCases represents confirmed cases, α and β are the con-
stant and coefficient to be estimated, vi is the Provinces/States-specific
fixed-effects and εi;t is the independent and identically distributed error
term across individual Provinces/States i ¼ 1;…;N in time t ¼ 1;…;Ti.

Models 4 and 5 were estimated to account for heterogeneous slopes,
after the parameters of Model 3 violated the normality assumption,
hence, confirming the presence of heteroskedasticity. The common
correlated effects mean group estimation can be specified as [9]:

lnDeathsi;t ¼ βi*lnConfirmedCasesi;t þ ui;t (2)

Where lnConfirmedCasesi;t ¼ α2i þ λi*ft þ γi*gt þ εi;t and ui;t ¼ α1i þ λi*
ft þ εi;t . βi denotes Provinces/States-specific slopes on confirmed cases
and ui;t has unobservables and error term εi;t , α1i denotes the standard
group fixed-effects that account for time-invariant heterogeneity across
Provinces/States. ft represents the unobserved common factor, λi, εi;t and
εi;t are the white noise.

For brevity, the time series models follow a standard equation
expressed as:

lnDeathst ¼ β*lnConfirmedCasest þ εt (3)

3. Results and discussion

The parameter estimation of the relationship between novel corona-
virus attributable deaths and confirmed cases of COVID-19 is presented



3

S.A. Sarkodie, P.A. Owusu Heliyon xxx (xxxx) xxx

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
in Table 1. The estimated models are statistically significant at 5% level
(95% CI) and a corresponding predictive power (R-squared) between
68%-100%. The modified wald statistic (MWALD) of Model 3 rejects the
null hypothesis of homoskedasticity. Meaning that the effect of
confirmed cases on the novel coronavirus attributable deaths is hetero-
geneous across Provinces/States in China. In both panel and time series
models presented, the lagged-dependent variable (LDV) of coronavirus
attributable deaths (lnDeathst-1) is positive and statistically significant at
1% level except Model 5 which shows a significant (99% CI) negative
coefficient. LDV was introduced in the models to control for omitted
variable bias and account for the inertia effects of the reported corona-
virus attributable deaths. The positive coefficient of lnDeathst-1 in almost
all the models reveals that the historical factors of coronavirus attribut-
able deaths are persistent and likely to affect future reported deaths. On
the contrary, when unobserved common factors affecting coronavirus
attributable deaths are controlled in Model 5, the coefficient on LDV
turns negative. Meaning that the inertia effect of historical deaths is
curtailed, hence, reducing the impact of confirmed cases.

The coefficient on the estimated confirmed cases in Table 1 is positive
and statistically significant (95% CI) in both estimated panel and time
series models. The empirical evidence reveals that an increase in
confirmed cases by 1% increases coronavirus attributable deaths by
~0.10%~1.71% (95% CI).

Using the dynamic ARDL simulations estimation technique, we pre-
dicted the counterfactual change in COVID-19 attributable deaths in case
of positive or negative shocks in confirmed cases. The plot presented in
Figure 4 reveals that a positive shock (1%) in confirmed COVID-19-case-
patients will increase attributable deaths from 0.2% to around 0.8% over
the horizon. On the contrary, a 1% negative shock in confirmed cases of
COVID-19 will decline death rates from 0.1% to 0.6%.

Several novel protocols for clinical and epidemiologic investigations
have been outlined to ascertain the clinical features, the pattern of
transmission, severity and risk factors of the novel coronavirus disease
[10]. Our estimated results confirm the presence of unobserved hetero-
geneity and common factors that facilitates the novel coronavirus
attributable deaths caused by increased levels of confirmed cases. How-
ever, the role of the unobserved heterogeneity and common factors that
facilitate the transmission of COVID-19 remains unclear. This corrobo-
rates the findings of the Situation Report – 33 released by WHO. Ac-
cording to the report [10], the role of environmental risk factors in the
COVID-19 transmission process is uncertain. But human-to-human
transmission through the community, household, health facilities and
environmental surfaces remain confirmed [3, 10]. In such a transmission
process, our study reveals a perfectly linear relationship between
confirmed cases and novel coronavirus attributable deaths, as such,
safety precaution and preventive measures are required to circumvent
human-to-human transmission.

4. Conclusions

Our study presented is based on phenomenological models but not a
clinical procedure, hence, care should be taken in the interpretation of
the outcome. We demonstrated that the effect of confirmed cases on
COVID-19 attributable-deaths is perfectly linear whereas the impact of
5

confirmed cases on recovery cases follows a nonlinear path. Our study
suffers from the limitation of early case investigation and historical data,
hence, our estimation results may change at the latter stage of the novel
coronavirus disease (COVID-19). In view of this, we utilized a battery of
estimation approach to increase the sensitivity and robustness of the
models.
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