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1  | INTRODUC TION

Due to the characteristics of nonlinear, time-varying, and high dimen-
sion in the process of microbial fermentation, parameter detection is the 
key to determine the optimal control point in each stage of fermentation 
process (Zhong, He, Pi, & Sun, 2005). With the limitation of hardware 
detection technology, the bacteria concentration of marine lysozyme is 
difficult to measure online in real time and is prone to large errors when 
effective control is applied (Boulkaibet, Belarbi, Bououden, Marwala, & 
Chadli, 2017; Wang et al., 2000). Generalized predictive control (GPC) 
has strong robustness, which is applicable to stochastic systems and 
online identification. It has the strategies of moving horizon optimiza-
tion, multi-step prediction, and feedback compensation in the predictive 

control algorithm, which means that the feedback compensation con-
trol is obtained by optimizing a certain performance index in the moving 
finite time interval,while the requirements of the mathematical model 
are higher when improving the accuracy of predictive control. (Araúzo-
Bravo et al., 2004; Yang, Li, Ding, Guo, & Hao, 2012; Zhu, Liu, Sun, & 
Wang, 2010). The least squares support vector machine (LS-SVM) re-
places the inequality constraint condition in SVM standard algorithm by 
using equality constraints and overcomes the dimensionality disaster 
problem of classical quadratic programming method for solving SVM (Li, 
Su, & Chu, 2007; Liu, Jiang, & Fang, 2008). In the actual lysozyme fer-
mentation process, the fermentation process is a slow time-varying pro-
cess, which does not require high real-time performance because of the 
physiological characteristics of lysozyme itself. Therefore, although the 
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Abstract
Due to the high degree of strong coupling and nonlinearity of marine lysozyme fer-
mentation process, it is difficult to accurately model the mechanism. In order to 
achieve real-time online measurement and effective control of bacterial concentra-
tion during fermentation, a generalized predictive control method based on least 
squares support vector machines is proposed. The particle swarm optimization least 
squares support vector machine (PSO-LS-SVM) model of lysozyme concentration is 
established by optimizing the regularization parameters and the kernel parameters of 
the least squares support vector machine by particle swarm optimization. To avoid 
the nonlinear problems in predictive control, the model is linearized at each sampling 
point and the generalized predictive algorithm is used to predict the bacteria concen-
tration of lysozyme. The experimental simulation shows that the least squares sup-
port vector machine model with particle swarm optimization can achieve good 
prediction effect. The linearized model performs generalized predictive control, 
which makes the total activity of the enzyme increased from 60% to 80% and the 
yield improved by 30%.
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lag caused by the LS-SVM-based prediction model is longer than that 
caused by the SVM-based prediction model, it does not affect the bac-
terial concentration prediction. (Huang, Zhai, Sui, & Chai, 2010; Suykens 
& Vandewalle, 1999; Wang, Zhen, & Zhu, 2013). However, the regular-
ization parameter C and the kernel parameter σ of the LS-SVM model 
have a great influence on the fitting precision and generalization ability. 
Particle swarm optimization (PSO) is a population-based stochastic op-
timization method, which can simultaneously search for more regions in 
the solution space of the target function to be optimized, and solves the 
problem of LS-SVM parameter selection (Li, Tang, & Liu, 2010; Yan & 
Cui, 2013). Therefore, this paper proposes a nonlinear model for estab-
lishing bacteria concentration after optimization of LS-SVM using PSO. 
To avoid solving nonlinear problems in predictive control (Liu, Su, & Zhu, 
2004; Mahmoodi, Poshtan, Jahed-Motlagh, & Montazeri, 2008; Xi, Li, 
& Lin, 2013), the obtained LS-SVM nonlinear model is linearized at each 
sampling point, the generalized predictive control algorithm is used to 
solve multi-step prediction and process control is performed on its pre-
diction parameters.

2  | BAC TERIA CONCENTR ATION 
MODELING ANALYSIS

Lysozyme is an important enzyme preparation, which can hydro-
lyze mucopolysaccharide in pathogenic biomass. According to the 
bacteriolytic characteristics of lysozyme, it can be used in medi-
cal treatment, food preservation, and bioengineering. Especially 
in food preservation, it has been widely used in aquatic products, 
meat products, cakes, sake, wine, and beverages to replace chemi-
cally synthesized food preservatives (Ren et al., 2013; Wang et al., 
2000; Zhao, Bai, Zhang, & Wu, 2010). However, the bacteria con-
centration is too high or too low, which can make the fermentation 
broth viscous or dilute, and the poor mass transfer conditions will 
make the product enzyme difficult to synthesize in the fermenta-
tion process. Therefore, reasonable control of bacteria concentra-
tion can increase enzyme activity and yield. Through the in-depth 
analysis of the process mechanism, the substrate feed rate has a 
great influence on the bacteria concentration, and the reasonable 
feed rate can improve the product activity (Huang, Sun, Sun, Liu, & 
Nie, 2013; Zhu, He, Sun, & Wang, 2013). The lysozyme concentra-
tion model can be expressed in the following nonlinear form: 

where f(g) represents a complex nonlinear function.

3  | ESTABLISHMENT OF L S-SVM MODEL 
BA SED ON PSO OPTIMIZ ATION

3.1 | Establishment of LS-SVM model

There is given a training set {xi, yi} with N data, and xi is input data, yi 
is output data, xi ⊂ Rn, yi ⊂ R, i = 1, 2, ···, N.

The LS-SVM model can use the following functions in the 
eigenspace:

where ϕ(•):Rn → Rnh is a function that maps the input data of the 
original space to the higher-dimensional eigenspace, w is weight vec-
tor, δ is constant deviation, w ∊ Rnh, δ ∊ R.

The LS-SVM regression optimization problem is as follows:

The constraint is as follows:

where ei is error variable, ei ∊ R, C is regularization parameter, C > 0.
In solving the above optimization problem, the Lagrangian func-

tion is introduced as:

where αi is the Lagrange multiplier, αi ∊ R.
The optimization problem solved according to the KKT condition 

has the following solution:

where y = [y1, y2, ···, yN], α = [α1, α2, ···, αN], Γij = φ(xi)
Tφ(xj) = k(xi, x), 

i, j = 1, 2, ···, N, k(x, x) is a kernel function, I is unit matrix.
In this paper, the Gauss radial basis function (RBF) is used as a 

kernel function (Lu & Yang, 2007; Zhu, Ling, Wang, Hao, & Ding, 
2018). After obtaining δ and α in Equation (6), w can be further cal-
culated, and the nonlinear model obtained by LS-SVM is as follows:

When solving the above equation, the kernel parameter σ and the 
regularization parameter C have a great influence on the model fit-
ting accuracy and generalization ability, in order to achieve the pre-
diction effect, the two variables need to be PSO optimized.

3.2 | PSO-based parameter optimization

The basic idea of the particle swarm algorithm is to find the optimal 
solution through information transmission and information sharing 
among individuals in a group (Gu, Zhao, & Wu, 2010; Yao, Cai, & 
Zhang, 2009). Assuming that in a D-dimensional search space, popu-
lation X = (X1, X2, ···, Xn) consists of n particles, where the i-th particle 
is represented as a D-dimensional vector Xi = (xi1, xi2, ···, xiD)T that is 
the position of the i-th particle in the D-dimensional search space. 
According to the objective function, the fitness value correspond-
ing to each particle position Xi can be calculated, which represents 
the pros and cons of the particle. The optimal position of the i-th 
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particle is Pi = (Pi1, Pi2, ···, PiD)T, whose corresponding fitness value is 
called the individual optimal solution Pbest,i; the optimal position of 
the population is Pg = (Pg1, Pg2, …, PgD), whose corresponding fitness 
value is called the global optimal solution Gbest,i. The search speed of 
particle i is Vi = (Vi1, Vi2, ···, ViD)T, and the particle updates its speed 
and position through individual value and group extremum during 
the iterative process as follows: 

where w is the inertia weight, d = 1, 2, ···, n, Vid is the particle veloc-
ity, c1 and c2 are acceleration factors, r1 and r2 are random numbers 
distributed in the range of [0,1].

In order to prevent the blind search of particles, whose position 
and speed are limited to a certain interval [−Xmax, Xmax], [−Vmax, Vmax].

3.3 | Establishment of LS-SVM model based on PSO 
optimization

To sum up, the specific steps of the least squares support vector 
machine modeling based on PSO are as follows:

1.	 A set of {C, σ} is randomly generated to establish the LS-SVM 
regression model. The particle swarm dimension is set to 2, 
the number of particles in each particle swarm is 20, the 
number of iterations is 150, c1 = 1.5, c2 = 1.7, and the regu-
larization parameter C and the kernel parameter σ are selected 
within the optimization range of 0~2,000 and 0.01~100, 
respectively.

2.	 The average absolute percentage error is chosen as the fitness 
function of the PSO algorithm, whose expression is as follows: 

where yi and ŷi are the actual value and model prediction value, re-
spectively, and N is the total number of training data. 
According to the size of each particle value, {C, σ} is substituted 

into the LS-SVM reconstruction regression model, and the 
corresponding fitness value of each particle can be obtained 
from Equation (9) through the calculation results of the cali-
bration sample.

3.	 According to calculating the fitness value of each particle, which is 
compared with the fitness value of individual optimal solution 
Pbest,i and global optimal solution Gbest,i. If it is better than Pbest,i 
and Gbest,i, update Pbest,i and Gbest,i, otherwise keep the original 
data.

4.	 According to the PSO optimization Equations (8) and (9), the ve-
locity and position of the particles are adjusted to produce new 
species.

5.	 Check the end condition. If the condition is satisfied, the optimi-
zation is ended; otherwise, go to step (3) until the maximum num-
ber of iterations is satisfied.

6.	 The LS-SVM is assigned to the {C, σ} obtained after the optimization 
is completed. The prediction model is established by using the test 
data, whose prediction result of the test sample is obtained.

The LS-SVM model that has been optimized is linearized at the 
sampling point x0 by using the Taylor formula, and the linearization 
model can be obtained through the method as follows: 

where A(z−1) = 1 + a1z−1 + ··· + anz−n, B(z−1) = 1 + b1z−1 + ··· + bmz−m, ∂ is a 
constant.

4 | GENERALIZED PREDICTION ALGORITHM 
FOR BACTERIA CONCENTRATION

After a simple model transformation, the constant ∂   is discre-
tized, and the following controlled autoregressive integral moving 
(CARIMA) average model is obtained as follows: 

where Δ = 1−z−1 is a difference operator, ɛ(t) is an unrelated random 
sequence that represents the effect of random noise, and the dis-
cretized constant ∂ is contained in the random sequence ɛ(t).

After continuing processing according to the standard GPC 
method (Deng, Huang, Fei, Zhen, & Jiang, 2014; Guo, Chen, Zhu, & 
Hu, 2002), the multi-step prediction vector expression that can out-
put the predicted value is as follows:

where Ŷ= [ŷ(t+1|t),⋯ ,ŷ(t+P|t)]T is the forecast output, U = [Δu(t), ···, 
Δu(t + L−1)]T is the control increment, F = [f1(t), f2(t), ···, fP(t)]T is a vec-
tor consisted of the free phases in the output prediction sequence, 
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The moving horizon optimization performance index at t time in 

GPC takes the following form:
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control system is stable, but the control variable changes greatly in 
the actual selection (Liu, 2007.). The parameter λ( j) is generally set 
as a constant λ.

The reference trajectory is introduced to track it well for the out-
put value:

 

where β is the adjustment factor in interval [0, 1), yr is the reference 
trajectory, and ys is the set value for next moment.

When W = [w(t + 1), ···, w(t + P)]T, the formula (13) can be ex-
pressed as:

When �J
�U

=0, the control amount can be obtained as follows:

where dT is the first line of (GTG + λI)−1GT.
The generalized predictive control block diagram of marine lyso-

zyme bacteria concentration based on LS-VM is shown in Figure 1.

5  | TEST AND RESULT ANALYSIS

The experimental data are from the fermentation control system 
platform of Jiangsu University. The fermenter model is RT-100L-Y, 
and the fermented variety is lysozyme. Batch fermentation experi-
ments are performed according to the medium formulation provided 
by the fermentation process. After high-temperature sterilization of 
the fermenter steam, the tank pressure is controlled at 0.04 MPa by 
adjusting the gas output, the temperature is set at 32°C, the stir-
ring speed is 400 r/min, the dissolved oxygen range is 35%–40%, 
and the pH is set at 7.3. In the experimental fermentation conditions, 
the control system collects the data of the substrate feed rate f that 
is obtained by the flow meter every hour and transmits it from the 
lower computer to the upper computer to form a database (Zhu et al., 
2010). Under normal fermentation conditions, the bacteria concen-
tration is measured by dry weight method. The fermentation broth is 

(14)w(t+ j)=�w(t+ j−1)+ (1−�) ⋅ys, j=1,2,⋯ ,N

(15)w(t)=yr(t)
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F IGURE  1 Generalized predictive 
control block diagram of lysozyme 
bacteria concentration based on least 
squares support vector machine (LS-SVM)
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F IGURE  2 Simulation result of bacteria concentration
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F IGURE  3 Prediction error curve of bacteria concentration
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centrifuged at 20 ml/hr, washed with distilled water, and centrifuged 
twice; then, it is transferred to a constant-weight measuring flask, 
dried to constant weight at 105°C, and weighed; the bacteria con-
centration (g/L) can be calculated (Sun, Wang, Huang, & Ji, 2010). 
According to the data collected by the upper computer, a batch of 
data is taken from one fermentation cycle, and 10 batches of data 
are extracted. The first nine batches of data are used as the training 
sample set, and the last batch is used as a test set. The simulation 
results are shown in Figures 2 and 3.

In the comparison of the prediction models in Figures 2 and 3, 
the LS-SVM prediction model based on PSO optimization is obvi-
ously better than LS-SVM model in fitting degree and prediction 
precision and has good modeling ability. Where the optimized pa-
rameters after PSO optimization are C = 508.06 and σ = 8.32.

After data preprocessing, the modeling method introduced 
in this paper is used to train the data, which is verified the fitting 
degree and prediction accuracy with test data, and select the root 
mean square error (RMSE) and maximum absolute error (MAXE) as 
the evaluation criteria for model prediction accuracy.

 

where yi and ŷi are the actual value and model prediction value, re-
spectively, and N is the total number of training data. Two types of 
model simulation results are shown in Table 1.
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TABLE  1 Performance contrast between PSO-LS-SVM and 
LS-SVM

Prediction model

Bacteria concentration

RMSE MAXE

PSO-LS-SVM model 0.1032 0.486

LS-SVM model 0.7835 1.493

Note. LS-SVM: least squares support vector machine; MAXE: maximum 
absolute error; PSO-LS-SVM: particle swarm optimization least squares 
support vector machine; RMSE: root mean square error.

F IGURE  4 Simulation curve of bacteria concentration predictive 
control
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F IGURE  5 Controlled output simulation curve of substrate feed 
rate
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F IGURE  6 Experimental curve of bacteria concentration 
predictive control
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F IGURE  7 Controlled output experimental curve of substrate 
feed rate
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By using the linearization method of this paper, the established 
LS-SVM model is linearized and identified by Taylor:

where − 10 ≤ Δu ≤ 10, 10 ≤ u ≤ 55.
During the accelerated and peak period of enzyme production, the 

cell increased logarithmically, and the activity and yield of the enzyme 
could be improved by controlling the bacteria concentration in this pe-
riod. The predictive control is performed at the first 360 min of loga-
rithmic growth period, where the prediction time domain is P = 5, the 
control time domain is  Nu = 3, the initial output is u = 15, the initial in-
crement is Δu = 4.5, the initial output is y = 14.5, and the simulation step 
length is 1 min. In the acceleration period of enzyme production, the 
bacteria concentration is not too high, which is set to 20 g/L; at the peak 
period of enzyme production, the growth rate of the bacteria is slowed 
down due to the rapid consumption of the substrate, which is set to 
35 g/L to accelerate the substrate feeding rate and improve the enzyme 
activity and yield. The simulation results are shown in Figures 4 and 5.

From Figures 4 and 5, it can be seen that the LS-SVM-based pre-
dictive control outputs the better tracking reference trajectory and 
the output is relatively stable, and the error between predicted con-
trol value and set value is mostly at [−0.5, 0.5], the minority is at [-1, 
1]., which is consistent with the control requirements for the bacteria 
concentration in practical engineering.

Figures 4 and 5 are model-based simulation results, so the input 
can be set as a step signal to study and analyze the performance of 
the control method. In the actual fermentation process, the bacte-
rial concentration will not be changed rapidly, which is a slow time-
varying process, so the reference input also needs to be a relatively 
slow rising process. Figures 6 and 7 are control process diagrams of 
the actual fermentation process.

Under such control, the bacteria concentration grows fast during 
the growing phase and remains high during the producing phase, 
which is good for the enzyme productivity. The total activity of the 
enzyme is increased from 60% to 80%, and the yield is improved by 
30% in the actual fermentation process.

6  | CONCLUSION

In this paper, the generalized predictive control based on least squares 
support vector machine is proposed. After the regularization param-
eter C and kernel parameter σ of the model are optimized by using 
the particle swarm optimization algorithm, the LS-SVM model of the 
bacterial concentration is established, which has high prediction ac-
curacy and high fitting degree. To avoid solving nonlinear problems, 
the LS-SVM model is linearized at each sampling point, and the gen-
eralized predictive control algorithm is used to solve the multi-step 
prediction. The experimental results show that the method has good 
adaptability and robustness to the control of bacterial concentration 
in the fermentation process. It can be applied to the control of phys-
icochemical parameters and biological indicators in the general fer-
mentation process.
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