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a target symbol is then decoded from an enhanced
P300 response [3–5]. However, in RSVP tasks sub-
jects are at risk to miss the target, due to fatigue
during long stimulation sequences, as well as effects
like attentional blinking [6]. A third approach is
flicker stimulation, where visual stimuli flickering at
selective frequencies are presented at different loca-
tions in the peripheral visual field. Shifts of atten-
tion to one or the other peripheral location are
then decoded from power changes of the steady-state
visual evoked potential (SSVEP) [7]. However, the
accuracy of detecting SSVEPs from covert attention
is largely reduced compared to overt attention. A
fourth approach is to use auditory stimulation aim-
ing at decoding event-related potentials (ERPs) [8, 9]
or steady state responses [10]. But, auditory BCIs
achieve considerably lower information transfer rates
[11] and often still depend on vision to navigate
through the system. An alternative channel to deliver
stimuli is tactile stimulation, which has been used to
decode BCI commands fromP300 responses [12] and
somatosensory steady-state evoked potentials [13]. In
the latter study only 50%of participants could achieve
control.

Most BCIs that use attention-related brain activ-
ity as a control signal employ versions of the oddball
paradigm and hence, focus on time as the feature
that distinguishes the choice alternatives [14]. This
typically requires long stimulation intervals, which
renders the selection process time-inefficient and
requires a high mental effort. An alternative brain
mechanism suitable for BCI control is spatial atten-
tion, which is a particularly practicable approach
when eye movements are impaired. That is, the spa-
tial focus of attention can be covertly allocated to
items in the visual field without the need to move
the eyes [15, 16]. Importantly, a single stimulus can
contain multiple target alternatives simultaneously,
which allows for higher coding efficiency based on a
comparably low number of trials. A prime stimula-
tion paradigm would be the visual search task, where
subjects focus attention to a target item among sim-
ultaneously presented nontarget items. Luck et al [17]
discovered that searching for a target elicits an elec-
trophysiological response in visual cortex referred to
as N2pc (N2 posterior contralateral). The N2pc is a
lateralized negative polarity modulation of the ERP
response in the N2 time range (180–300 m) with
stronger activity modulation over the posterior scalp
contralateral to the target item. The N2pc therefore
allows to assess a covertly attended item, which is loc-
ated in the left or right visual field [18]. Numerous
studies have investigated the N2pc, making it one of
the best-characterized visual attention components
in EEG and MEG (e.g. [17, 19–21],). Compared to
the P300 that can be elicited by diverse target evalu-
ation or categorization processes, the N2pc is a neural
correlate very specific for visuo-spatial item selec-
tion. It shows a typical maximum at parieto-occipital

electrode sites PO7/PO8. At a given electrode, the
N2pc is derived by subtracting the response elicited
by a target presented ipsilateral to the electrode from
the response elicited by a target presented contralat-
eral to the electrode [22]. With this approach, low-
level sensory activity is removed, with only lateral-
ized attention-related brain activity remaining. There
is firm evidence that the N2pc reflects the focusing
of attention onto the target in visual search [19], and
that it allows to track sequential shifts of attention
[18]. TheN2pcwill be elicited as soon as subjects shift
their attention to a target in the left or right hemi-
field. Tomaximize measured N2pc responses, the tar-
get should be easily detectable and presented among
competing distractor items [21, 23–25]. Notably, spa-
tial target selection processes can be derived for single
stimulus arrays, i.e. there is no need for preceding
presentations of non-target stimuli as typically used
in oddball paradigms to elicit the P300. Most import-
antly, the N2pc is a comparably large amplitudemod-
ulation of the ERP, and therefore a very robust signal
reliably appearing in single observers, which makes it
an ideal tool to control BCIs.

Nonetheless, the number of studies investigating
the N2pc as a control signal is low. Awni et al [26]
reported that averaging three trials for classification
of the N2pc yields results comparable to other BCIs
which implement covert attention. In a recent work
it has been shown that an optimal subset of correl-
ated components permits detection of target loca-
tions in single trials, superior to a common classi-
fication approach [27]. Single trial classification of
visuospatial attention has also been investigated using
hybridN2pc and SSVEP features [28]. Another group
tested single trial classification of the N2pc in aerial
images [29], where they showed that the presence of
an airplane and the visual hemifield in which it was
present can be determined from the electroencephal-
ogram (EEG). Fahrenfort et al [30], found evidence
that not only horizontally lateralized visual presenta-
tion but also presentation on the vertical midline can
be decoded fromEEGdata using a linear discriminant
classifier. While the aforementioned studies investig-
ated the theoretical feasibility of the N2pc to control a
BCI, there is no BCI implementation, in which users
actively controlled the system and received feedback
indicating the successful recognition of their atten-
tion shifts. Therefore, we present a novel approach
that is suitable to control such kind of BCI.

Specifically, we present a closed-loop BCI that
decodes which target color a user attended by determ-
ining the visual field (left/right) of its presentation
from EEG signals. To discriminate four different col-
ors, we presented all of them simultaneously in the
visual search display but each color was associated
with a unique sequence of left/right presentations,
similarly to the principle in P300-based BCIs where
each symbol is associated with a unique sequence
of intensifications. The essential difference to P300
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paradigms is that they depend on an oddball event,
i.e. the time point of a rarely occurring event is
determined from brain signals. Here, the target is
present in every stimulus event, only differing in the
visual hemifield where it is shown. Thus, some P300
BCIs might depend on the human’s ability to shift
attention to peripheral locations but they decode tem-
poral (present vs. absent target) rather than spatial
differences in the brain response. Consequently, in
matrix spellers the accuracy considerably decreases
when subjects are not allowed to focus the tar-
get but the center of the matrix [31]. In contrast,
our approach decodes the spatial differences (left vs.
right) in an attention task because there are no stimuli
where the target is absent. This makes the approach
particularly useful for gaze-independent BCIs.We use
a spatial filter approach that proved to be useful for
classification of event-related potentials [32–34] and
which we modified such that it allows us to discrim-
inate the ERP modulations underlying the N2pc. We
show that the features, extracted from training data
and driving the BCI control, clearly represent char-
acteristics of the N2pc, confirming that the BCI was
driven by this marker of spatial attention.

2. Methods

2.1. Participants and recordings
In this study 24 volunteers (15 female, mean age
27.8 years, σ = 5.4 years) with normal or correc-
ted to normal vision participated after they gave their
written informed consent. The EEG was recorded in
an acoustically shielded cabin, with the data being
instantaneously processed to generate feedback from
the decoded attention shifts. We recorded electroen-
cephalographic activity at 29 electrode sites accord-
ing to an extended ten-twenty system [], referenced
against the right mastoid using a BrainAmpDC amp-
lifier and Ag/AgCl electrodes. The sampling rate was
set to 250 Hz. For the online decoding we used only
parietal and occipital electrodes (see figure 1), as the
N2pc is known to show its topographical maximum
at these sites [35]. Additionally, we recorded the hori-
zontal electrooculogram (EOG) from electrodes at
the outer canthi of both eyes and the vertical EOG
from Fp2 and an electrode below the right eye for
offline evaluation of eye movements. The study was
approved by the local ethics committee of the Otto-
von-Guericke University, Magdeburg, and conducted
in accordance with the principles embodied in the
Declaration of Helsinki.

2.2. Paradigm
The participants’ task was to navigate an abstract
avatar towards a destination mark (a white cross).
Figure 2 shows the temporal structure of a trial,
required to achieve a brain-controlled movement
step of the avatar. The movement direction of the

Figure 1. Layout of recorded EEG electrode positions
(bold font indicates online processed channels).

avatar was controlled by shifting attention to a spe-
cific target item, which randomly appeared in the left
or right visual field. Each movement direction was
associated with a specific color (blue/left, red/up, yel-
low/right, green/down), which was permanently vis-
ible at the margin of the playing field. The parti-
cipants were instructed to fixate the avatar during
the whole experiment and to prevent any eye move-
ments except tracking the avatar after the end of the
stimulation phase. At the beginning of every trial,
the avatar changed its color for 2000 ms to indic-
ate the requested movement direction (e.g. red for
moving the avatar up). Thereafter, a sequence of 12
visual stimuli started, in which items of all colors
were presented simultaneously, either in the left or in
the right visual field. The sequence was presented in
pseudorandom order, such that the number of occur-
rences of pairwise colors on the same side wasminim-
ized and each color was presented six times in the left
and six times in the right visual field. To focus atten-
tion onto the target-colored item, participants were
instructed to discriminate whether the ring with the
cued target color had a gap, and they were told that a
correct judgment would improve steering the avatar.
The four items (colored rings), which formed a stim-
ulus, were positioned at a horizontal visual angle of
4.26�and vertical visual angles of 1.64�and 2.73� rel-
ative to the avatar. Stimuli were shown for 250 ms
with an interstimulus interval of 500 ms–750 ms. As
soon as all required EEG data were transferred to the
BCI computer, the feedback was generated accord-
ing to the decoding procedure described in section
2.4 and displayed for 2000 ms, thereby giving the
user feedback and time to prepare for the next trial.
The feedback was presented by moving the avatar in
the direction associated with the decoded color, plus
showing emotional feedback (happy, neutral or sad
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facial expression) and by providing a sum of scores
associated with the emotion (score + 1: smiling face
if decoding agreed with cued direction; score 0: neut-
ral face if decoding did not agree with cued direction
but the distance to the target cross was not increased
by the movement; score �1: sad face if distance to
the target cross was increased by the movement or
the movement would imply a pass over the margin).
If the avatar reached the destination mark, the face
flickered for 2 s at 3 Hz, additional scores (number
of the steps covered) were added and a new destina-
tionmark was positioned.We define a trial as the pro-
cess of presenting the cue, directing attention to the
target color while the stimulus sequence was presen-
ted and presenting the feedback (see figure 2). After
each trial we trained the classifier with the recently
acquired data, i.e. we applied the decoder training as
described in section 2.4. Several trials formed a run, in
which subjects tried to achieve a maximal score. The
run finished with the trial that exceeded a total run
length of five minutes. Each participant performed
eight runs, which amounted to an average total of 174
trials (σ = 10).

2.3. Stimulus sequence
Each trial consisted of 12 stimulus onsets during
which participants had to pay attention to the target
drawn in the cued color. The decoding task was to
detect whether an item in the left or in the right visual
field was attended. The shape of the presented items
could be either a ring or an upright Landolt-C. The
presence of the gap was irrelevant for decoding the
side of target presentation. It appeared randomly in a
given trial and served to better focus spatial attention
onto the precise location of the target. Since we aimed
to discriminate four classes with only two condi-
tions, on either side two potential targets were presen-
ted and hence, multiple stimulus combinations were
required to determine the item the participant atten-
ded to. The stimulus sequence was pseudo-random
such that (i) each color appeared exactly six times at
either side, (ii) each possible pairing of the four col-
ors appeared exactly eight times on opposite sides and
four times on the same side. The top and bottom pos-
itions were also varied for each color but they were
not relevant for decoding (see table 1 for stimulus
combinations). The rationale behind this approach is
that each color is associated with a unique sequence
of left/right presentations. We hypothesize that the
lateralized differences in hemispheric ERPs correlate
with the left/right presentations of the attended color.
Thus, the aim of the decoder was to find the sequence
of left/right presentations that fits the brain response
best.

2.4. Decoding algorithm
All data processing was performed using MATLAB®

R2016a. In order to determine the most probably
attended sequence, we used a statistical learning

Table 1. Sequence of stimulus item positions. Colors red, green,
blue and yellow were randomly assigned to the position sequence
of lines #1 to #4. Each column shows the positions (Lt—top left,
Lb—bottom left, Rt—top right, Rb—bottom right) at one
stimulus onset.

Color Stimulus position

#1 Lt Lt Rb Lt Lb Rb Rb Lt Rt Lt Rb Rb

#2 Lb Rb Lt Rt Rt Lb Lb Rb Lt Lb Rt Rt

#3 Rt Lb Rt Lb Rb Lt Lt Rt Rb Rb Lt Lb
#4 Rb Rt Lb Rb Lt Rt Rt Lb Lb Rt Lb Lt

technique that autonomously estimated the optimal
spatial weighting of channels and simultaneously
estimated the time course of event-related potentials
in surrogate channels. We first introduced a variant
of this method in [36] and verified its efficiency in a
P300-based closed-loop BCI in [33]. After a stimula-
tion phase was finished, we treated the interval start-
ing from the first stimulus and ending at the start of
the feedback phase as one trial by cutting out that seg-
ment of raw EEG data. Subsequently, we band-pass
filtered the data from 1.0 Hz to 12.5 Hz using an 8th
order Butterworth zero-phase digital IIR filter (filtfilt
function in MATLAB®) and resampled the data with
a 50 Hz sampling rate to reduce the amount of data
and to remove redundancy.

Let these preprocessed data be amatrixX 2 Rn�m

with m the number of channels and n the number
of samples in a stimulus sequence. For each potential
target color c we modeled a reference function Yc 2
Rn� k, where k is the number of samples within the
processing interval following a single stimulus onset.
Here we chose a processing interval length of 720 ms
which resulted in k = 36 samples. Each column i in
Yc represents a reference function, modeling the ith

sampling point after stimulus onset ts. We set Yc
j;i to

+ 1 if j = ts + i and the potential target c appeared in
the left visual field, to �1 if j = ts + i and the poten-
tial target c appeared in the right visual field and to 0
otherwise. In other words, we have embedded into Yc

the identity matrix Ik following a presentation of c on
the left and �Ik following a presentation on the right.
With the matrix multiplication

�X = YcTX (1)

Yc can be considered to be a weighting matrix that
subtracts the sum across stimuli in X representing
right visual field stimulation from the sum across
stimuli in X representing left visual field stimula-
tion and thus, �X 2 Rk�m represents the difference of
pooled brain data following left presentations and
pooled brain data following right presentations. This
is essentially what is typically done when isolating the
N2pc component, i.e. considering difference waves
[18, 20]. While determining the mean difference per
channel is sufficient for grand mean analysis, differ-
ent steps are required to classify ERPs in short EEG
recordings.Herewe use canonical correlation analysis

4



J. Neural Eng. 17 (2020) 056012 C Reichert et al

Figure 2. Structure of one trial. The direction of expected movement was cued by the respective color (here red for an upward
move). During presentation of the stimulus sequence, subjects fixated the avatar but covertly directed their attention to the item
(ring) of the cued color. Each colored ring switched the position in a pseudo-random but unique order such that the attended
color can be determined from ERPs that are slightly differently evoked in the hemispheres and known as N2pc. The decoded color
was fed back by a move of the avatar in the direction that accords to that color. A move in the cued direction was indicated by a
smiling face and an increase of the score, an increase of the distance to the target cross was indicated by a sad face and a decrease
of the score, and a move not cued but decreasing the distance to the target cross was indicated by a neutral face.

(CCA) to estimate a set of coefficients serving as spa-
tial filter from a set of training data:

(u0;v0) = argmax
u;v

corr
�
uTX;vTY

�
: (2)

Here, EEG data of all trials are concatenated in X and
the corresponding reference functions of the known
target color are concatenated in Y. The coefficients in
u can be considered to represent a spatial filter that
combine the channels to a surrogate channel u0while
coefficients in vmodulate the waveform v0 that max-
imally correlates with that surrogate channel. CCA
reveals min f m;kg components where the canonical
correlation coefficient is decreasing with each com-
ponent. This approach reduces dimensionality and
noise, is data-driven and transforms EEG signals such
that we can determine the attended sequence by an
ordinary correlation measure. Note that the weight-
ings in Y enable the CCA to perform optimization
subject to the difference waves rather than ERPs.
Thus, small modulations of ERPs can be isolated as
it is done in typical N2pc studies.

In order to estimate u and v, we used a set of
training data where Y was modeled according to the
sequence of stimulus positions assigned to the target
color the participant attended during acquisition of
data in X. We used the MATLAB® function canoncorr
of the Statistics and Machine Learning Toolbox™ to
solve equation (2). This procedure we refer to as
decoder training. It is applied online after each trial
using all training data available and offline in every
step of cross-validation using the training data set.

Once the canonical coefficients are determined,
they can be used as spatial filter on new data. Given
new data in matrix X obtained from a new trial, we
calculated the correlation

�c = corr
�
uTX;vTYc

�
(3)

for each color c. The color that yielded the highest
average correlation with the first two components
was decoded as the attended color. This proced-
ure we refer to as decoding. It is applied online
after each presentation of a stimulation sequence
to determine the feedback to be presented and in
offline analyses in every step of cross-validation
using the left-out test data set. See figure 3 for an
example, how the target color is determined from
stimulus sequences. See the supplementary figure
S1(https://stacks.iop.org/JNE/17/056012/mmedia) in
the appendix for flow charts of the decoder training
and decoding algorithm.

2.5. Evaluation
In offline analyses we used leave-one-run-out cross-
validation where decoder training was performed
with data from seven runs and decoding was per-
formed on the left-out run. We calculated the decod-
ing accuracy as the percentage of correctly decoded
trials. The chance level and confidence interval were
determined bymeans of permutation testing. For this
purpose, we permuted the labels that assign the target
color to the EEG data across trials and performed a
cross validation analysis with this data set. To estim-
ate a confidence interval for guessing, we repeated
this permutation 1000 times for each participant and
fitted the achieved decoding accuracies to a normal
cumulative distribution function.

For statistical comparisons between two sets of
individual decoding accuracies we performed a Wil-
coxon signed-rank test, unless stated otherwise.

As a measure of the trade-off between accuracy
and speed of a system, the information transfer rate
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Figure 3. Decoding example. The gray lines represent the
surrogate channel signal uTX during stimulation which is
compared with each color-related signal vTYc (black lines).
Vertical dashed lines denote the onset of a stimulus. Each
color is associated to a sequence of left/right presentations,
which are modeled in Yc and are reflected by
representations of v for left and � v for right presentations
in vTYc. For each color the correlation according to
equation (3) is calculated. The highest correlation
coefficient indicates the sequence, most similar to the brain
signals (here #3) and is selected as target color.

(ITR) has been established in BCI research. We cal-
culated this measure according to [37] and report it
where appropriate.

ITR =
60

T

�
log2N+ Plog2P+ ( 1� P) log2

1� P

N� 1

�
(4)

where N is the number of trials, P is the decoding
accuracy and T is the trial duration in seconds, yields
the ITR in bit min�1.

2.6. Contribution of ERPs
In typical ERP studies including most N2pc studies,
the grand average ERP is calculated from a group
of subjects without considering individual differences
and involving all trials which showed behavioral evid-
ence that the search taskwas correctly processed.Here
we compare this common approach with a single trial
approach where we distinguish between trials that
could be correctly predicted in a single-trial classi-
fication and trials that could not correctly be pre-
dicted, to uncover the cause of potentially failing
BCI control. Specifically, we applied the decoding
algorithm in a cross-validation scheme to single stim-
ulus presentations, in order to discriminate between
targets presented in the left versus the right visual
field. Note that the determination of canonical com-
ponents is identical with that in the sequence decod-
ing approach because the modeling of the reference
functions reveals the same matrices X and Y. In
the left-out data, the correlations (equation (3)) of
the first two canonical components were averaged.
This measure gauges the similarity of brain signals
to left and right target presentations, respectively.
Trials yielding a negative correlation were classified
as left target presentation, and trials with a positive

correlation as right target presentation. Depending
on the individual decoding accuracy, we determined
subsets of trials representing confident and unconfid-
ent predictions. Specifically, we kept half of all cor-
rectly predicted trials as confident predictions and
rejected those where jρj was low. Likewise, we kept
half of all incorrectly predicted trials as unconfid-
ent predictions and rejected those where jρj was low.
This approach discards trials with highest uncertainty
of the learning algorithm’s decision. Using the sub-
sets of confident predictions and unconfident predic-
tions, we calculated grand average data for the whole
group of subjects to reveal the difference between cor-
rectly and incorrectly decoded brain signals. Further-
more, we determined the canonical components of
the whole group to find out which features are gen-
erally used by our data-driven decoding approach.

3. Results

3.1. Decoding performance
Most participants (22 out of 24) generated online
control commands with an accuracy higher than 55%
(chance level: 25%). The average decoding accur-
acy was 68.4% (σ = 16.7%). Half of the parti-
cipants achieved more than 70% correctly decoded
commands (figure 4(a)). The critical accuracy level
of 70% is considered to be required to effect-
ively control a BCI [38, 39]. Note that for online
decoding the training data set was increased with
every new trial. In contrast, in offline decoding
we can use much more training data when per-
forming cross-validation, revealing a better estim-
ate of the long-term performance. Therefore, we
performed leave-one-run-out cross-validations in all
subsequently reported analyses.

We performed permutation tests using the
same channels as we used for the feedback genera-
tion during the experiment. The permutation tests
revealed a mean chance level of 25.0% (σ = 0.17%),
an upper 95% confidence interval of 31.9%
(σ = 0.39%) and an upper 99.9% confidence inter-
val of 38.0% (σ = 0.68%). This implies that decod-
ing accuracies higher than 38% can be considered
significantly different (p < 0.001) from a guessing
classifier.

Using our data-driven decoding algorithm, we
compared different sets of channels to evaluate the
performance of the parieto-occipital (PO) channel
set (used online, bold labels in figure 1), the fronto-
central (FC) channels (not used online), the full
channel set, as well as EOG only. With the cross-
validation approach the average decoding accuracy
increases significantly (p < 0.001) from 68.4% to
78.7% (σ = 17.4%) using the PO channel set, com-
pared to the online performance. The higher num-
ber of training samples, which permits a better estim-
ate of a well-trained BCI, results in a larger number
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previous studies our BCI-illiteracy rate is comparably
low. Only 8% of participants were not able to con-
trol the BCI. BCI-illiteracy is an often-reported issue
frequently observed in BCIs that are based on motor
imagery [46] and amount to a total of 15%–30% of
the population [47]. In this respect our study excels
other approaches. The reason why BCI control is not
achievable in some people is still debated. Differences
in anatomical structures of individual brains aremost
likely to play a major role [48] giving rise to a high
variability of imagery in the population [49]. While
individual differences are often not in the focus and
averaged out in studies targeting group level effects,
they have to be taken into account in BCI setups.
Here, classifiers are trained on individual brain sig-
nals, resulting in a distribution of performance over
subjects.

To generate feedback, we decoded spatial atten-
tion from parieto-occipital channels, where the N2pc
typically shows amaximum[50].Weused a spatial fil-
tering algorithmwhich determines channel contribu-
tions from a given channel set and thereby considers
individual differences in the evoked brain patterns,
preventing the requirement of elaborate channel
selection strategies [51, 52]. In offline analyses we
also evaluated the performance of the fronto-central
channels and the EOG channels, which were not used
for online decoding. Although the number of errors
was significantly higher compared to misclassifica-
tions revealed by the parieto-occipital channel set,
the achieved accuracies were above chance, poten-
tially due to eye-movements and activity in frontal
cortex contributing to the side-decoding. Given that
the present study was performed in healthy subjects
without impairments of eye-movements, uninten-
tional small saccades might have accompanied shifts
of spatial attention. Nevertheless, alone the fact that
the parieto-occipital channels provide the highest
decoding accuracy, which did not correlate with the
accuracy achieved with the EOG across subjects,
indicates that the features that drive the discrimina-
tion of lateralized target presentation originate from
the visual cortex areas, consistent with source localiz-
ation analyses of the N2pc [20].

An accepted metric to validate BCI performance
is the information transfer rate, which represents a
measure of the accuracy/speed tradeoff. We investig-
ated how accuracy and ITR changes with the number
of stimuli and consequently with the time required to
induce a command. While accuracy improved with
a higher number of stimuli, the ITR showed a max-
imum at half of the actual presentation time in four
class decoding and at even shorter presentation time
in two class decoding. Given these results we would
opt for more reliable decoding at longer stimulation
time rather than maximizing the ITR by accepting
more errors. We consider the ITR to be a subop-
timal metric for validating BCIs because its baseline

value corresponds to the chance level and not to the
level of effective control. Furthermore, if short clas-
sification intervals are used and the time the brain
needs to process the feedback is ignored, the ITR
might be overestimated. For example, Xu et al [28]
tested a hybrid SSVEP/N2pc paradigm and calculated
an ITR of 23.6 bit min�1, assuming that the bin-
ary classification with an accuracy of 72.9% can be
performed every 400 ms. They compared their res-
ult with 15 other studies on gaze-independent BCIs
of which 8 achieved ITRs exceeding our results. In
the review by Riccio et al [11], where several gaze-
independent BCIs were listed, 8 of the 37 reported
ITRs were higher than in our study. Only one of
these BCIs used visual spatial attention as discrim-
inative feature, which was determined by SSVEPs
and achieved only 0.91 bit min�1 on average [53].

A more recent study based on this paradigm exten-
ded the detection of the SSVEP signal by addition-
ally using the P300 signal and alpha lateralization and

achieved a maximum average ITR of 0.9 bit min�1

[54]. Another recent BCI implementation based on
the P300 response used affective auditory stimuli
to detect the participants’ response to dichotomous
questions gaze-independently and achieved an aver-
age accuracy of 81% [55]. Gaze-independent BCIs
implementing an RSVP spelling system have been
reported to approach ITRs up to 20.3 bitmin�1 [3, 5].
It has been shown that motion of the rapidly presen-
ted items is advantageous compared to static stim-
uli, achieving an average decoding accuracy of 92.7%
in a 36 choices task [56]. However, in these stud-
ies up to 360 stimuli were presented at a fast pace

which requires a high cognitive load to perceive the

target. The visual search approach we presented here
could therefore serve as an alternative to RSVP as

it requires lower mental effort and might achieve

improved performance when presentation paramet-
ers are optimized in future research.

5. Conclusion

Wepresented a newmethod to control a BCI focusing
exclusively on spatial attention, independent of gaze

shifts using ERP decoding of the N2pc response. The
results show that the N2pc can be reliably decoded
from short stimulus sequences, which renders our

method a time-efficient approach for attaining highly
accurate discrimination of multiple commands and

even higher accuracy for binary decisions. Future
work will focus on a simplification of the stimulus

design (larger items, less choice alternatives), to make
it suitable for locked-in patients suffering from low

vision. The here proposedN2pc-controlled BCI could
become a superior alternative to BCIs that fail in

patients with impaired eye movements and a limited
capability to perform long stimulation sessions.
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