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a b s t r a c t 

The momentary global functional state of the brain is reflected in its electric field configuration and cluster an- 

alytical approaches have consistently shown four configurations, referred to as EEG microstate classes A to D. 

Changes in microstate parameters are associated with a number of neuropsychiatric disorders, task performance, 

and mental state establishing their relevance for cognition. However, the common practice to use eye-closed 

resting state data to assess the temporal dynamics of microstate parameters might induce systematic confounds 

related to vigilance levels. Here, we studied the dynamics of microstate parameters in two independent data sets 

and showed that the parameters of microstates are strongly associated with vigilance level assessed both by EEG 

power analysis and fMRI global signal. We found that the duration and contribution of microstate class C, as well 

as transition probabilities towards microstate class C were positively associated with vigilance, whereas the sign 

was reversed for microstate classes A and B. Furthermore, in looking for the origins of the correspondence be- 

tween microstates and vigilance level, we found Granger-causal effects of vigilance levels on microstate sequence 

parameters. Collectively, our findings suggest that duration and occurrence of microstates have a different origin 

and possibly reflect different physiological processes. Finally, our findings indicate the need for taking vigilance 

levels into consideration in resting-sate EEG investigations. 
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. Introduction 

The topographical distribution of brain electrical potentials reflects

he large-scale brain activity which can be effectively measured using

ultichannel scalp EEG ( Fallgatter et al., 1997 , Fallgatter et al., 2001 ,

allez et al., 2007 , Lehmann & Skrandies, 1984 ). Intriguingly, these to-

ographical configurations do not change randomly but remain quasi-

table for a short period of time of around 80 milliseconds before rapidly

witching to another quasi-stable topography. These reoccurring stable

eometrical patterns are referred to as EEG microstates ( Lehmann et al.,

987 ). Clustering approaches have consistently revealed four prototypi-

al topographies which are sufficient to explain around 80% of variance

n resting-state recordings ( Khanna et al., 2014 , Khanna et al., 2015 ,
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oenig et al., 2002 , Michel & Koenig, 2017 ), where the polarity can

nvert reflecting oscillations of the dominant generators. 

As expected, the temporal characteristics of EEG microstate se-

uences change in response to a large number of external and internal

timulations. These include but are not limited to content of sponta-

eous thoughts ( Lehmann et al., 2010 ), behavioral ( Dimitriadis et al.,

015 , Milz et al., 2016 , Seitzman et al., 2017 ) and global brain state

 Faber et al., 2005 , Katayama et al., 2007 ) as well as pharmacologi-

al manipulations ( Schiller et al., 2019 ). These characteristics are dif-

erent in patients suffering from neuropsychiatric disorders, such as

chizophrenia, depression, dementia and multiple others (for a review

ee Khanna et al., 2015 , Michel & Koenig, 2017 ). 

An important but often neglected aspect of these works, however,

s that most of these studies were conducted using eyes-closed resting
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d  
tate EEG recordings alone. During typical eyes-closed rest, subjects tend

o sequentially transit from complete wakefulness towards drowsiness.

agliazucchi and Lafus in 2014 showed that likelihood of subjects falling

sleep during eyes-closed recordings is high, and approximately half

f the participants loose wakefulness after 10 minutes ( Tagliazucchi &

aufs, 2014 ). While the probability of subjects falling sleep varies de-

ending on the experimental conditions ( Tagliazucchi & Laufs, 2014 ),

ajority of subjects experience drowsiness, an intermediate state be-

ween wakefulness and sleep onset ( Mathis & Hess, 2009 ) characterized

y slowed reactions and reduced attention ( Cori et al., 2019 ). Transition

rom complete wakefulness to sleep onset is characterized by strong oc-

ipital alpha power increase immediately after closing the eyes that is

ollowed up by anteriorization of alpha power focus ( De Gennaro et al.,

005 ) and subsequent increase of delta and theta activity indicating fur-

her transition to drowsiness ( Olbrich et al., 2009 , Strijkstra et al., 2003 ).

As classification of EEG microstate classes is strongly dependent on

he power of alpha frequency ( Lehmann et al., 1987 ), it is reasonable to

ypothesize that the temporal characteristics of EEG microstates might

e affected by vigilance changes. Since patients suffering from neuropsy-

hiatric disorders are known to have altered vigilance regulation pattern

 Hegerl & Hensch, 2014 , Olbrich et al., 2012 , Strauss et al., 2015 ), this

ypothesis, should it get confirmed, can have strong implications in in-

erpreting EEG microstate alterations in a clinical context (for a related

opic see Zanesco et al., 2020 ). 

To test this hypothesis, we investigated the relation of the character-

stics of EEG microstate parameters with vigilance levels using two in-

ependent data sets of simultaneous eyes-closed EEG/fMRI resting state

ecordings. These datasets allowed us to 1) test the association of EEG

icrostate parameters with vigilance estimates based on EEG as well as

MRI metrics, and 2) assess potential causal relationship between vigi-

ance loss and changes in temporal dynamics of EEG microstate charac-

eristics. 

. Methods 

.1. Data Acquisition 

The analysis was performed on two independent data sets of simulta-

eous EEG/fMRI recordings. The first study is registered at ClinicalTri-

ls.gov, number NCT02602275 (date of registration: 28/10/2015) and

pproved by the ethics committee of the University of Magdeburg as

ell as the Competent Authority (Federal Institute for Drugs and Medi-

al Devices). The second study was approved by the Ethics Committee of

he University of Tübingen, Germany. A written informed consent was

igned by each participant prior to any study participation. 

.1.1. Data set 1 

The first data set includes 12-min eyes-closed resting-state recordings

f 39 healthy male volunteers (mean age 43.7 ± 9.8) over one session

f simultaneous EEG and 3-Tesla fMRI. EEG data were acquired using

he BrainAmp MR system (Brain Products) with a 64-channel EasyCap.

ne channel placed on the back was used for ECG detection. AFz was

sed as reference electrode and FCz as ground electrode. The sampling

ate was 5000 Hz. To increase the quality of EEG in simultaneous EEG-

MRI recordings, EEG cap was augmented with six carbon wire loops

CWLs) ( van der Meer et al., 2016 ). Four CWLs were placed on the

uter surface of the EEG cap at the left and right frontal and left and

ight posterior locations, and two CWLs were attached to the cables con-

ecting the EEG cap to the EEG amplifier (BrainAmpMR Plus). Imaging

ata were acquired on a 3 Tesla Philips whole body MRI system (Philips

edical Systems, Hamburg, Germany). First, structural T1-weighted im-

ges for spatial normalization were measured using a turbo field echo

TFE) sequence (274 sagittal slices covering the whole brain, flip an-

le = 8°, 256 × 256 matrix, voxel size = 2.5 × 2.5 × 3 mm 

3 ). Whole

rain BOLD resting-state data were acquired over 34 axial slices using

n echo planar imaging ( Randerath et al., ) sequence (TR = 2,000 ms,
E = 30 ms, flip angle = 90°, 96 × 94 matrix, field of view = 24 cm,

oxel size = 2.5 × 2.5 × 3 mm 

3 ). 

.1.2. Data set 2 

The second data set includes 10-min eyes-closed resting-state record-

ngs of 20 healthy male volunteers (mean age 26.8 ± 7.6) over one ses-

ion of simultaneous EEG and 3-Tesla fMRI. EEG data were acquired

ith the same parameters as in data set 1. Imaging data were acquired

n a 3 Tesla Siemens Prisma whole body MRI system (Siemens Medical

olutions, Erlangen, Germany). First, structural T1-weighted images for

patial normalization were measured using a three ‐dimensional magne-

ization ‐prepared rapid gradient echo (MP ‐RAGE) sequence (192 sagit-

al slices covering the whole brain, flip angle = 9°, 256 × 256 matrix,

oxel size = 1 × 1 × 1 mm 

3 , PE-GRAPPA factor 2). Whole brain BOLD

esting-state data were acquired over 30 axial slices using an echo pla-

ar imaging ( Randerath et al ., 2017) sequence (TR = 1,800 ms, TE = 35

s, flip angle = 79°, 64 × 64 matrix, field of view = 19.2 cm, voxel

ize = 3 × 3 × 4 mm 

3 ). 

.2. Data Preprocessing 

.2.1. Electroencephalography 

First, gradient artifacts were removed from the EEG data by a mo-

ion informed template subtraction realized by the Bergen EEG-fMRI

oolbox ( Moosmann et al., 2009 ) using a MRI template waveform ob-

ained from 25 MRI artifacts in a sliding window manner ( Allen et al.,

000 ). Next, EEG data was first bandpass filtered between 0.3Hz to

00Hz and down-sampled to 1000Hz. The helium pump and ballisto-

ardiac (BCG) artifacts were then removed using the Carbon-wire loop

echnique ( van der Meer et al., 2016 ). Next, the data were segmented

nto 2s and 1.8s epochs for the data set 1 and 2 respectively (i.e. equiv-

lent to the TR of the BOLD resting-state scans), and the epochs con-

aining muscle and head movement artifacts (outliers in spectral power

etween 110 and 140 Hz) were removed. The channels that contained

ore than 50% of epochs with artifacts were interpolated using routines

rovided by EEGLAB ( Delorme & Makeig, 2004 ). Finally, ICA decom-

osition of the EEG data was performed and components reflecting eye

ovements, continuous muscle activity and residual MRI-artefacts were

emoved. Six subjects from data set 1 and one subject from data set 2

ere excluded from further analysis because of their low EEG quality or

echnical problems during data acquisition. 

.2.2. Functional MRI 

fMRI data were preprocessed using SPM12 (FIL, Wellcome Trust Cen-

re for Human Neuroimaging, UCL, London, UK) toolbox. The first three

olumes of each recording were excluded from the analysis. The func-

ional corrections included slice time correction and realignment to the

rst image. The structural T1-weighted volume was registered to the

ean functional image and segmented, in order to normalize functional

nd structural images to the Montreal Neurological Institute (MNI) tem-

late brain. Normalized functional volumes were then smoothed with a

hree-dimensional Gaussian kernel of 6 mm full-width-half-maximum.

inally, each voxel time-course was normalized by subtracting the mean

alue and dividing the resulting difference to the mean value. Global sig-

al time course was then estimated by averaging the normalized time-

eries across all voxels with a gray matter tissue probability of at least

0% (based on tissue probability maps from the SPM12 toolbox). The

lobal signal time-series were smoothed by calculating the mean values

ithin a non-overlapping window of 3 TR. 

.2.3. Microstate extraction 

EEG microstate (MS) analysis was performed separately for each

ataset using the EEGLAB plugin for Microstates version 1.1, developed
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Fig. 1. Microstate extraction and the parameters (A) Schematic representation of the microstate extraction procedure: 1) Global Field Power (GFP) is calculated at 

each time point of the multichannel EEG recording. 2) The head-surface potential maps at the peaks of the GFP curve are extracted and submitted to the clustering 

algorithm to reveal the dominant topographies (EEG microstates). 3) The original maps at peaks of the GFP curve are assigned to one of the microstate classes A, B, 

C, or D based on the degree of the spatial similarity with the microstate maps. (B) Head-surface topographies of the four EEG microstate classes for data set 1 (on 

the left) and data set 2 (on the right) during eyes closed resting. C: The microstate parameters for the four microstate classes (mean ± standard deviation). 
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y Thomas König ( http://www.thomaskoenig.ch/index.php/software/

icrostates-in-eeglab ). Artefact-free EEG data were re-referenced to av-

rage reference, bandpass filtered between 2 and 20 Hz and further

own-sampled to 250 Hz. The Global Field Power (GFP) was calcu-

ated as the root of the mean of the squared potential differences at

ll electrodes from the mean of instantaneous potentials across elec-

rodes. Since the topography remains stable around peaks of the GFP,

hey are the best representative of the momentary map topography in

erms of signal to-noise ratio ( Koenig et al., 2005 ). All maps marked as

FP peaks were extracted and submitted to a modified k-means cluster-

ng algorithm to deduce four classes of map topographies (microstates)

hat maximally explain the variance of the GFP peak map topographies.

hese four classes of map topographies were then submitted to a full

ermutation procedure ( Koenig et al., 1999 ) to compute mean classes

cross participants. Using the mean microstate classes across subjects as

emplates, for all participants the EEG topographies at the moments of

FP peaks were assigned to one of these four microstates based on maxi-

al absolute value of Pearson correlation. Successive GFP peak maps as-

igned to the same class were recognized as belonging to one microstate.

ime points between GFP peaks were assigned to the microstate class

f the temporally closest GFP peak ( Fig. 1 A). In each epoch the time

oints before the first and after the last detected GFP peak were ex-

luded because microstates cannot be determined in these points. For

ach microstate class and each epoch, four parameters were estimated

.e. duration (i.e. mean time spent in the current MS class), occurrence

i.e. frequency of appearance of the current MS class), contribution (i.e.

ercentage of total time of recording spent in the current MS class),

nd transition probability. As the observed transition probability might

e affected by differences in occurrence between microstate classes, we

lso estimated a random transition probability model as described by

ehmann et al. ( Lehmann et al., 2005 ). The resulting transition proba-

ility was calculated as the difference between the observed transition

robability and the one estimated from the random transition probabil-
 w
ty model. To get rid of the fast fluctuations, the time course of the mi-

rostate parameters was smoothed by calculating the mean value within

 non-overlapping window of 3 TR (resulting in 6 s and 5.6 s window

ength for dataset 1 and 2 respectively). 

.3. Estimation of vigilance level 

As the EEG recordings did not contain electrooculography data, the

se of conventional vigilance calculation algorithm (VIGALL; Vigilance

lgorithm Leipzig) ( Olbrich et al., 2009 ) was not suitable for these data.

o obtain the temporal dynamics of vigilance fluctuation, power spectral

ensity of EEG was estimated for each channel using non-overlapping

amming window (data set 1: 500 points, 2.0s temporal width. data set

: 450 points, 1.8s temporal width). The temporal resolution of the spec-

rogram was equivalent to the TR of fMRI resting state scans (i.e. 2s and

.8s for the data set 1 and 2 respectively). Next, we estimated the global

pectrogram by computing the root mean square (rms) value across all

hannels at each frequency. Then, vigilance time-series were calculated

s rms amplitude in the alpha frequency band (7-13 Hz) divided by the

ms amplitudes in the delta and theta frequency band (1-7 Hz) at each

ime point. The similar approach was used by ( Falahpour et al., 2018 ).

o evaluate the reliability of the vigilance measure, vigilance scores for

ata set 1 were extracted using VIGALL 2.1 ( Hegerl et al., 2017 ) and a

orrelation analysis comparing the outputs of the two approaches was

erformed (for details see Appendix A ). Additionally, the individual EEG

ata were visually inspected for the indicators of the early sleep stage

sleep spindles and K-complexes) that were present in the EEG of only

wo subjects (two K-complexes in one subject and several instances of

-complexes in the window from 5.2 – 7.6 min of the recording) in

ata set 1. Due to rare occurrence of these events, these subjects were

ot excluded from the further analysis. To omit the fast fluctuations,

he vigilance time-series were smoothed by calculating the mean value

ithin a non-overlapping window of 3 TR. 

http://www.thomaskoenig.ch/index.php/software/microstates-in-eeglab
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.4. Statistical analysis 

.4.1. Assessment of the association between vigilance level, microstate 

arameters, and the global signal 

We analyzed the association between microstate parameters and vig-

lance on two levels. First, accounting for the between subject variability

 Tagliazucchi & Laufs, 2014 ), we estimated the association between vig-

lance level and microstate parameters in terms of the Pearson correla-

ion between mean vigilance and mean values of microstate parameters

cross subjects. To account for multiple testing, results were adjusted

sing False Discovery Rate (FDR) correction over 12 comparisons (for

etails see Section 1.4.2). 

Second, we inspected the temporal correlations between microstate

arameters and vigilance level. For each subject, the Pearson correlation

etween the vigilance time-series and the time courses of each one of

he microstate parameters were calculated. To account for the potential

nflation of the Pearson correlation coefficients caused by long-term au-

ocorrelation present in EEG data ( Allefeld et al., 2008 ), we corrected the

ests using a novel correction approach ( Afyouni et al., 2019 ). xDF ac-

ounts for distinct autocorrelation in each time series for instantaneous

nd lagged cross-correlation. We used one-sample t-tests on the xDF-

djusted z-scored correlation coefficients to estimate the group level ef-

ects. Results were corrected using FDR correction over 12 comparisons

for details see Section 1.4.2). To investigate frequency dependence of

he microstate parameters, we repeated the analysis of the EEG fre-

uency power in alpha and delta + theta frequency ranges and microstate

arameters (for details see Appendix B ). 

To investigate the association of the temporal dynamics of the mi-

rostate parameters with the global signal, vigilance and microstate pa-

ameters’ time-series were convolved with the canonical hemodynamic

esponse function of SPM12 toolbox (FIL, Wellcome Trust Centre for Hu-

an Neuroimaging, UCL, London, UK) to account for the hemodynamic

elay. For each subject the linear Pearson correlation between the vigi-

ance time-series and the time course of the fMRI global signal as well as

he linear Pearson correlation between each microstate parameter and

he time course of the fMRI global signal were calculated. We used one-

ample t-tests on the xDF-adjusted z-scored correlation coefficients to

stimate the group level association. Results were adjusted using FDR

orrection over 12 comparisons (for details see section 1.4.2). 

.4.2. Multiple comparisons 

The EEG microstate parameters are strongly interrelated (i.e. higher

ccurrence and longer duration lead to higher contribution of the mi-

rostate and higher occurrence is linked to increased transition prob-

bilities). However, the dependence of the transition probabilities and

ccurrence was already accounted for, as the transition probabilities are

stimated as the difference between the observed and the estimated from

he random transition probability model ( Lehmann et al., 2005 ) ones

see Microstate extraction section for details). Therefore, results were

djusted using False Discovery Rate (FDR) correction over 12 compar-

sons (either 4 microstate classes x 3 parameters (duration, occurrence,

nd contribution) or 12 transition probabilities). 

.4.3. Multivariate pattern classification 

To test if the univariate correlations observed in previous correla-

ion analysis allow for a temporal reconstruction of the vigilance level,

e used support vector machine regression to predict the vigilance

ime-series based on the parameters of microstates. The prediction was

ased on twenty-four parameters of microstates (4xDuration, 4xOccur-

ence, 4xContribution, 12 Transition probabilities). To account for the

etween-subject variability, the values of each microstate parameter

ere normalized between 0 and 1 by subtracting the minimum and di-

iding to the difference between maximal and minimal values of pa-

ameter for the whole time-course of the subject. The classification was

one using support vector machine regression implemented in MATLAB
unction fitrsvm, linear kernel, box constraint of 1 and Karush-Kuhn-

ucker (KKT) violation tolerance of 0.001. We used subject level 2-fold

ross-validation, that is, half of the subjects was used for training and

he other nonoverlapping half were used to test the model. The whole

rocedure was repeated 100 times where the subjects were randomly

ssigned to the train and test sets. Performance of the model was esti-

ated in terms of Pearson correlation between estimated and measured

igilance time-series. To test against the null distribution, we randomly

wapped the microstate parameter time courses across different subjects

nd repeated the prediction procedure 1000 times. Finally, we tested if

he effects can be transferred across data sets. To do this, we used sup-

ort vector machine regression with the same settings. We trained the

odel on the data of all subjects from the first data set and tested on

he data of all subjects from the second data set and vice versa. To test

gainst the null distribution, we randomly swapped the microstate pa-

ameter time courses across different subjects within a training data set

nd repeated the prediction procedure 1000 times. 

.4.4. Causal effects assessment 

To test for potential causal effects between microstate parameters

nd vigilance fluctuations, we calculated Granger causality (GC) which

s a well-established measure of lag-based predictive causality. To this

nd, we used the MVGC toolbox ( Barnett & Seth, 2014 ) where we cal-

ulated GC between time courses of the microstate parameters and vigi-

ance time-series. For each participant within the two datasets, for each

icrostate class and each microstate parameter, we first estimated the

ptimal lag based on the Bayesian information criterion (BIC). Since for

ost of the subjects the optimal model order (lag steps) was 1 (89.2%

nd 87.7% for the data set 1 and 2 respectively), we used this value for

ll other subjects. We then calculated time-domain pairwise-conditional

C values with a model order of 1 using the source and target pairs mi-

rostate parameter/vigilance. To estimate directionality, we obtained

elta GC values, contrasting direction and modality. Hence, to estimate

he extent to which the vigilance time-series (Vig) Granger-causes the

uration-based time-series of microstate A (MSAduration), GC values

or the direction MSAduration → Vig were subtracted from GC values

or the direction Vig → MSAduration resulting in a delta GC value. For

tatistical analyses, we bootstrapped the distribution of the mean delta

C values across all subjects with 50000 repetitions using bootci in Mat-

ab2018a. We then calculated p boot -values by summing cases for which

he bootstrapped mean delta GC value, depending on the direction of the

ffect, exceeded or went below zero and divided the sum by the num-

er of iterations. Thus, positive delta GC value would indicate causal

ffects of vigilance on the microstate parameter, while negative would

ndicate modulation in opposite direction. Finally, to obtain two-tailed

 boot -values we multiplied these values by two. 

. Results 

.1. EEG microstates 

Four EEG microstate classes ( Fig. 1 B) explained on average 77.8 ±
.9% and 76. 1 ± 3.6% of the total topographic variance across partic-

pants for data sets 1 and 2 respectively. Fig. 1 C shows mean duration,

ean occurrence, and mean contribution for two data sets. The parame-

ers of microstates are well in line with ranges reported in the literature

 Khanna et al., 2015 , Kikuchi et al., 2011 , Kindler et al., 2011 , Milz et al.,

016 ). 

.2. Correlation between vigilance level and microstate parameters 

Pearson correlation between mean vigilance levels and mean values

f microstate parameters ( Fig. 2 ) revealed significant positive associa-

ion of the mean vigilance level with mean duration and contribution

f microstate class C in both investigated data sets. Mean occurrence

f microstate class B was negatively correlated with vigilance levels in
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Fig. 2. Association of the mean vigilance level and mean values of the EEG microstate parameters of the four microstate classes during eyes closed resting for the 

two data sets. A: Top panel: duration, middle panel: occurrence, bottom panel: contribution. Each dot represents data of one subject. Data for the first dataset are 

presented in circles and solid lines, data for the second dataset are presented in crosses and dashed lines. Mean duration and contribution of the microstate class C 

were positively, while occurrence of the microstates class B was negatively associated with vigilance level in both investigated datasets. Also, for the first dataset we 

observe negative association of the occurrence of the microstate class A with vigilance. B: The transition probabilities of the transitions between the four microstate 

classes. Red arrows represent positive association with vigilance level, blue – negative. The thickness of the line and the number of the stars corresponds to the p-value 

(p < 0.001 – thick / ∗ ∗ ∗ , 0.001 < p < 0.01 – medium / ∗ ∗ , 0.01 < p < 0.05 – thin / ∗ , trend level (p < 0.065) – dashed / #) after FDR correction for 12 comparisons. 

For both data sets mean transition probabilities towards microstate class C were positively, while transition probabilities from microstate class D towards microstate 

class A were negatively associated with vigilance levels. 
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c  
he first data set and showed a considerable trend toward significance

p = 0.058) in the second data set. Also, occurrence and contribution

f the microstate class A showed negative, while duration of microstate

lass D showed positive association with mean vigilance level with (see

ppendix Table C1 for details). Consistent with these findings, we found

 significant positive association of probability of transitions towards

icrostate class C from microstate class A (see Appendix Table C2 for

etails) and a significant trend towards a negative association of prob-

bility of transitions from microstate class D towards microstate class

 (data set 1: p = 0.0638 data set 2: p = 0.0499) with vigilance levels.

nterestingly, the higher vigilance level was characterized by increased

uration of the microstate class C and decreased occurrence of the mi-

rostate class B. Also, the pathway of the transitions between different

icrostate classes was altered together with changes in vigilance level,

ith higher probability for transitions towards microstate class C. 

In line with the findings in the previous section, temporal correlation

etween vigilance time-series and the time courses showed significant

ositive association of the time courses of the duration and contribu-

ion of the microstate class C with vigilance. The time courses of the

ccurrence and contribution of the microstate classes A and B were neg-

tively associated with vigilance ( Fig. 3 A). However, we also observed,

hat the time course of the duration of the microstate class D was posi-

ively associated with vigilance time-series (see Appendix Table D1 for

etails). Also, we observed a positive correlation between the vigilance

ime course and the time courses of the transition probability for the

ransitions from the microstate class A towards microstate class C (data

et 1: p < 0.001, data set 2: p = 0.064). The other associations did not

c  
how consistent results for the two data sets (see Appendix Table D2 for

etails). 

.3. Multivariate pattern classification of the full vigilance time-series 

ased on the microstate parameters 

The temporal reconstruction of the vigilance level based on the pa-

ameters of the EEG microstates using support vector machine regres-

ion showed that both within- and between-dataset predictions are pos-

ible ( Fig. 4 ). For both data sets, correlation between estimated and

easured vigilance time-series were significantly above chance level (p

 0.001). Notably the test and train accuracies for cross dataset tests

re quite comparable (Train data set 1, Test data set 2: r train = 0.66,

 test = 0.51; Train data set 2, Test data set 1: r train = 0.57, r test = 0.63)

hich speaks for the successful transfer of vigilance metrics across two

atasets while the exact r-values are potentially affected by different

ample size of two data sets. 

.4. Correlation between time course of microstate parameters and BOLD 

lobal signal 

We found significant negative correlation between the time course of

igilance levels and the time course of the global signal for both datasets

data set 1: t = -6.21, p < 6 × 10-7, data set 2: t = -4.35, p = 4 × 10-

). The time courses of the duration and contribution of the microstate

lass C were negatively (data set 1: p = 0.014, data set 2: p = 0.046)

orrelated with global signal and the time course of contribution of mi-
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Fig. 3. Association between the vigilance 

time-series and the time courses of the EEG 

microstate parameters during eyes closed rest- 

ing for the two data sets. A: Top panel: dura- 

tion, middle panel: occurrence, bottom panel: 

contribution. Bars show group average xDF ad- 

justed Z-scored correlation coefficients for the 

first (black) and second dataset (white), error 

bars represent standard deviation of the mean. 

Stars correspond to the significance levels after 

FDR correction for 12 comparisons (p < 0.001 

- ∗ ∗ ∗ , 0.001 < p < 0.01 – ∗ ∗ , 0.01 < p < 0.05 –
∗ ). Time courses of the duration and contribu- 

tion of the microstate class C as well as dura- 

tion of the microstate class D were positively, 

while time courses of the occurrence and con- 

tribution of the microstates class A and B were 

negatively associated with change of vigilance 

level in both investigated data sets. B: The tran- 

sition probabilities of the transitions between 

the four microstate classes. Red arrows repre- 

sent positive association, blue – negative. The 

thickness of the line corresponds to the p-value 

(p < 0.001 – thick, 0.001 < p < 0.01 – medium, 

0.01 < p < 0.05 – thin, trend level (p < 0.065) 

- dashed) after FDR correction for 12 compar- 

isons. For both data sets time courses of the 

transition probabilities for transitions from mi- 

crostate class A towards microstate class C were positively associated with vigilance time-series. 

Fig. 4. Prediction of the vigilance time-series based on the EEG microstate parameters using Support Vector Regression (SVR). A: results for a within dataset 

prediction. A1: correlation between estimated and real vigilance time-series for train (light gray) and test (dark gray). Error bars represent the standard deviation of 

the mean over 100 repetitions of the train and test procedure. A2,A3: null distribution for the first (A2) and second (A3) dataset. Vertical red line represents the mean 

test correlation between estimated and real vigilance time-series. B: results for a between dataset prediction. B1: correlation between estimated and real vigilance 

time-series for train (light gray) and test (dark gray). B2,B3: null distribution for the training on the first dataset and testing on the second dataset (B2) and vice 

versa (B3). Vertical red line represents the mean test correlation between estimated and real vigilance time-series. D: example of the vigilance time-series prediction 

for a 10 min interval. Original data are shown in light gray and predicted in dark gray. 
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Fig. 5. Association between the fMRI global signal time-series and the time course of the EEG microstate parameters during eyes closed resting for the two datasets. 

The right panel: duration, middle panel: occurrence, bottom panel: contribution. Bars show group average xDF adjusted Z-scored correlation coefficients for the first 

(black) and second dataset (white), error bars represent standard deviation of the mean. Stars correspond to the significance levels (p < 0.001 - ∗ ∗ ∗ , 0.001 < p < 0.01 

– ∗ ∗ , 0.01 < p < 0.05 – ∗ ) after FDR correction for 12 comparisons. Time courses of the duration and contribution of the microstate class C were negatively, while 

time courses of the duration and contribution of the microstate class A were positively associated with time course of global signal in both datasets. 

Table 1 

This table lists the results (95% bootstrap confidence interval and two-tailed p boot -values of the bootstrapped statistics) of 

the causal relationships between time courses of the microstate parameters and vigilance time-series. Significant results 

( p boot < 0.05) are marked in bold. 

Duration (ms) Occurrence (Hz) Contribution (%) 

Confidence interval p boot Confidence interval p boot Confidence interval p boot 

Data set 1 

(Vig → A) – (A → Vig) -0.022 -0.004 0.003 ∗ ∗ -0.036 -0.011 0.001 ∗ ∗ ∗ -0.036 -0.012 0.001 ∗ ∗ ∗ 

(Vig → B) – (B → Vig) -0.019 -0.001 0.057 -0.020 -0.001 0.033 ∗ -0.022 -0.002 0.017 ∗ 

(Vig → C) – (C → Vig) -0.026 -0.004 0.006 ∗ ∗ -0.019 0.010 0.630 -0.019 0.007 0.422 

(Vig → D) – (D → Vig) -0.028 -0.003 0.018 ∗ -0.020 -0.001 0.037 ∗ -0.012 0.008 0.886 

Data set 2 

(Vig → A) – (A → Vig) -0.035 -0.002 0.048 ∗ -0.068 -0.021 0.001 ∗ ∗ ∗ -0.064 -0.017 0.001 ∗ ∗ ∗ 

(Vig → B) – (B → Vig) -0.016 0.018 1 -0.039 -0.014 0.001 ∗ ∗ ∗ -0.034 0.006 0.263 

(Vig → C) – (C → Vig) -0.036 -0.005 0.008 ∗ ∗ -0.017 0.001 0.083 -0.021 0.005 0.316 

(Vig → D) – (D → Vig) -0.040 -0.012 0.001 ∗ ∗ ∗ -0.017 0.003 0.194 -0.023 0.004 0.130 

Stars correspond to the significance levels ( p boot < 0.001 - ∗ ∗ ∗ , 0.001 < p boot < 0.01 – ∗ ∗ , 0.01 < p boot < 0.05 – ∗ ). Changes in 

vigilance levels had causal effect on the changes of the parameters of microstates. 
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rostate class A was positively correlated (data set 1: p = 0.027, data

et 2: p = 0.046) with global signal ( Fig. 5 ). Interestingly, parameters

f microstate class B did not show associations with the global signal

see Appendix Table E1 for details). Along the same line, associations

etween the global signal time course and the time course of transition

robabilities of microstates were weak and did not reach significance. 

.5. Causal effects of vigilance on microstate parameters 

Granger causality (GC) estimates of the temporal dynamics of the

nterplay between microstate parameters and vigilance fluctuations re-

ealed causal effect of changes in vigilance on the temporal character-

stics of microstate parameters with a model order (lag steps) of 1. For

oth data sets, changes in vigilance Granger-caused changes in the du-

ation, occurrence and contribution of microstate class A, occurrence of

icrostate class B and duration of microstate classes C and D (for details

ee Table 1 and Fig. F.1 ). 

. Discussion 

The temporal dynamics of microstates has been shown to reflect

any cognitive processes and to be associated with a large number of

sychiatric disorders. Here, looking into two independent datasets, we

ound that the temporal structure of microstates covaries with the vigi-

ance level as measured using EEG frequency power but also fMRI based

lobal signal. Importantly, we found evidence that microstates and vig-

lance levels are causally related and the changes in vigilance cause
hanges in the parameters of microstates. The observed associations had

redictive power, and temporal dynamics of vigilance could be, to some

xtent, reconstructed based on the microstate parameters. The parame-

ers of EEG microstates were highly associated with vigilance and global

ignal. In particular, we consistently found a relation between the du-

ation of microstate C to both vigilance levels and global signal. We

ound as well that occurrence but not the duration of microstate class

 was correlated with the vigilance level. This suggests that duration

nd occurrence of microstates manifest different psychophysiological

echanisms. This view gets support from recent research that suggests

hat psychiatric disorders only affect one of these two microstates se-

ectively ( Michel & Koenig, 2017 ). Importantly, to estimate the vigi-

ance levels, we follow with the definition and algorithm described in

 Falahpour et al., 2018 ). Compared to alternative approaches like VI-

ALL ( Hegerl & Hensch, 2014 , Olbrich et al., 2009 , Strauss et al., 2015 ),

he approach used here has the benefit that it produces continuous mea-

ures of vigilance and does not require electrooculography data. 

.1. Vigilance loss during eyes-closed resting state 

In the current study vigilance was estimated as the ratio of the square

oot power in the alpha to the power in the delta and theta bands. Sim-

lar metrics have been used in multiple studies ( Horovitz et al., 2008 ,

obert et al., 1994 , Larson-Prior et al., 2009 , Wong et al., 2013 ). We

alidated the metrics and showed that for our sample it provides compa-

able results to a widely used vigilance classification algorithm VIGALL

 Olbrich et al., 2009 ). We found a gradual decline in vigilance over the
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u  
yes-closed resting state recordings. While occurrence of sleep epochs is

hought to be a common phenomenon during typical rest conditions and

e therefore cannot exclude the potential occurrence of sleep epochs

 Olbrich et al., 2009 , Tagliazucchi & Laufs, 2014 ), in our study only

ata from two subjects showed clear indications of sleep onset as quan-

ified using VIGALL. One possible reason for this could be that our data

ere acquired in the beginning of the experimental day for both data

ets which insured subjects remained highly motivated and aroused.

his agrees with the reports about high variability in the time spent

n the sleep across individual fMRI centers which in many cases tested

n ( Tagliazucchi & Laufs 2014 ) stayed close to zero. 

.2. Role of microstates A and B 

We found negative associations between the occurrence of mi-

rostates A and B with the vigilance level. This observation goes in line

ith recent studies which link the presence of these two microstates to

rimary sensory processes. Microstate class B was suggested to be as-

ociated with the visual resting state network ( Britz et al., 2010 , Custo

t al., 2017 ), a claim which was further supported by an increase in

uration of the microstate class B in eyes-open rest ( Seitzman et al.,

017 ) and was shown to be associated with visual imagery thoughts

 Lehmann et al., 1998 ). The sources of the microstate class A seem to

e in the temporal areas and can be associated with the auditory resting

tate network ( Britz et al., 2010 , Custo et al., 2017 ). While it does not

ffect our interpretation, it is noteworthy that a recent study ( Milz et al.,

016 ), however, contrary to the studies above, reported evidence that

icrostate class A could be related to visual and microstate class B to

erbalization processes. 

.3. Role of microstate C 

The functional role of the microstate class C is still unclear ( Michel

 Koenig, 2017 ). Recent studies suggest a relation of microstate class

 to cognitive control processes ( Britz et al., 2010 ). However, the de-

rease of the duration of microstate class C in serial subtraction tasks

 Bréchet et al., 2019 , Seitzman et al., 2017 ) and visualization tasks

 Milz et al., 2016 ) puts forward the hypothesis that it might reflect task-

egative network activity ( Michel & Koenig, 2017 ). Our observation of

 positive association of the duration of the microstate class C with vig-

lance favors the role of this microstate in cognitive control processes.

lso, microstate class C is characterized by frontal to occipital topogra-

hy with posterior predominance of activity. Taken together with the

act that induction of the different microstates is mainly determined by

trength of the power in the alpha band ( Milz et al., 2017 ), an increased

ontribution of the microstate class C may reflect higher occipital al-

ha power. Loss of vigilance is characterized by a gradual shift of al-

ha power from the occipital towards frontal brain regions followed

y a decrease in power in the alpha band and an increase in power

n delta and theta frequency ranges that characterize drowsiness states

 Olbrich et al., 2009 ). Thereby the highest occipital alpha power is typ-

cally associated with the most vigilant state. Thus, it is not surprising,

hat we observe strong positive associations of the parameters of this

icrostate with vigilance. 

.4. Role of microstate D 

We observed a positive association between the duration of the mi-

rostate class D and the vigilance level. This could be explained by a

umber of recent studies suggesting that microstate class D is character-

zed by sources in middle and superior frontal areas as well as superior

nd inferior parietal areas ( Britz et al., 2010 , Custo et al., 2017 ) and has

een hypothesized to be associated with the dorsal attention network.

his hypothesis is further supported by the observation that occurrence

nd duration of this microstate increased during serial subtraction task

 Bréchet et al., 2019 , Seitzman et al., 2017 ). We note however that,
omewhat contrary to this hypothesis, ( Milz et al., 2016 ) reported the

ighest duration and occurrence of the microstate class D during rest

n comparison with a number of cognitive tasks. This suggests that mi-

rostate class D might reflect focus switching and reflexive aspects of

ttention. While we cannot reject or confirm any of these two based on

hese results, we find it noteworthy that both theories indirectly impli-

ate the relation between microstate D and the vigilance state. 

.5. EEG microstates and sleep 

The parameters of EEG microstates have been previously inves-

igated during sleep and sleep disorders. Patients with frontotempo-

al dementia, a disorder that is associated by frequent excessive day-

ime sleepiness comorbidity ( McCarter et al., 2016 ), were shown to

ave reduced duration of microstate class C ( Nishida et al., 2013 ). Re-

uced duration of microstate class C was also reported for insomnia

atients ( Wei et al., 2018 ). These reports agree with our observation

hat higher vigilance states are associated with increased duration of

icrostate class C. However, narcolepsy patients, that also suffer from

xcessive daytime sleepiness, were characterized by increased duration

f microstate class C and reduced contribution of microstate class A

 Drissi et al., 2016 ) during wakefulness and reduced duration of mi-

rostate class C during N1 and N3 sleep stages ( Kuhn et al., 2015 ). These

ontradicting finding in patients suffering from similar symptoms indi-

ate the complexity of vigilance regulation mechanisms. Interestingly,

n the study that investigated differences of EEG microstate parameters

uring different sleep stages ( Brodbeck et al., 2012 ), presence of N1

leep was characterized by reduced duration and contribution of mi-

rostate class A, reduced contribution of microstate class B, increased

uration and contribution of microstate class C and increased probabil-

ty of transitions towards map C. These findings confirm strong asso-

iation of parameters of microstate classes A, B and C with sleep. The

bserved opposite effects of drowsiness and sleep on them are point-

ng towards non-linearity of the relation between EEG microstate pa-

ameters and vigilance and should be addressed in further studies. Re-

ated, the interrelation between drowsiness, sleep and vigilance states

s still understudied field, that requires further efforts to be clarified

 Hasan, 1996 , Oken et al., 2006 ). 

.6. Relation to the fMRI global signal 

The fMRI global signal is known to arise from multiple effects, and re-

olving these effects is important for the interpretation of fMRI data.

hile some parts of global signal are non-neural (breathing, motion,

tc.), there is also a contribution from neural activity, including fluctua-

ion in vigilance ( Falahpour et al., 2018 , Wong et al., 2016 , Wong et al.,

013 ), coordinated by regions such as basal forebrain ( Turchi et al.,

018 ). In line with recent studies ( Falahpour et al., 2018 , Wong et al.,

016 , Wong et al., 2013 ) we found a negative association between vigi-

ance and the fMRI global signal. We additionally found that fMRI global

ignal was associated with the duration and contribution of microstate

lass C and the contribution of microstate class A. The present results

upport the partial neural origin of the global signal and suggest that the

ssociation between microstate parameters and global signal is mainly

ediated by vigilance. However, parameters of microstate class B as

ell as transition probabilities between microstate classes did not show

ny association with the global signal. This suggests that the change

n vigilance may likely affect brain dynamics on multiple levels where

he mechanisms that affect microstate parameters and global signal are

ssentially different. 

.7. The potential mediating role of cingulate cortex 

It is interesting to note that an increasing number of recent studies,

sing source reconstruction techniques, suggest that the cingulate cortex
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s a common source for all microstate classes ( Custo et al., 2017 , Pascual-

arqui et al., 2014 ). In line with these findings, multimodal imaging

EG-fMRI studies provided evidence that attenuation of vigilance levels

eads to an increase in activity of the anterior part ( Olbrich et al., 2009 )

hile caffeine intake leads to alterations of BOLD activity in the poste-

ior part of the cingulate cortex ( Falahpour et al., 2018 ). Taken together,

onsidering the role of cingulate cortex and arousal, these studies sug-

est the activity of the cingulate cortex to mediate the causal relation

etween vigilance level and appearance of microstates sequences. 

.8. Prediction accuracy 

We found that the observed association between parameters of the

icrostates and vigilance time series has predictive power. Using sup-

ort vector machine regression, we could predict vigilance fluctuations

ith accuracy which is statistically significant but not numerically high.

his suggests that vigilance levels and EEG microstate parameters are

ot reflecting necessary the same processes. Such view receives further

upport from observations that next to the power in the alpha frequency

and, microstates are additionally related to delta, theta, and higher

requency bands ( Khanna et al., 2015 ). Taken together and considering

hat vigilance level is a more fundamental characteristic of the organ-

sm, which is also partially modulated by the body, we speculate that the

ime course of microstates is influenced by vigilance through multiple

ystems. 

.9. Analysis of microstates in psychiatric disorders 

The finding that parameters of EEG microstates have temporal dy-

amics which are partly modulated by vigilance state has far reaching

mplications when microstates are studied in the context of psychiatric

isorders. Patients suffering from psychiatric disorders often show ab-

ormal sleep behavior and/or altered temporal vigilance structure. In

ight of the findings presented in this paper, the potential changes found

n microstates could be essentially related to changes in vigilance which

ight or might not be a symptom or manifestation of the neural mech-

nism of the disorder, but indicate a rather straightforward change in

leep behavior. 

. Conclusion 

We provided evidence for correlations and, crucially, causal rela-

ions between the fluctuations of vigilance level and temporal dynamics

f the EEG microstates within the first 10 minutes of rest. We found that

uration and contribution of microstate class C were positively, while

ccurrence and contribution of microstate classes A and B were nega-

ively associated with vigilance. Changes in vigilance caused changes

n EEG microstate parameters. The observed findings highlight the im-

ortance of taking vigilance levels into consideration in EEG microstate

arameter investigations. We suggest that the cingulate cortex may be

 potential mediator of the observations we made and the fact that EEG

icrostates reacted to the changes in vigilance level potentially by in-

egrating multiple neural mechanisms. 
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ppendix A. Validation of the vigilance estimation approach 

To validate reliability of a frequency power based vigilance detec-

ion approach (for details see methods section 1.3) we estimated the

igilance scores using an EEG-based vigilance classification algorithm

IGALL 2.1 ( Hegerl et al., 2017 ) for the first dataset. The classification

s based on the distribution of cortical current density activity over four

istinct regions of interest (O1, O2, F3, F4). An estimate of the cortical

urrent density is separately computed for the delta/theta and the al-

ha frequency range using LORETA ( Pascual-Marqui et al., 2002 ). The

ndividual alpha center frequency was automatically detected for each

ubject, and the alpha band was defined as ± 2 Hz around the individual

lpha peak frequency. The delta/theta band was set between 3 and 7 Hz.

ach epoch was classified into one of seven different brain states along a

ake–sleep continuum (alertness: 0, A1, A2, A3; drowsiness: B1, B2/3;

nd sleep onset: C). To compare the time course of vigilance fluctuations

etween frequency based and VIGALL based approaches, we assigned a

igilance score ranging from 1 to 7 to each EEG-vigilance state (1 rep-

esents the lowest (stage C) and 7 the highest (stage 0) vigilance state).

We analyzed the association between frequency power based and

onventional VIGALL vigilance estimations (see Fig. A.1 ). The Pearson

inear correlation showed that mean vigilance levels (r = 0.72, p < 10

-5) and slopes of the vigilance curves (r = 0.53, p = 0.001) in the

wo approaches considered here were strongly correlated. To inspect the

emporal similarity between two approaches, the correlation between

he vigilance time-series detected by both approaches were calculated

eparately for each subject. One-sample t-test on the xDF-adjusted z-

cored subject-level correlation coefficients showed highly significant

roup level effect (t = 13.29, p < 10 × -14). Given the similarity be-

ween the vigilance estimates for the eyes-closed resting state record-

ngs obtained from VIGALL and the frequency power-based vigilance

etection approaches, authors decided to stick to the latter as absence

f electrooculographic data is a serious limitation for the VIGALL esti-

ations. Also, the frequency power-based vigilance estimate provides a

ontinuous measure which is more suitable for correlation analysis than

iscrete VIGALL-based scores. Fig. A1 . 
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Fig. A1. Association between the frequency power based and conventional VIGALL vigilance estimations for the first dataset. A: Group average vigilance time course 

for the VIGALL2.1 based (on top) and frequency power based (on bottom) vigilance estimations. Shadows represent standard error of the mean across all subjects. For 

both vigilance estimation approaches we observe a vigilance decline that has similar slope. B: Association of the mean vigilance levels for the two ways of vigilance 

estimation. Each dot indicates data of one subject. C: Association of the slopes of vigilance curve for the two ways of vigilance estimation. Each dot indicates data 

of one subject. Stars correspond to the significance levels (p < 0.001 - ∗ ∗ ∗ , 0.001 < p < 0.01 – ∗ ∗ , 0.01 < p < 0.05 – ∗ ). The vigilance scores are highly correlated 

between the two approaches for vigilance estimation. 
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ppendix B. Association of the time courses of the microstate 

arameters and time course of EEG frequency power 

To investigate frequency dependence of the microstate parameters,

e have investigated the association between the time courses of the mi-

rostate parameters and power alpha and delta + theta frequency ranges.

o obtain the temporal dynamics of EEG power fluctuation, power

pectral density of EEG was estimated for each channel using non-

verlapping Hamming window (Data set 1: 500 points, 2.0s temporal

idth. Data set 2: 450 points, 1.8s temporal width). Relative power in

he alpha (7-13 Hz) and delta + theta (1-7 Hz) frequency band were cal-

ulated as root mean square (rms) amplitude in the band of interest

ivided by the rms amplitudes in the frequency range (1-20 Hz) at each

ime point. The occipital alpha power was estimated as a mean power

n alpha frequency band over occipital channels (O1, O2, Oz, PO7, PO8,

O3, PO4 and POz). The overall alpha power was estimated by averag-

ng the EEG power in frequency band of interest over all channels. 

Similar to the vigilance analysis, the frequency power time-series

ere smoothed by calculating the mean value within a non-overlapping

indow of 3 TR and the correlation between the time courses of the mi-

rostate parameters and frequency power fluctuations were calculated
Table B1 

This table lists the results (t-values and p-values) of the one-sample t-test on

for the correlation the time courses of the microstate parameters and vigila

delta theta power. Significant results (p < 0.05) after FDR correction for 12

between microstate parameters and vigilance are not exclusively mediated 

vigilance phenomenon. 

A B

Vigilance Duration t = -4.65 p = 1 × 10-4 t

Occurrence t = -4.94 p = 7 × 10-5 t

All channel alpha power Duration t = -4.66 p = 1 × 10-4 t

Occurrence t = -4.16 p = 0.001 t

Occipital alpha power Duration t = -4.45 p = 3 × 10-4 t

Occurrence t = -4.24 p = 4 × 10-4 t

All channel delta + theta 

power 

Duration t = 5.03 p = 1 × 10-4 t

Occurrence t = 3.50 p = 0.003 t
or each subject separately. The group level effects were revealed using

ne-sample t-tests on the xDF-adjusted z-scored correlation coefficients.

o account for multiple comparisons, results were corrected using False

iscovery Rate (FRD) correction for 12 tests. For illustrative purposes,

e report the results only for duration and occurrence of microstates

nd only for the first dataset ( Table B1 ). 

We found that the associations between microstate parameters and

lpha power fluctuations are strongly similar for occipital and all chan-

el alpha power, indicating huge contribution of the occipital alpha to

he all channel alpha power estimates. We observed that the parameters

f microstate class A and C were associated with power changes both in

lpha and delta + theta bands. However, duration of microstate class D

as positively correlated only with alpha power changes. We also found

hat occurrence of microstate class B was associated with vigilance time

ourse, but not correlated with power changes in alpha or delta + theta

ands separately. Taken together, these observations indicate complex-

ty of the vigilance phenomenon. We think that in-depth investigation

f the relation between EEG frequency powers and EEG microstates is a

esearch question, that goes beyond the scope of the current manuscript

nd should be further addressed. Table B1 . 
 the on the xDF-adjusted z-scored subject-level correlation coefficients 

nce, all channel alpha power, occipital alpha power and all channel 

 comparisons are marked in bold. The results show that associations 

by changes in a specific frequency band, indicating complexity of the 

 C D 

 = -0.32 p = 0.818 t = 5.79 p = 7 × 10-6 t = 3.66 p = 0.002 

 = -2.53 p = 0.028 t = 0.80 p = 0.514 t = 0.07 p = 0.943 

 = -0.65 p = 0.570 t = 5.11 p = 8 × 10-5 t = 2.83 p = 0.016 

 = -1.86 p = 0.096 t = 1.93 p = 0.096 t = 0.37 p = 0.717 

 = -0.51 p = 0.673 t = 5.38 p = 3 × 10-5 t = 3.14 p = 0.007 

 = -2.01 p = 0.071 t = 2.09 p = 0.070 t = 0.35 p = 0.728 

 = -0.30 p = 0.835 t = -4.86 p = 1 × 10-4 t = -1.92 p = 0.127 

 = 1.50 p = 0.240 t = -1.44 p = 0.213 t = 0.07 p = 0.944 
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A

v

reformed correlations between the mean vigilance level and 

esults (p < 0.05) after FDR correction for 12 comparisons are 

e microstate class C are positively associated with vigilance 

 a robust trend toward significant negative association with 

C D 

 = 0.866 r = 0.62 p = 7 × 10-4 r = 0.43 p = 0.033 

p = 0.033 r = 0.19 p = 0.411 r = -0.11 p = 0.645 

 = 0.084 r = 0.65 p = 4 × 10-4 r = 0.06 p = 0.798 

 = 0.514 r = 0.73 p = 0.005 r = 0.38 p = 0.169 

 = 0.058 r = 0.41 p = 0.161 r = -0.12 p = 0.675 

 = 0.131 r = 0.63 p = 0.022 r = 0.07 p = 0.776 

ll preformed correlations between the mean vigilance level 

ions between four microstate classes. Significant results (p < 

ked in bold. For both data sets mean transition probabilities 

ively, while transition probabilities from microstate class D 

ith vigilance levels. 

Data set 2 

.214 r = -0.20 p = 0.549 

× 10-4 r = 0.59 p = 0.050 

.214 r = -0.33 p = 0.293 

.350 r = -0.36 p = 0.275 

79 r = 0.46 p = 0.140 

43 r = 0.22 p = 0.549 

.164 r = -0.15 p = 0.640 

.090 r = -0.35 p = 0.275 

90 r = -0.06 p = 0.818 

.064 r = -0.62 p = 0.050 

.297 r = 0.07 p = 0.818 

023 r = 0.46 p = 0.140 
ppendix C. Association of the mean vigilance level and mean 

alues of the microstate parameters 

Tables C1 and C2 

Table C1 

This table lists the results (r-values and p-values) of all p

mean values of the microstate parameters. Significant r

marked in bold. Mean duration and contribution of th

level while occurrence of the microstates class B shows

vigilance level in both investigated data sets. 

A B 

Data 

set 

1 

Duration r = -0.12 p = 0.645 r = -0.03 p

Occurrence r = -0.59 p = 0.001 r = -0.43 

Contribution r = -0.40 p = 0.037 r = -0.34 p

Data 

set 

2 

Duration r = -0.16 p = 0.613 r = -0.21 p

Occurrence r = -0.46 p = 0.131 r = -0.55 p

Contribution r = -0.38 p = 0.169 r = -0.45 p

Table C2 

This table lists the results (r-values and p-values) of a

and mean values of the transition probability for transit

0.05) after FDR correction for 12 comparisons are mar

from microstate A towards microstate class C are posit

towards microstate class A are negatively associated w

Data set 1 

A → B r = -0.26 p = 0
A → C r = 0.66 p = 3 
A → D r = -0.26 p = 0
B → A r = -0.20 p = 0
B → C r = 0.30 p = 0.1

B → D r = 0.08 p = 0.6

C → A r = -0.32 p = 0
C → B r = -0.37 p = 0
C → D r = 0.13 p = 0.4

D → A r = -0.41 p = 0
D → B r = -0.18 p = 0
D → C r = 0.48 p = 0.
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A

t

he one-sample t-test on the xDF-adjusted z-scored subject- 

igilance time-series and the time courses of the microstate 

rection for 12 comparisons are marked in bold. Time courses 

 C as well as duration of the microstate class D are positively, 

of the microstates classes A and B are negatively associated 

ta sets. 

C D 

 p = 0.818 t = 5.79 p = 7 × 10-6 t = 3.66 p = 0.002 

 p = 0.028 t = 0.80 p = 0.514 t = 0.07 p = 0.943 

 p = 0.038 t = 5.92 p = 7 × 10-6 t = 2.39 p = 0.034 

 p = 0.877 t = 4.68 p = 0.001 t = 2.67 p = 0.026 

 p = 0.006 t = -0.02 p = 0.986 t = -0.86 p = 0.537 

 p = 0.011 t = 3.21 p = 0.011 t = 1.57 p = 0.200 

ne-sample t-test on the on the xDF-adjusted z-scored subject- 

igilance time-series and the time courses of the transition 

asses. Significant results (p < 0.05) after FDR correction for 

 transition probabilities for transitions from microstate class 

with vigilance time-series. 

Data set 2 

.117 t = -1.79 p = 0.216 

 × 10-6 t = 3.07 p = 0.064 

.209 t = -0.50 p = 0.872 

.117 t = -0.97 p = 0.690 

505 t = 0.16 p = 0.958 

137 t = 1.95 p = 0.201 

.011 t = -0.01 p = 0.991 

.137 t = -2.85 p = 0.064 

137 t = 0.76 p = 0.788 

.002 t = -2.14 p = 0.185 

137 t = 0.35 p = 0.873 

.046 t = 0.46 p = 0.872 

A

t

ppendix D. Association of the vigilance time course and the 

ime courses of the microstate parameters 

Tables D1 and D2 

Table D1 

This table lists the results (t-values and p-values) of t

level correlation coefficients for the correlation the v

parameters. Significant results (p < 0.05) after FDR cor

of the duration and contribution of the microstate class

while time courses of the occurrence and contribution 

with changes of vigilance level in both investigated da

A B 

Data 

set 

1 

Duration t = -4.65 p = 1 × 10-4 t = -0.32

Occurrence t = -4.94 p = 7 × 10-5 t = -2.53

Contribution t = -5.96 p = 7 × 10-6 t = -2.29

Data 

set 

2 

Duration t = 0.11 p = 0.986 t = -0.35

Occurrence t = -5.00 p = 0.001 t = -3.60

Contribution t = -3.94 p = 0.004 t = -3.15

Table D2 

This table lists the results (t-values and p-values) of the o

level correlation coefficients for the correlation the v

probabilities for transitions between four microstate cl

12 comparisons are marked in bold. Time courses of the

A towards microstate class C are positively associated 

Data set 1 

A → B t = -1.96 p = 0
A → C t = 6.46 p = 3
A → D t = -1.33 p = 0
B → A t = -2.02 p = 0
B → C t = 0.67 p = 0.

B → D t = 1.69 p = 0.

C → A t = -3.24 p = 0
C → B t = -1.66 p = 0
C → D t = 1.63 p = 0.

D → A t = -4.05 p = 0
D → B t = 1.62 p = 0.

D → C t = 2.56 p = 0

ppendix E. Association of the global signal time-series and the 

ime courses of the microstate parameters 
Table E1 

Table E1 

This table lists the results (t-values and p-values) of the on

level correlation coefficients for the correlation the globa

crostate parameters. Significant results (p < 0.05) after FD

Time courses of the duration and contribution of the mic

the contribution of the microstate class A is positively asso

sets. 

A B 

Data 

set 

1 

Duration t = 2.68 p = 0.035 t = 1.20 p = 0.

Occurrence t = 2.22 p = 0.081 t = 0.13 p = 0.

Contribution t = 2.90 p = 0.027 t = 1.17 p = 0.

Data 

set 

2 

Duration t = 1.59 p = 0.261 t = -0.30 p = 0
Occurrence t = 1.61 p = 0.261 t = 1.16 p = 0.

Contribution t = 2.81 p = 0.046 t = 1.08 p = 0.
e-sample t-test on the xDF-adjusted z-scored subject- 

l signal time-series and the time courses of the mi- 

R correction for 12 comparisons are marked in bold. 

rostate class C are negatively, while time course of 

ciated with GS time-series in both investigated data 

C D 

301 t = -3.47 p = 0.014 t = -1.07 p = 0.317 

895 t = -1.52 p = 0.239 t = -1.54 p = 0.239 

301 t = -3.31 p = 0.014 t = -1.31 p = 0.299 

.771 t = -3.01 p = 0.046 t = -0.34 p = 0.771 

392 t = -1.58 p = 0.261 t = 1.31 p = 0.355 

392 t = -2.83 p = 0.046 t = 0.63 p = 0.647 
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ppendix F. Causal effects of vigilance on microstate parameters 

Fig. F1 

ig. F1. Granger causality estimates suggest that vigilance fluctuations Granger

50000 repetitions) of mean delta GC values (VIG → MS) - (MS → VIG). For both

nd contribution of microstate class A, occurrence of microstate class B and d

igilance levels on the changes of the parameters of microstates. 
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