

The swings and roundabouts of a decade of fun and games with Research Objects

Carole Goble

The University of Manchester

Researchobject.org

carole.goble@manchester.ac.uk

Special Acknowledgement

Stian Soiland-Reyes
The University of Manchester, UK

Our RO start up – what, why and how...

ROs In the Large – The Vision
A new form of Scholarly Communication.
RDM support throughout the research cycle.

ROs in the Small – The Implementation Packaging digital components.
Referencing physical components.

Our World of FAIR Thematic Research Infrastructures (aka Cyberinfrastructure) – Biology, Biodiversity

"facilities that provide resources and services for research communities to conduct research and foster innovation....they may be single-sited, distributed, or virtual.

- major scientific equipment or sets of instruments
- collections, archives or scientific data
- computing systems and communication networks
- any other research and innovation infrastructure of a unique nature which is open to external users"

European Commission

Research Software Engineers

FAIR Data Commons

Cancer Research
Data Commons

NIH Data
Commons

NIH Data
Commons

NIH Data
Commons

Analysis
Evaluatization

Data
Commons

April Web Interface
Submission
Deployment

Tool
Bisemedical
Facilities
Corriginate
Scientists
Commons

Tool
Deployment

Tool
Developers
Data Contributors & Consumers

Assemble and share large scale, multielement datasets. Secure referencing and moving of sensitive data. Zoo of catalogues & resources.

Across 13 Research Infrastructures.

Reproduce, port, share, and execute analytics & pipelines

Diverse Research Objects – models, data, pipelines, lab protocols and SOPs, provenance... citable, exchangeable, publishable, preserved, executable objects and collections of objects.

FAIR Digital Objects

Vocabularies

Sounds like Linked Data!

PIDs + Metadata

Reusable

The FAIR Guiding Principles for Data Stewardship and Management Scientific Data 3, 160018 (2016) doi:10.1038/sdata.2016.18 The narrative paper

The narrative paper

Motivation in **2007**. Still is.

makes block

per burn disso, mill

Indoorded time

the Autom, today's it

PRI. Infraebusione.

Minimum rights from Artisa

Adjusted traplosistics were binefully districted and this magnet activities analyzed by a teachingstool stanks. For subblesso of the mosts we compand model predictions for south most floor-and mentholise con assertances of the betwee phosphoto with approximately solves for mine parameter. The record, which is completely bound on kinetic parameters than are represent for the individual expense, gives an assurance production to to clearly state Rises, and examinate compare store. This is the fire headed towers model for placese mendedate to P. Salaporum, one of the most proble statistic causing protects, and the high productive power of the could tealer it a storing look for foliote Army beign blood Busines soul

The congress on the Forbitto Mayorkel Parsac particular of Plantacian

Neuronal of Angula 2014, April 20 Glucose metabolism in Plasmodium falciparum trophozoites Drugtia several phosps militim possio per year inhabet Africa (World report 2011, brigging well, solids, spec, by parastic protects o Data principal distribution (EE) of Substantian (SPEE) plants Study Analysis distribute l'originale Model SOP (Assay) THE RESIDENCE OF SHARE Investigation PFK Kinetic model NAME AND ADDRESS OF THE OWNER, WHEN Related Items ment Autorial States Strategic Strates Strates Communication

Structured, interrelated objects in contextdocumentation

From Manuscripts to Research Objects

"An article about computational science in a scientific publication is not the scholarship itself, it is merely advertising of the scholarship. The actual scholarship is the complete software development environment, [the complete data] and the complete set of instructions which generated the figures." David Donoho, "Wavelab and Reproducible Research," 1995

research outcomes more than just publications

data software, models, workflows, SOPs, lab protocols are *first class citizens of scholarship*

added information required to make research *FAIR* and *Reproducible* (FAIR+R) ...

Science 2.0 Repositories: Time for a Change in Scholarly Communication Assante, Candela, Castelli, Manghi, Pagano, D-Lib 2015
Ainsworth and Buchan: e-Labs and Work Objects: Towards Digital Health Economies, EuropeComm 2009, pp 205-216

Digital twins Actionable knowledge units **FAIR Digital Objects**

courtesy Dimitris Koureas Coordinator DiSSCo EU Research Infrastructure

Specimen object image courtesy of Alex Hardisty

Digital Objects as First Class Entities FAIR Digital Object Framework

FAIR Digital Object Framework A Knowledge Graph of FDOs

- Schwardmann (2020), <u>Digital Objects FAIR Digital Objects: Which Services Are Required?</u> Data Science Journal
- EOSC Interoperability Framework Draft (2020)
- Hardisty A, et al (2020) Conceptual design blueprint for the DiSSCo digitization infrastructure RIO 6: e54280.
- DONA Digital Object Architecture <u>Digital Object Interface Protocol</u> (2018)
- https://fairdigitalobjectframework.org/

From Manuscripts to FAIR+R Research Objects (

research objects related and bundled together ... one shareable, cite-able, exchangable resource that can be versioned and snapshot ...

metadata describing context and content of objects dependencies, versions, relationships, provenance...

enough to be reproducible

virtual objects, links to physical objects (people, specimens, equipment) integrated view over fragmented & scattered specialised repositories

From Manuscripts to FAIR+R Research Objects (

Bigger on the inside than the outside

Packaging

RDM role

Commons Currency Credit

Archival preservation Reproducibility Portability Virtual Witnessing

Releasing Living Objects

FAIR ROs

Analogous to software FAIR Enough

Structure: Composite

Dynamic: Versioning

Executable: Portability

Virtual: References

Maintenance: Decay

PID resolution?

Metadata?

Access?

Licences?

Packaging of Digital Objects

Driver: Computational Workflows

Preservation of computational workflows in dataintensive science

- Workflow-centric Research Objects
- Computational workflows, provenance of executions, interconnections between workflows and related resources (e.g., datasets, publications, etc.), social aspects in the experiments.
- Wf-centric RO creation & management best practices
- analysis and management of decay in workflows.

http://wf4ever.org/

Data pipeline & analysis reporting & reproducibility

Methods

(..)

De novo assembly and binning

Raw reads from each run were first assembled with SPAdes v.3.10.020 with option --meta21. Thereafter, MetaBAT 245 (v.2.12.1) was used to bin the assemblies using a minimum contig length threshold of 2,000 bp (option --minContig 2000) and default parameters. Depth of coverage required for the binning was inferred by mapping the raw reads back to their assemblies with BWA-MEM v.o.7.1645 and then calculating the corresponding read depths of each individual contig with samtools v.1.546 ('samtools view -Sbu' followed by 'samtools sort') together with the jgi_summarize_bam_contig_depths function from MetaBAT 2. The QS of each metagenome-assembled genome (MAG) was estimated with CheckM v.1.0.722 using the lineage_wf workflow and calculated as: level of completeness - 5 × contamination. Ribosomal RNAs (rRNAs) were detected with the cmsearch function from INFERNAL v.1.1.242 (options -Z 1000 --hmmonly --cut_ga) using the Rfam48 covariance models of the bacterial 55, 165 and 235 rRNAs. Total alignment length was inferred by the sum of all non-overlapping hits. Each gene was considered present if more than 80% of the expected sequence length was contained in the MAG. Transfer RNAs (tRNAs) were identified with tRNAscan-s.e. v.2.049 using the bacterial tRNA model (option -B) and default parameters. Classification into high- and medium-quality MAGs was based on the criteria defined by the minimum information about a metagenome-assembled genome (MIMAG) standards23 (high: >90% completeness and <5% contamination, presence of 5S, 16S and 23S rRNA genes, and at least 18 tRNAs; medium: ≥ 50% completeness and <10% contamination). (...)

Article | Open Access | Published: 11 February 2019

A new genomic blueprint of the human gut microbiota

Alexandre Almeida E, Alex L. Mitchell, Miguel Boland, Samuel C. Forster, Gregory B. Gloor, Aleksandra Tarkowska, Trevor D. Lawley & Robert D. Finn 2

Nature 568, 499-504(2019) | Cite this article

99k Accesses 132 Citations 667 Altmetric Metrics

(..)

Assignment of MAGs to reference databases

Four reference databases were used to classify the set of MAGs recovered from the human gut assemblies: HR, RefSeq, GenBank and a collection of MAGs from public datasets. HR comprised a total of 2,468 high-quality genomes (>90% completeness, <5% contamination) retrieved from both the HMP catalogue (https://www.hmpdacc.org/catalog/) and the HGG[®]. From the **RefSeq** database, we used all the complete bacterial genomes available (n = 8,778) as of January 2018. In the case of GenBank, a total of 153,359 bacterial and 4,053 eukaryotic genomes (3,456 fungal and 597 protozoan genomes) deposited as of August 2018 were considered. Lastly, we surveyed 18,227 MAGs from the largest datasets publicly available as of August 201823,25,27,2829, including those deposited in the Integrated Microbial Genomes and Microbiomes (IMG/M) database52. For each database, the function 'mash sketch' from Mash v. 2.053 was used to convert the reference genomes into a MinHash sketch with default k-mer and sketch sizes. Then, the Mash distance between each MAG and the set of references was calculated with 'mash dist' to find the best match (that is, the reference genome with the lowest Mash distance). Subsequently, each MAG and its closest relative were aligned with dnadiff v.1.3 from MUMmer 3.2356 to compare each pair of genomes with regard to the fraction of the MAG aligned (aligned guery, AQ) and ANI.

(..) https://doi.org/10.1038/s41586-019-0965-1

Data pipeline & analysis reporting & reproducibility

Article | Open Access | Published: 11 February 2019

A new genomic blueprint of the human gut microbiota

Alexandre Almeida ≅, Alex L. Mitchell, Miguel Boland, Samuel C. Forster, Gregory B. Gloor, Aleksandra Tarkowska, Trevor D. Lawley & Robert D. Finn ≅

Nature 568, 499-504(2019) | Cite this article

99k Accesses | 132 Citations | 667 Altmetric | Metrics

https://doi.org/10.1038/s41586-019-0965-1

makes in telephonous blacker upon . Trigon by those, more facing blacker, and assess

CORNEL CONTROL ASSOCIATION & CORNEL AND ASSOCIATION AND ASSOCIATION ASSOCIATIO

Nor was a built to

time made other tray tray to be in part on

Mrs., Mrs., Johnson, Safett

Autorit, married

metals, the

Standards-based metadata framework for bundling resources (physically and logically) with context into citable reproducible packages.

A Research Object **bundles** and **relates** digital resources (of a scientific experiment/investigation + context

es 실

Data used and results produced in experimental study **Methods** employed to produce and analyse that data **Provenance** and settings for the experiments **People, specimens, equipment** etc involved in the investigation

Annotations about these resources, to improve understanding and interpretation

Research Objects => Metadata Objects

Identification
to locate things
Aggregates
to link things together
Annotations
about things & their
relationships

We are in a Semantic Web Conference.... Linked Data Middleware

Manifests described using Linked Data

- Identifiers to resources, including people (orcid)
- OWL / RDF / SPARQL / JSON-LD

Mismash of specialized ontologies

- Construct the manifest itself
 - W3C Web Annotation Vocabulary
 - OAI Object Exchange and Reuse
- Describe manifest content
 - Wf4Ever RO ontology, Wf4Ever ROEvo ...
 - Dublin Core, FOAF, SIOC, Creative Commons, PROV, PAV...

RDF shapes (SHACL, ShEx)

- Capture requirements, expectations and validate profiles
- Hard to express checklists

workflow/blob/master/detect_variants/detect_variants.cwl

Influence? Publishers...

Experiences in integrated data and research object publishing using GigaDB

Scott C Edmunds 6 + Peter Li 6 + Christopher I Hunter 6 + Si Zhe Xiao 1 + Robert L Davidson 1.2 - Nicole Nogoy 6 + Laurie Goodman 6

> Howard Ratner, Chair STM Future Labs Committee, CEO EVP Nature Publishing Group Director of Development for CHORUS

Received: 29 June 2015 / Revised: 30 April 2016 / Accepted: 10 May 2016 / Published redime: 27 May © The Author(x) 2016. This article is published with open access at Springerlink.com

Abstract In the era of computation and data-driven research, traditional methods of disseminating research are no longer fit-for-purpose. New approaches for disseminating data, methods and results are required to maximize knowledge discovery. The "long tail" of small, unstructured datasets is well catered for by a number of general-purpose repositories, but there has been less support for "big data". Outlined here are our experiences in attempting to tackle the gaps in publishing large-scale, computationally intensive research. GigaScience is an open-access, open-data journal aiming to revolutionize large-scale biological data dissemination, organization and re-use. Through use of the data handling infrastructure of the genomics centre BGL GigoScience links standard manuscript publication with an integrated database (GigaDH) that bosts all associated data, and provides additional data analysis tools and computing resources. Furthermore, the supporting workflows and methods are also integrated to make published articles more transparent and open. GigaDB has released many new and previously unpublished datasets and data types, including as negently needed data to tackle infectious disease outbreaks, cancer and the growing food crisis. Other "executable" research objects, such as workflows, virtual machines and software from several GigaScience articles have been archived and shared in reproducible, transparent and usable formats. With data citation producing evidence

of, and credit for, its use GigaScience demonstrat publications. Here data i upon by users without or tational infrastructure in

Keywords Reproducibi Computational biology

1 Introduction

In a world where zetta now produced globally o to this information is realizing its potential fo For scientific data in pr ing access to enable ne transparency and self-ce tive and rapid progress. questions-revealing pre

On top of a citation a has had other measurable rice research [90]. Furth of a growing global popu loss of biodiversity, and and rapid action. Unfor in much of the world me data that is already being much as possible. Ther of open access publishi builf the papers currently read [83]. Browsing the

tions across datasets. key to maximizing the i

⁵⁰ Scott C Edmonds scott@gigusciescejournal.com

GigaScience, BGI-Hong Kong Co, Ltd., 16 Dai Fo Street, Tar Po Industrial Estate, NT, Hong Kong SAR, China

Office for National Stationes, Duffryn, Government, Buildings, Cardiff Rd, Newport NP10 8XG, UK

European Open Science Cloud Interoperability Framework

Examples of Digital Objects that have been proposed in the past are Research Objects⁹ and some of its implementations (e.g., RO-Crate¹⁰, the BagIt specification¹¹). Another potential definition of Digital Object is the one provided by the RDA Data Foundation & Terminology (DFT) Core Terms and Model¹², which states that "a Digital Object is represented by a bitstream, is referenced and identified by a persistent identifier and has properties that are described by metadata".

EOSC Interoperability Framework (v1.o)

May 2020, Draft for community consultation

Chair: Oscar Corcho, UPM

2021 we start to combine

Used? Yes

NIH Data Commons transferring and archiving very large HTS datasets in a locationindependent way

keep the context of data content together when its scattered. Scalability

Composer to
exchange between
Seven Bridges
Platform genomics
platform and the
Mendeley Data
repository

A framework for standardizing and sharing computations and analyses generated from High-throughput genome sequencing.

Standardized as IEEE 2791-2020

everest

Virtualized collaborative working environment for **Earth Science researchers** to share resources (data, workflows), ideas, knowledge, and results.

https://doi.org/10.1016/j.future.2019.03.046

Used? Yes

Exchange

Reproducibility

Archival

Active Objects

Phase 1 2010 -2015

Research

Championing

Phase 2 2015 -2018

> Phase 3 2017 -

Adoption

time to reflect....

Machine-processable

Standards

EXAMPLES

Low tech

Incremental

Multi-platform

Graceful degradation

Commodity tooling

Technology Independent

Keep it Developer simple friendliness

Desiderata & Norms Balance and prioritise

- "just enough complexity" or "just enough standards" so...
- sufficient extra benefits from what already exists (Linked Data, vocabularies, tooling, validation, transformation
- without compromising the developer entry-level experience so much that they rather do their own thing.

Research Object Tensions

Research Infrastructures sit in the middle

Academic Viewpoint

Green field site
Theoretical purity
Use latest thing
Proof of concept
Sophistication
Narrow developer audience
Strive for super generic
The end
Exposing the tech

Infrastructure Viewpoint

Pre-existing platforms
Practicality
Use things that work
Production
Simplicity
Wide developer audience
Several specific is ok!
The means
Hiding the tech

"it's better, initially, to make a small number of users really love you than a large number kind of like you"

Paul Buchheit paulbuchheit.blogspot.com

Not really mortal developer friendly

- "Easy to make, hard to use..."
- Daunting Linked Data tech stack
- Being too clever
 - Infer what is in the object and what kind of object it is
 - Massive reuse of ontologies
- Make developers (and researchers) lives easier not more demanding....

Developer friendliness matters

Reinvent with fewer features

Easy to understand and simple conceptually...

... with strong opinionated guide to current best practices

... using software stacks widely used on the Web

Future Generation Computer Systems

Volume 29, Issue 2, February 2013, Pages 599-611

Why linked data is not enough for scientists

Sean Bechhofer ^a, ^c, ^c, Iain Buchan ^b, David De Roure ^d, ^c, Paolo Missier ^a, John Ainsworth ^b, Jiten Bhagat ^a, Philip Couch ^b, Don Cruickshank ^c, Mark Deiderfield ^b, Ian Dunlop ^a, Matthew Gamble ^a, Danius Michaelides ^c, Stuart Owen ^a, David Newman ^c, Shoaib Sufi ^a, Carole Goble ^a

Show more

https://doi.org/10.1016/j.future.2011.08.004

Get rights and content

Abstract

Scientific data represents a significant portion of the linked open data cloud and scientists stand to benefit from the data fusion capability this will afford. Publishing linked data into the cloud, however, does not ensure the required reusability. Publishing has requirements of provenance, quality, credit, attribution and methods to provide the reproducibility that enables validation of results. In this paper we make the case for a scientific data publication model on top of linked data and introduce the notion of Research Objects as first class citizens for sharing and publishing.

Indeed.

Linked Data is not enough.

Research Infrastructures:

"digital technologies (hardware, software), resources (data, services, digital libraries, standards), comms (protocols, access rights, networks), people and organisational structures"

Linked Data and a Spec is not enough and sometimes too much

Reference examples

Tools

Guides

Exchange, reproducibility, executable objects
Portability between platforms, Archiving

Platform & user buy-in & consensus

Passionate, dedicated leadership

Active engaged community, seed Support

Developer friendly – so possible Incentives – so rewarding Adoption path – so acceptable

Metadata capture Early benefit

Research Object Reboot

Community

Swing Back to Basics

DataCrate from the Open Repository community

"As a researcher...I'm a bit b****y fed up with Data Management", Cameron Neylon

Archivist and library people know the importance of metadata and standards...

... and for things to work 5, 10, 20 years later.

End-users need to have their own way to "bypass the system"...

.... their field, repositories, institutions, journals etc. will always be lagging behind the curve

Most who want to make their data is FAIR ...

... do not have the resources or knowledge to start championing all of this to all levels & need tools and ramps.

Be Humble

http://www.lisbdnet.com/ https://ischools.org/

A RO-Crate Community!

A Merger

See also recent and sponning avents.

https://www.researchobject.org/ro-crate/#contribute

https://github.com/researchobject/ro-crate/issues/1

- A diverse set of people
- A variety of stakeholders
- A set of collective norms
- A open platform that facilitates communication (GitHub, Google Docs, monthly telcons)

RO-Crate

Specifications and Tooling

It is recommended that new Research Object users adapt the RO-Crate specification.

RO-Crate is a community effort to establish a lightweight approach to packaging research data with their metadata.

It is based on <u>schema.org</u> annotations in <u>JSON-LD</u>, and aims to make best-practice in formal metadata description **accessible** and practical for use in a wider variety of situations, from an individual researcher working with a **folder of data**, to large data-intensive computational research environments.

RO-Crate is the marriage of <u>Research Objects</u> with <u>DataCrate</u>. It aims to build on their respective strengths, but also to draw on lessons learned from those projects and similar research data packaging efforts. For more details, see <u>RO-Crate background</u>.

The <u>RO-Crate specification</u> details how to capture a set of files and resources as a dataset with associated metadata – including **contextual entities** like people, organizations, publishers, funding, licensing, provenance, workflows, geographical places, subjects and repositories.

A growing list of <u>RO-Crate tools and libraries</u> simplify creation and consumption of RO-Crates, including the graphical interface <u>Describo</u>.

The RO-Crate community help shape the specification or get help with using it!

https://w3id.org/ro/crate

ro-crate

Research Object Crate

View the Project on GitHub Resemb@larct.vie.code

This project is maintained by ResearchObject

Holded on Citivity Pages - Thereo by enteredist

Research Object Crate (RO-Crate)

Permatink: https://w3kt.org/ro/crate

- 1. What is RO-Crate?
- 2. Where did RO-Crate come from?
- 3. Who is it for?
- 4. When can I use 67
- 5. How can I use it?
- 6. Contribute
 - 1. Meetings
- 7. Citel RO-Crate

News: RO-Crate Metadata specification 1.0 released

What is RO-Crate?

RO-Crate is a community effort to establish a lightweight approach to packaging research data with their metadata. It is based on schema.org annotations in JSON-LD, and aims to make best-practice in formal metada idescription accessible and practical for use in a wider variety of situations from an individual researcher working with a folder of data, to large dataintensive computational research environments.

Where did RO-Crate come from?

RO-Crafe is the marriage of Research Objects with DataCrafe. It aims to build on their respective strengths, but also to draw on lessons learned from those projects and similar research data packaging efforts. For more details, see background.

Who is it for?

The RO-Crate effort trings together practitioners from very different backgrounds, and with different motivations and use-cases. Among our core target users are: a) researchers engaged with computation and data intensive, workflow-driven analysis: b) digital repository managers and infrastructure providers: c) individual researchers looking for a struightforward tool or how-to guide to "FARRity" their data: d) data stewards supporting research projects in creating and curating slatasets.

We are still gathering usecases, please help us by adding more.

When can I use it?

The RD-Crate 1.0 specification has been released.

* RO-Crate 1.0 (newest release)

RO-Crate 1.1-DRAFT (draft for next release)

Background

Community

Examples

Implementations

Outreach and Publications

Specification

RO-CRATE 1.1

- 1. About this document
- 2. Introduction
- 3. Terminology
- 4. RO-Crate Structure
- 5. Metadata of the RO-Crate
- 6. Root Data Entity
- 7. Data Entities
- **B. Contextual Entities**

Research Object Crate (RO-Crate)

RO-Crate Metadata Specification 1.1

Released 30th October 2020

Permalinic https://w3id.org/ro/crate/1.1

Published: 2020-10-30

· Publisher: researchobject.org community

· Status: Recommendation

JSON-LD context: https://w3id.org/ro/crate/1.1/context

This version: https://w3id.org/ro/crate/1.1

Alternate formats: Web pages, single-page HTML, PDF, RO-Crate JSON-LD, RO-Crate HTML

E ··· ⊕ ☆ Q Search

Previous version: https://w3id.org/ro/crate/1.0

 Cite as: https://doi.org/10.5281/zenodo.4031327 (this version) https://doi.org/10.5281 /zenodo.3406497 (any version)

· Editors: Peter Sefton, Eoghan Ó Carragáin, Stian Solland-Reyes

· Authors: Peter Sefton, Eoghan Ó Carragáin, Stian Soiland-Reyes, Oscar Corcho, Daniel Garijo, Raul Palma, Frederik Coppens, Carole Goble, José María Fernández, Kyle Chard, Jose Manuel Gomez-Perez, Michael R Crusoe, Ignacio Eguinoa, Nick Juty, Kristi Holmes, Jason A. Clark, Salvador Capella-Gutierrez, Alasdair J. G. Gray, Stuart Owen, Alan R Williams, Giacomo Tartari, Finn Bacall, Thomas Thelen, Hervé Ménager, Laura Rodriguez Navas, Paul Walk, brandon whitehead, Mark Wilkinson, Paul Groth, Erich Bremer, LJ Garcia Castro, Karl Sebby, Alexander Kanitz, Ana Trisovic, Gavin Kennedy, Mark Graves, Jasper Koehorst, Simone Leo

See https://w3id.org/ro/crate for further details about RO-Crate.

This specification is Copyright 2017-2020 University of Technology Sydney, The University of Manchester UK and the RO-Crate contributors.

Disensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/UCENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS. WITHOUT

Reinvent as Lightweight Underware Linked data but Developer Friendly

Easy to understand and simple

conceptually...

Data entities are files/directories or web resources Boundness of elements is explicit Single graph, data structure depth 1

... with strong opinionated guide to

current best practices Example driven rather than strict specification

Implementers add additional metadata using schema.org types and properties

... using software stacks widely used

on the Web BagIT data profile, schema.org, JSON-LD, JSONSchema Flattened compacted JSON-LD, no need for RDF libraries Swung a bit far.... and swung back...

How can I use it?

While we're mostly focusing on the specification, some tools already exist for working with RO-Crates:

- <u>Describo</u> interactive desktop application to create, update and export RO-Crates for different profiles. (~ beta)
- <u>CalcyteJS</u> is a command-line tool to help create RO-Crates and HTML-readable rendering (~ beta)
- ro-crate JavaScript/NodeJS library for RO-Crate rendering as HTML. (~ beta)
- ro-crate-js utility to render HTML from RO-Crate (~ alpha)
- ro-crate-ruby Ruby library to consume/produce RO-Crates (~ alpha)
- <u>ro-crate-py</u> Python library to consume/produce RO-Crates (~ planning)

These applications use or expose RO-Crates:

- Workflow Hub imports and exports Workflow RO-Crates
- OCFL-indexer NodeJS application that walks the Oxford Common File Layout on the file system, validate RO-Crate Metadata Files and parse into objects registered in Elasticsearch. (~ alpha)
- ONI indexer
- ocfl-tools
- ocfl-viewer
- <u>Research Object Composer</u> is a REST API for gradually building and depositing Research Objects according to a pre-defined profile. (RO-Crate support alpha)
- ... (yours?)

Under-ware

- RDF and schema.org but you don't need to know.
- Extend RO-Crate
 - Add your own schema.org types and properties.
 - Add in your own ontologies
 ...and it still works!

https://arkisto-platform.github.io/case-studies/

Driver! Profile for workflows

https://about.workflowhub.eu/Workflow-RO-Crate/ Concepts

many, 1975, malls

sample, name

Steps

This section uses terminology from the RO Crate 1.0 specification.

Main Workflow

The Crote MUST contain a data entity of type ["File", "SoftwareSourceCode", "Workflow"] as the Main Workflow.

The Croty MUST refer to the Main Workflow via mainEntity.

The Main Workflow MUST refer to its type via programmingLanguage.

Main Workflow CWL Description

The Critic COULD contain a data entity of type ["File", "SoftwareSourceCode", "Workflow"] as the Main Workflow CML Description.

If present the Main Workflow MUST refer to the Main Workflow CWL Description via subjectOf.

Main Workflow Diagram

The Crote COULD contain a Main Workflow Diogram, indicated as a data entity of type ["File", "ImageObject", "WorkflowSketch"].

If Main Workflow Diagram is present, the Main Workflow MUST refer to it via image.

Crate

The Crote MUST specify a license.

The Crafe SHOULD contain README and at the coot level.

The Crafe COULD contain a Dataset (directory) data entity of type: ["Dataset"] named "test" to hold tests.

The Crote COULD contain a Dataset (directory) data entity of type ["Dataset"] named "examples" to hold examples.

WorkflowHub

Driver! Profile for workflows

Infrastructure families

On-boarding developers

Web and dev friendly

RO in practice

External references – logically & physically contained – versions, snapshots, multi-typed, active, multistewarded, multi-authored, governance...

More than plain JSON, Just Enough Linked Data

Retain benefits of Linked Data in the toolbox

- querying, graph stores, vocabularies, clickable URI as identifiers)
- customization and conventions

Plus all the other stuff a developer expects

- documentation, examples, libraries, tools
- simplifications rather than generalizations (less flexibility frees up developers)
- "Just enough standards" cf. schema.org

Linked Data "exotics" there for when the time is right if needed by the right people.

Keep your eye on the target.....

How do we make RO's normative?

- Propaganda and incentive models to scientists, target the Research Infrastructures to deliver.
- Digital library community allies!

Developer friendliness matters

Underware, incremental, ramps, embed, metadata automation, persuasive design

Linked Data has a role

- As a means but it is not an end.
- Simpler version of Linked Data makes an adoption path (cf. Knowledge Graphs, schema.org, JSON-LD)

FAIR principles for Research Objects....

Unifying the vision with the practical

http://researchobject.org

Barend Mons

Sean Bechhofer

Matthew Gamble

Raul Palma

Jun Zhao

Mark Robinson

Alan Williams

Norman Morrison

Stian Soiland-Reyes

Tim Clark

Alejandra Gonzalez-Beltran

Philippe Rocca-Serra

lan Cottam

Susanna Sansone

Kristian Garza

Daniel Garijo

Catarina Martins

lain Buchan

Michael Crusoe

Rob Finn

Stuart Owen

Finn Bacall

Bert Droebeke

Laura Rodríguez Navas

Ignacio Eguinoa

Carl Kesselman

lan Foster

Kyle Chard

Vahan Simonyan

Ravi Madduri

Raja Mazumder

Gil Alterovitz

Denis Dean II

Durga Addepalli

Wouter Haak

Anita De Waard

Paul Groth

Oscar Corcho

Peter Sefton

Eoghan Ó Carragáin

Frederik Coppens

Jasper Koehorst

Simone Leo

Nick Juty

LI Garcia Castro

Karl Sebby

Alexander Kanitz

Ana Trisovic

Gavin Kennedy

Mark Graves

José María Fernández Jose

Manuel Gomez-Perez

Jason A. Clark

Salvador Capella-Gutierrez

Alasdair J. G. Gray

Kristi Holmes

Giacomo Tartari

Hervé Ménager

Paul Walk

Brandon Whitehead

Erich Bremer

Mark Wilkinson

Jen Harrow

And many more....

Objects

BioCompute

