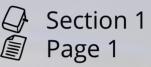
Understanding Semantic Search on Scientific Repositories: Steps towards Meaningful Findability

> Thiago Gottardi Claudia Bauzer Medeiros Julio Cesar Dos Reis

> > {gottardi,cmbm,jreis}@ic.unicamp.br

Instituto de Computação Universidade Estadual de Campinas

Instituto de Computação



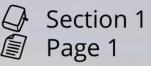
Agenda

- Introduction
- Review Method
- Results
- Discussion and Open Challenges
- Related Works
- Conclusions and Ongoing Efforts

Read Further:

Browse extra documents and data:

http://tiny.cc/gottardi-semantic-review

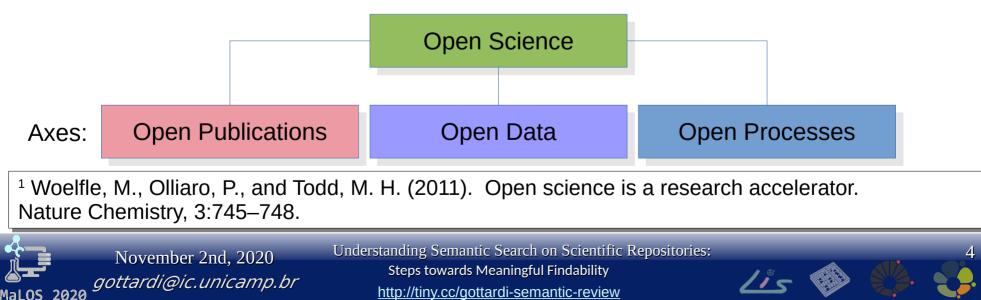


Agenda

- Introduction
- Review Method
- Results
- Discussion and Open Challenges
- Related Works
- Conclusions and Ongoing Efforts

Read Further:

Browse extra documents and data:


http://tiny.cc/gottardi-semantic-review

Introduction

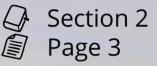
- Sharing of results:
 - A key enabler for Open Science¹.
 - Reuse of results.

Introduction

Problem:

Reuse depends on effective search mechanisms.

Introduction


- Semantic search has been proposed for this issue:
 - Still, semantic mechanisms vary significantly.
 - Open questions remain:
 - What are the adequate mechanisms?
 - Which objectives and goals should be considered?
 - What data classes are searched?

November 2nd, 2020 ^{Under} *gottardi@ic.unicamp.br*

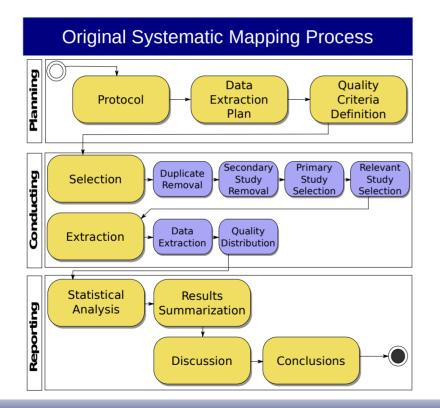
Agenda

- Introduction
- Review Method
- Results
- Discussion and Open Challenges
- Related Works
- Conclusions and Ongoing Efforts

Read Further:

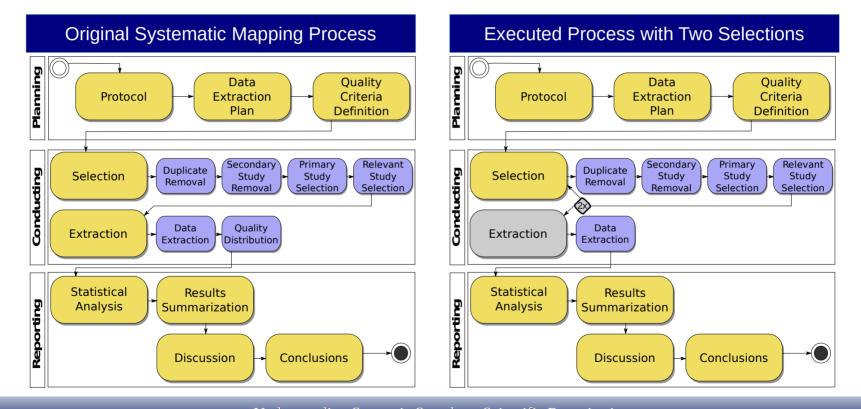
Browse extra documents and data:

http://tiny.cc/gottardi-semantic-review



Method

- Systematic Mapping
 - A literature review based on a strict process;
 - Quantitative view on related publications.
 - Presents existing results and their numbers;
 - Lacks qualitative depth on their efficiency.


Review Process

November 2nd, 2020

Review Process

November 2nd, 2020

Understanding Semantic Search on Scientific Repositories: Steps towards Meaningful Findability http://tinv.cc/gottardi-semantic-review 10

Review Protocol

Protocol Item	Item Description
Objective	Identify existing approaches to integrating semantic searches on scientific production.
Primary Research Question	RQ1: What are the approaches and techniques that perform integrated semantic searches on scientific production?
Secondary Research Question(s)	RQ2: What approaches or techniques employ semantic mapping? RQ3: What are the software architectures developed for integration? RQ4: What are the objectives for the proposal?
Intervention	Related primary studies must be identified and categorized.
Control	The search results must include previously known studies that are known by the researcher.
aLOS 2020	<u>p://tiny.cc/gottardi-semantic-review</u>

DaM

Review Protocol (Cont.)

Protocol Item	Item Description
Population	Search techniques and approaches.
Results (expected)	Quantitative data on approach frenquency distribution within scientific categories.
Application (expected)	Provided as a support to new research efforts.
Keywords	Semantic Search and Scientific.
Source selection criteria	Source must index studies on Computer Science, Mathematics or Engineering; must allow Boolean operators; must be accessible by the researchers.
Study Language(s)	At least title and abstract must be in English.
Search Engine(s)	Scopus and IEEExplore

November 2nd, 2020

Understanding Semantic Search on Scientific Repositories: Steps towards Meaningful Findability <u>http://tiny.cc/gottardi-semantic-review</u>

12

Review Protocol (Cont.)

Protocol Item	Item Description
Selection Criteria	Inclusion:
	 (P1-101) I1 – Contains Search; (P2-121) I2 – Integration or Semantic Mapping
	Exclusion:
	 (P1-1) E1 – Not a document or inaccessible; (P1-2) E2 – Unrelated to computing/databases. (P2-102) E3 – No search; (P2-107) E4 – Not primary study*.
	st be verified for similarity prior to exclusion.

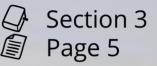
http://tiny.cc/gottardi-semantic-review

DaMaLOS 2020

Search String Definition

Keyword	Synonyms
Semantic Search	"semantic search" ; "ontology search"; "metadata search"; "meta data search"
Search	"search", "query", "information retrieval", "retrieval"; "access"
Scientific	"scientific"; "study pack"; "study packing"; "research"

Search String Definition


Session	String
1	(("semantic search" OR "ontology search" OR "metadata search" OR "meta data search") AND ("scientific" OR "study pack" OR "study packing"))
2	(("semantic query" OR "ontology query" OR "metadata query" OR "meta data query") AND ("scientific" OR "study pack" OR "study packing"))
3	(("semantic information retrieval" OR "ontology information retrieval" OR "metadata information retrieval" OR "meta data information retrieval") AND ("scientific" OR "study pack" OR "study packing"))
4	(("semantic retrieval" OR "ontology retrieval" OR "metadata retrieval" OR "meta data retrieval") AND ("scientific" OR "study pack" OR "study packing"))
	*Scopus included "Research" and "Science" for "Scientific"; *Scopus included "Analogy" for "Semantic"; *Scopus included "Retrieve" and "Access" for Retrieval;

nup.//uny.cc/gouarui-semanuc-review

Agenda

- Introduction
- Review Method
- Results
- Discussion and Open Challenges
- Related Works
- Conclusions and Ongoing Efforts

Read Further:

Browse extra documents and data:

http://tiny.cc/gottardi-semantic-review

Selection Phase 1

- Objective:
 - Select papers or articles;
 - Discard unrelated documents
 - e.g. talk reports, conference listings.
 - Select papers or articles related to search.

Phase Input	I1 (Search)		E2 (Unrelated)	E3 (No Search)	Phase Output
299	280	9	1	4	276

November 2nd, 2020 *gottardi@ic.unicamp.br*

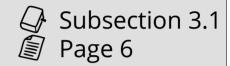
Selection Phase 2

- Objective:
 - Select papers or articles related to integration.
 - Verify relevance of non-primary;
 - Discard non-primary studies.

	Phase Input	I2.1 - Integration	I2.2 - Semantic Mapping	$I2 - I2.1 \cap I2.2$ (Integration and Semantic)	I2 – I2.1 U I2.2 (Integration or Semantic)	E4 – Non Primary	Phase Output
	276	82	20	12	90	8	85
D	▲ ▲ aMaLOS 2020 ⁹	November 2nd, <i>pottardi@ic.unic</i>	2020	erstanding Semantic Search Steps towards Meaningful <u>http://tiny.cc/gottardi-sem</u>	Findability	لائع 🕸	

Extraction Phase

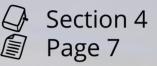
- Objective:
 - Extract data according to the Research Questions.
 - 1) Semantic Search and its Integration;
 - 2) Semantic Mapping;
 - 3) Software Architectures;
 - 4) Information Usage Objective.
 - Summarize selected documents.



Extraction Result

- Integration and Semantic Mapping:
 - 11 studies: {2007..2019}.

Best described on Paper:



Author	Title
e Xiaoming, Z.	Material Scientific Data Integration for Semantic Grid
e Pirrò, G.	Advanced semantic search and retrieval in a collaborative peer-to-peer system
e Deus, H.F.	Translating standards into practice - One Semantic Web API for Gene Expression
e Khattak, A. M.	Context-Aware Search in Dynamic Repositories of Digital Documents
Luo, Y.	Dynamic mapping processing between global ontology and local ontologies in grid environment
Abburu, S.	A generic mapping method and tool to execute semantic queries on relational database
Zheng, S.	Enabling Ontology Based Semantic Queries in Biomedical Database Systems
e	e Xiaoming, Z. e Pirrò, G. e Deus, H.F. e Khattak, A. M. Luo, Y. Abburu, S.

Agenda

- Introduction
- Review Method
- Results
- Discussion and Open Challenges
- Related Works
- Conclusions and Ongoing Efforts

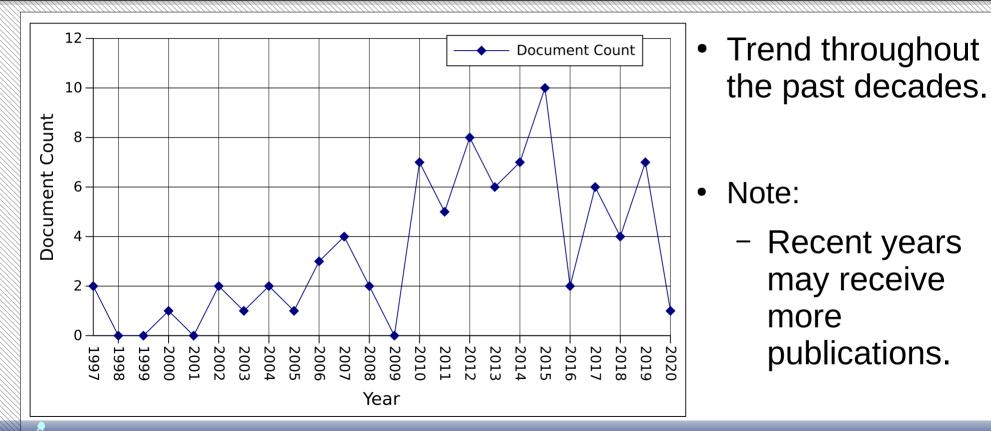
Read Further:

Browse extra documents and data:

http://tiny.cc/gottardi-semantic-review

Semantic Search and Integration

• Semantic Search:


- Depends on metadata and techniques to be efficient;
- Different metadata formats and techniques were described.

• Integrated Search (77 studies):

- Integration of different databases (39);
- Integration of semantics to be added to existing data (34);
- Integration of a semantic layer mapped to existing semantics (34);

November 2nd, 2020

Understanding Semantic Search on Scientific Repositories: Steps towards Meaningful Findability 23

http://tiny.cc/gottardi-semantic-review

- Studies that mention integrated semantic search:
 - 77 studies were found: {1997..2020}.

Year	Туре	Author	Title
1997	article	Cardiff, J.	Semantic query processing in the venus environment
1997	article	Schatz, B.R.	Information retrieval in digital libraries: Bringing search to the net
2000	conference	Bukhres, O.	Effective standards for metadata in the GCMD data access system
2002	conference	Higgins, D.	Managing heterogeneous ecological data using Morpho
2002	conference	Nelson, C.	Use of metadata registries for searching for statistical data
2003	conference	Zhang	A practical approach for microscopy imaging data management (MIDM) in neuroscience
2004	conference	McClean, S.	MISSION: an agent-based system for semantic integration of heterogeneous distributed statistical information sources
2004	article	Yang R	Automatic metadata ingestion for supporting a web-based scientific

Broad areas: •

Biochemical, including:

Mathematical, including:

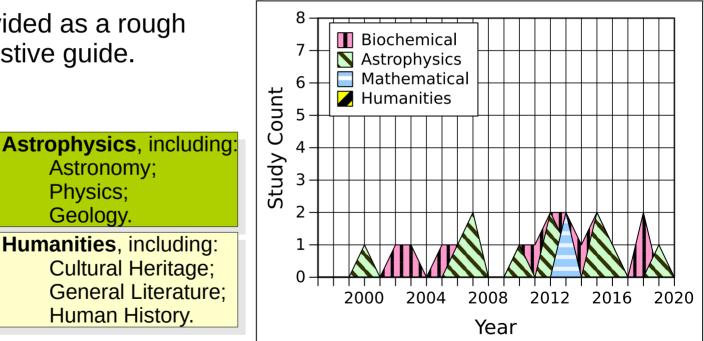
Chemistry:

Biology; Medicine.

Calculus:

Statistics:

Algorithms.

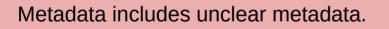

These are provided as a rough and non-exhaustive guide.

Astronomy;

Physics:

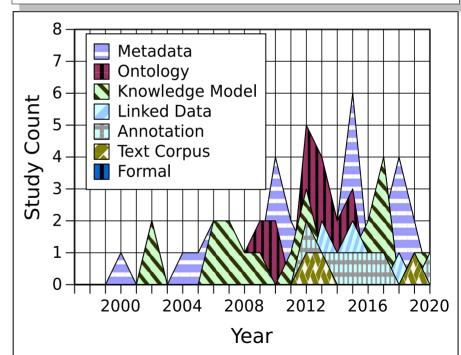
Geology.

Research Areas


November 2nd, 2020 gottardi@ic.unicamp.br 2020

Understanding Semantic Search on Scientific Repositories: Steps towards Meaningful Findability

http://tinv.cc/gottardi-semantic-review



- Most common metadata:
 - Presented as categories.
 - "Metadata" represents unclear.

Ontology also includes OWL and RDF.

Metadata Categories

Understanding Semantic Search on Scientific Repositories: Steps towards Meaningful Findability

http://tiny.cc/gottardi-semantic-review

Semantic Mapping

Semantic layers have been proposed (17 studies): Automatic (9); Manual (8); Fuzzy (3); Strict (0).

Automatic:

Computers process existing data Algorithms identify and add metadata.

Fuzzy:

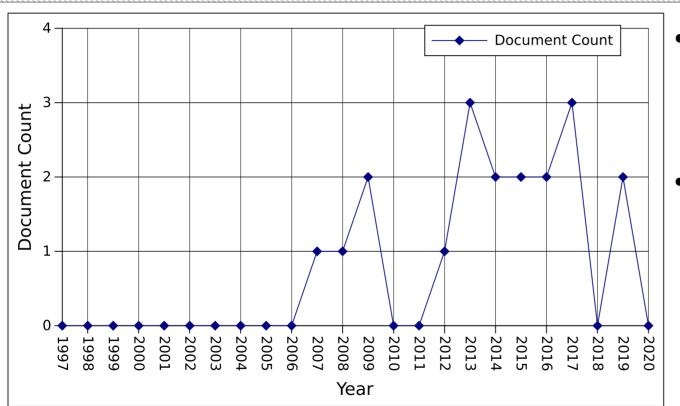
Recommender systems use probability to suggest roughly adequate metadata.

Manual:

Authors or curators work manually; Humans manually add metadata.

Strict:

Constraint rules enforce checks to ensure only correct metadata is added.



Semantic Mapping

- Studies that mention semantic mapping:
 - 18 studies were found: {2007..2017}.

Year	Туре	Author	Title
2007	conference	Xiaoming, Z.	Material Scientific Data Integration for Semantic Grid
2008	conference	Pirrò, G.	Advanced semantic search and retrieval in a collaborative peer-to-peer system
2009	article	Liu, X.	Management of scientific principle knowledge for product innovation
2009	conference	Song, J.	Case study on multi-classifications based scientific data management and analysis system
2012	conference	Deus, H.F.	Translating standards into practice - One Semantic Web API for Gene Expression
2013	conference	Khattak, A. M.	Context-Aware Search in Dynamic Repositories of Digital

Semantic Mapping

• Trend throughout the past decades.

Note:

 Recent years may receive more publications.

November 2nd, 2020 *gottardi@ic.unicamp.br* Understanding Semantic Search on Scientific Repositories: Steps towards Meaningful Findability

http://tiny.cc/gottardi-semantic-review

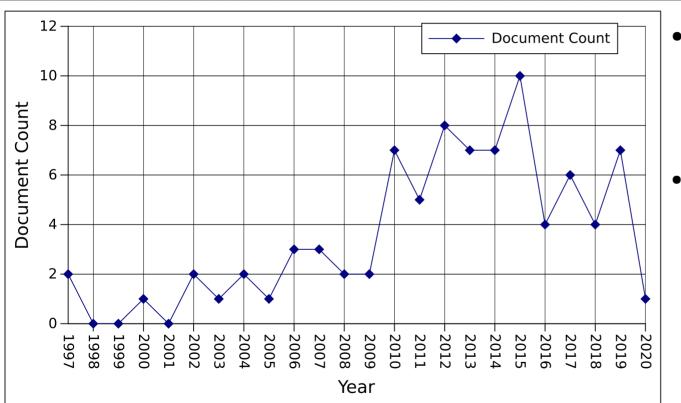
Semantic Search and Integration

- Different Meanings for Integration;
- Semantic Mapping Definitions:
 - Automatic; Manual; Fuzzy; Strict.
- Remaining challenge to balance
 - Domain-Specific and Generic.
- Different software architectures were described:
 - Major trend: migration from Clusters to Cloud.

• Objectives:

- Goals in which the data was originally stored or retrieved for.
 - Example: Manage data.

• Data Classes:


- Category or datatype of stored data.
 - Example: Documents.

November 2nd, 2020

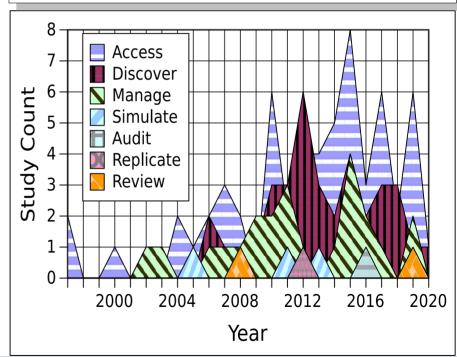
- Studies that mention Objectives or Data Classes:
 - 85 studies were found (all): {1997..2020}.

Year	Туре	Author	Title
1997	article	Cardiff, J.	Semantic query processing in the venus environment
1997	article	Schatz, B.R.	Information retrieval in digital libraries: Bringing search to the net
2000	conference	Bukhres, O.	Effective standards for metadata in the GCMD data access system
2002	conference	Higgins, D.	Managing heterogeneous ecological data using Morpho
2002	conference	Nelson, C.	Use of metadata registries for searching for statistical data
2003	conference	Zhang	A practical approach for microscopy imaging data management (MIDM) in neuroscience
2004	conference	McClean, S.	MISSION: an agent-based system for semantic integration of heterogeneous distributed statistical information sources
2004	article	Yang, R.	Automatic metadata ingestion for supporting a web-based scientific

• Trend throughout the past decades.

 Recent years may receive more publications.

33


November 2nd, 2020 *gottardi@ic.unicamp.br* Understanding Semantic Search on Scientific Repositories: Steps towards Meaningful Findability

http://tiny.cc/gottardi-semantic-review

- Most common objectives:
 - Presented as categories.
 - "Access" also includes search.

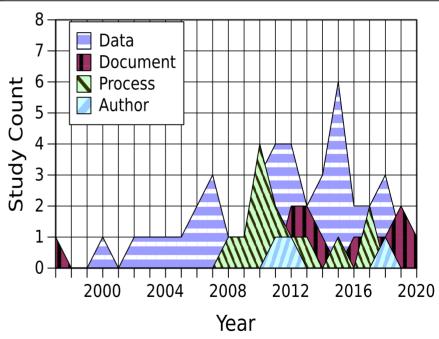
Access is usually combined with other usages.

Usage Objectives

November 2nd, 2020

Understanding Semantic Search on Scientific Repositories:

Steps towards Meaningful Findability http://tiny.cc/gottardi-semantic-review



34

- Most common data classes:
 - Presented as categories.
 - Unclear classes are excluded.

Data, including: Numeric data; Images; Multimedia.	Document, including: Papers; Articles; Reports.	Study Co
Author, including: Author Names; Author Affiliation; Research Groups.	Process, including: Workflows; Software; Algorithms.	

Data Classes

November 2nd, 2020

Understanding Semantic Search on Scientific Repositories: Steps towards Meaningful Findability

http://tiny.cc/gottardi-semantic-review

Objectives a

Un

• Objectives x Data Classes:

 Combinations indicate challenges and new opportunities.

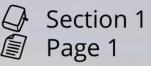
	November 2nd, 2020
	gottardi@ic.unicamp.br
DaMaLOS	2020

		Class							
		Scientific Data	Document	Process	Authors				
	Access	29: Search, query, access,	10: Search, query, access,	8: Search,	2: Search and find or				
Objective		recommend and/or	recommend and/or	access,	recommend authors				
		retrieve science data.	retrieve papers, articles,	recommend	and related authors.				
			journals, reports,	and/or retrieve					
			magazines, etc.	science data.					
	Discover	22: Discover conclusions	4: Discover conclusions	7: Discover	1: Discover what				
		using aggregated science			authors collaborate				
		data.	using existing	workflows.	on research efforts.				
			documents.						
	Manage	13: Manage known	2: Manage known	5: Manage	1: Manage known				
		science data, also their	document	known	authors,				
		sources and bases.	references/citations.	workflows and	relationships,				
			Manage documents	assess their	contributions and				
			being written.	usage.	their roles.				
	Simulate	3: Simulate experiments	0: Simulate document	1: Simulate	0: Simulate author				
		and compare against	publications and	workflow usage	contributions and				
		existing data for	acceptance.	and outcomes.	outcomes.				
0		validation.		0.1.1					
	Audit	1: Audit data for	0: Audit documents to	0: Audit	0: Audit roles and				
		validation and	verify authorship and	execution of	authorship to protect				
		verification; protect from	protect documents from	workflows.	authors' curricula				
		corruption and false	corruption.	Audit who can	from corruption and				
		data; blame		edit the	false data.				
	Dentinet	manipulators.	O. Dentisete (en aleriste)	workflow.	O. Dissists south an				
	Replicate	1: Replicate studies based	0: Replicate (or plagiate) existing documents and	0: Replicate existing	0: Plagiate author roles.				
		on existing science data and compare the	their structures.	work-flows and	Toles.				
		outcomes.	then structures.						
		outcomes.		compare their outcomes.					
	Review	0: Review and compare	1: Support for literature	0: Review	0: Review existing				
		data sets of science data	reviews.	work-flows and	author roles and				
		to aggregate results.	1010005.	methods and	contributions.				
		to aggregate results.		compare their	contributions.				
				eff ciency.					
	<u></u>	Corgonarar Semannie revie		en cicicy.					

				Data	Class			
		Science Data	Document	Authors	Process	Future Work	Call for Contributions and Research Topics	
Objective	Discovery	Discover conclusions using aggregated science data.	Discover conclusions and related documents using existing documents.	Discover what authors collaborate on research efforts.	Discover combined workflows,	Discover possible future works.	Discover trends for new topics and their calls for contributions.	
	Management	Manage known existing science data, also their sources and bases.	Manage known document references/citations. Manage documents being written	Manage known authors, relationships, contributions and their roles	Manage known workflows and assess their usage.	Manage possible future works.	Manage calls for conferences and their relationships.	
	Replication	Replicate studies based on existing science data and compare the outcomes.	Replicate (or plagiate) existing documents and their structures.	Plagiate author roles.	Replicate existing workflows and compare their outcomes.	Replicate goals for future works. Execute known future works.	Replicate interests from similar venues.	
	Review	Review and compare data sets of science data to aggregate results.	Literature reviews.	Review existing author roles and contributions.	Review workflows and methods and compare their efficiency,	Review past future works and compare against more recent past works.	Review calls from venues and compare their interests,	
	Simulation	Simulate experiments and compare against existing data for validation.	Simulate document publications and acceptance.	Simulate author contributions and outcomes.	Simulate workflow usage and outcomes.	Simulate future work outcomes prior to execution.	Simulate new trends for topics and calls for contributions.	
	Access (incl. semantic and recommender)	Search, query, access, recommend and/or retrieve science data.	Search, query, access, recommend and/or retrieve papers, articles, iournals, reports	Search and find or recommend authors and related authors.	Search, access, recommend and/or retrieve science data.	Search or recommend compatible past future works.	Search or recommend calls for contributions.	
	Audit	Audit data for validation and verification; protect from corruption and false data: blame manipulators.	Audit documents to verify authorship and protect documents from	Audit roles and authorship to protect authors' curricula from corruption and false data.	Audit correct execution of workflow. Audit who can edit the workflow.	Audit future execution of future work. Feasibility of future work.	Audit acceptance of venue according to the call for contributions.	
	Prediction	Estimate future science data production.	Estimate future document publications and demand. Estimate future document citations.	Estimate future authorship/contribution increase or decrease.	Predict outcomes for workflow usage/risk analysis.	Predict probability of execution for future work. Predict possible future works.	Predict possible future calls for contributions.	
	Strategic	Identify strategic data sets for future use.	Plan future documents to be written.	Plan roles for authors and contributions.	Establish new workflows. Plan workflow acceptance.	Plan current or future future works. Plan execution of future works.	Plan for future venue calls.	
	Public Visualiz. (not recommender)	Graphic views for aggregated scientific data.	Suggest relevant documents for public.	Suggest related authors for public.	Suggest workflows for public.	Show planned/expected future works.	Show expected/future calls for contribution.	
	Internal Access	(Easily) select filtered specific data/query within scientific databases.	Query internal text, sections, figures and tables from the documents.	Query author details.	Query workflow steps and roles.	Query details from future works.	Query interests and details from calls for contributions.	
	Result Export (exists within Access, but not	Export scientific data.	Export Document searches and their results.	Export author names, affiliations and statistics.	Export workflows for reference and usage.	Export future work references.	Export venue calls.	
	declared) [Graduate] Teaching (exists within Access, but not declared)	Select scientific data and adapt for teaching new classes or (post)graduate students.	Searches and their results. Select adequate documents to elaborate teaching material.	Select relevant authors for students to study about,	Select relevant teaching methods or workflows to be studied.	Select relevant future works to be researched.	identify relevant topics to be taught.	37

DaMaLOS 20

- Four Main Classes:
 - Data; Documents; Processes; Authors.
 - The first three are related to **Open Science** Axes.
- Processes and Software Repositories are related.
- Studies rarely employ more than one class;
 - Existing research challenge on combining classes.



Agenda

- Introduction
- Review Method
- Results
- Discussion and Open Challenges
- Related Works
- Conclusions and Ongoing Efforts

Read Further:

Browse extra documents and data:

http://tiny.cc/gottardi-semantic-review

Related Works

A survey of scientific metadata schema

Xu, H., Sun, L., Zou, M., and Meng, A. (2013)

Exploring metadata search essentials for scientific data management

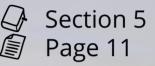
Zhang, W., Byna, S., Niu, C., and Chen, Y. (2019)

Mapping a decade of linked data progress through co-word analysis

Niknia, M. and Mirtaheri, S. (2015)

The study of semantic and ontological features of thesaurus and ontology-based information retrieval systems

Karimi, E., Babaei, M., and Beheshti, M. (2019)



Agenda

- Introduction
- Review Method
- Results
- Discussion and Open Challenges
- Related Works
- Conclusions and Ongoing Efforts

Read Further:

Browse extra documents and data:

http://tiny.cc/gottardi-semantic-review

Ongoing Efforts

- Review Updates:
 - Further studies are being analyzed;
- Data Sharing:
 - More data is planned to be shared and curated.

- Update with Wiley Search was recently concluded.

• ACM-DL and EV are under review.

Browse extra documents and data:

http://tiny.cc/gottardi-semantic-review

Conclusions

- Integration and Mapping are referenced in different meanings;
- Semantic search infrastructures usually focus on a low number of data classes;
- Review support systems are not integrated with other objectives;
- New infrastructures should be planned to support future objectives and research fields requirements
 - Motivated by the balance between Domain-Specific and Generic.

References

Karimi, E., Babaei, M., and Beheshti, M. (2019). The study of semantic and ontological features of thesaurus and ontology-based information retrieval systems. Iranian Journal of Information Processing and Management, 34(4):1579–1606.

Kitchenham, B. and Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering.

Technical Report EBSE 2007-001, Keele University and Durham University Joint Report, UK.

Niknia, M. and Mirtaheri, S. (2015). Mapping a decade of linked data progress through co-word analysis.Webology, 12(2).

Oakley, A., Gough, D., Oliver, S., and Thomas, J. (2005). The politics of evidence and methodology: lessons from the eppicentre. Evidence & Policy, 1(1):5–32.

Woelfle, M., Olliaro, P., and Todd, M. H. (2011). Open science is a research accelerator. Nature Chemistry, 3:745–748.

Xu, H., Sun, L., Zou, M., and Meng, A. (2013). A survey of scientific metadata schema. Applied Mechanics and Materials, 411-414:349–352.

Zhang, W., Byna, S., Niu, C., and Chen, Y. (2019). Exploring metadata search essentials for scientific data management. In 2019 IEEE HiPC, pages 83–92.

November 2nd, 2020 gottardi@ic.unicamp.br

References

Karimi, E., Babaei, M., and Beheshti, M. (2019). The study of semantic and ontological features of thesaurus and ontology-based information retrieval systems. Iranian Journal of Information Processing and Management, 34(4):1579–1606.

Kitchenham, B. and Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering.

Technical Report EBSE 2007-001, Keele University and Durham University Joint Report, UK.

Niknia, M. and Mirtaheri, S. (2015). Mapping a decade of linked data progress through co-word analysis.Webology, 12(2).

Oakley, A., Gough, D., Oliver, S., and Thomas, J. (2005). The politics of evidence and methodology: lessons from the eppicentre. Evidence & Policy, 1(1):5–32.

Woelfle, M., Olliaro, P., and Todd, M. H. (2011). Open science is a research accelerator. Nature Chemistry, 3:745–748.

Xu, H., Sun, L., Zou, M., and Meng, A. (2013). A survey of scientific metadata schema. Applied Mechanics and Materials, 411-414:349–352.

Zhang, W., Byna, S., Niu, C., and Chen, Y. (2019). Exploring metadata search essentials for scientific data management. In 2019 IEEE + + 299 papers and articles available as packing.

November 2nd, 2020 gottardi@ic.unicamp.br

Acknowledgements

Thanks in advance for your great questions. **Thiago Gottardi**, Claudia Medeiros *and* Julio dos Reis

Conselho Nacional de Desenvolvimento Científico e Tecnológico

> 428459/2018-8 305110/2016-0

Thank you For useful reviews. For your attention.

November 2nd, 2020 *gottardi@ic.unicamp.br*

