

Towards Semantic Representation of Machine-Actionable Data Management Plans

João Cardoso

Leyla J. Garcia

Fajar J. Ekaputra

Marie C. Jacquemot

Tomasz Miksa

José Borbinha

1.1. What is a Data Management Plan (DMP)?

- A DMP is a formal document used to support Data Management.
- The DMP describes the techniques, methods and policies on how data should be:
 - Created or Collected
 - Documented
 - Accessed
 - Preserved and Disseminated.
- A DMP should be created at the start of a project and **updated** throughout its life-cycle.

1.2. What should be in a DMP?

- A DMP should contain information on the following topics:
 - Administrative Data
 - Staff, responsibilities, funding, etc.
 - Data
 - Dataset characterization, formats, metadata standards, technical resources, etc.
 - Preservation
 - Dissemination policies, data hosts, licenses, etc.
 - Costs
 - Estimates for costs associated with data management.

https://en.uit.no/ub/forskningsstotte/art?p_document_id=473665

1.2. What should be in a DMP?

- The current DMP is:
 - A mostly static document.
 - Only human readable.
 - Based on a template, provided by the funding agency.
 - Not published, or publicly accessible.
 - Rarely updated.
 - Considered a bureaucratic hassle.

1.2. What should be in a DMP?

- The ideal DMP should be:
 - Both machine and human readable.
 - Shareable.
 - Compliant with a standard.
 - Interoperable.
 - A living document.
 - An essential part of data management.

1.3. The DMP Common Standard

- The RDA DMP Common Standards (DCS) Working Group was created to focus on the standardization of knowledge contained in a DMP.
- Its objective was to establish an **application profile** that defines a **core set of terms that define a DMP**.
- The application profile is modular in design and allows for extensions.

1.3. The DMP Common Standard

https://github.com/RDA-DMP-Common/RDA-DMP-Common-Standard

2.1. Why an ontology?

- The DCS provides **reference serialisations** of the application profile.
- Our objective was to create a new serialisation with distinct features from the existing serialisations.
 - Semantic Technologies
 - The DMP Common Standard Ontology (DCSO)
- Ontologies allow for the representation of a shared conceptualisation of knowledge through the usage of formal semantics.
 - Suitable for the creation of Linked Open Data
 - Easy to extend
 - Enable reasoning, and knowledge inference

2.2. The DCSO Baby Steps

- Initial versions of the DCSO had several issues that prevented it from achieving its full potential.
 - Constraints
 - Controlled vocabularies
 - Ontology reuse
 - Non persistent namespaces

2.3. Creating the DCSO version 3.0.2

- The creation of version 3.0.2 of the DCSO followed a three iterative stages approach.
- First Stage
 - Create an ontology serialisation of the DCS application profile, and would integrate terms from selected domain ontologies
 - Expressed in Terse RDF Triple Syntax (Turtle) and Web Ontology Language (OWL)
 - Outcome was the creation of the DCSO Core

2.3. Creating the DCSO version 3.0.2

- Second Stage
 - Incorporate the usage of controlled vocabularies into the existing ontology
 - Create a constraint validation layer using ShEx

2.3. Creating the DCSO version 3.0.2

- Third Stage
 - Human-readable descriptions for all resources
 - Default **namespace** was provided by the **W3ID**
 - **Revision of the GitHub repository** where the ontology is published, by adding documentation and reorganising the structure of the repository

3.1. DCSO Core

• The DCSO core represents the core set of universal elements defined by the DCS characterisation of a DMP.

- The DCSO Core comprises of 26 classes
 - 13 of which match terms in the DCS application profile
 - 13 are divided into two categories
 - Identifier classes
 - External classes

3.1. DCSO Core

- The DCSO core represents the core set of universal **elements** defined by the DCS characterisation of a DMP.
- The DCSO Core comprises of 26 classes
 - 13 of which match terms in the DCS application profile
 - 13 are divided into two categories
 - **Identifier** classes
 - **External** classes

14

3.1. DCSO Core

- The DCSO core represents the core set of universal elements defined by the DCS characterisation of a DMP.
- The DCSO Core comprises of 26 classes
 - 13 of which match terms in the DCS application profile
 - 13 are divided into two categories
 - **Identifier** classes
 - **External** classes

3.2. DCSX: DCSO Extensions

- The DCSX ontology was created to address the DCS core set of terms that require the usage of standardised controlled vocabularies.
- Each class represents a standardised controlled vocabulary.
 - The dcsx:Country class represents the ISO 3166-1 country codes
 - The dcxs:CurrencyCode class represents the ISO 4217 currency codes
 - The dcsx:Language class represents the ISO 639-3 language codes

dcsx:Country
dcsx:CurrencyCode
dcsx:Language

3.3. Constraints Validation Layer

- The DCSO Constraints Validation Layer facilitates compliance validation with the underlying model.
- ShEx was selected as the representation language, due to the expertise and familiarity with the format by the creators.
- The created ShEx Schemas follow the guidelines established in the DCS application profile.
 - Regarding existence
 - Cardinaility
 - How elements should be combined with each other

4. Going Forward

4.1. Future Work

- Fine tune the DSW use of the DCSO as an export format
- Reassess the need for the definition of individuals for the DCSX
- Further integration of terms from established ontologies
- The DCSO should be interchangeable with the DCS JSON serialisation
- **Semantic validation** of DMP documents using the DCSO
- Continuous update of the DCSO

