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Abstract
Random survival forests (RSF) are a powerful nonparametric method for building
prediction models with a time-to-event outcome. RSF do not rely on the proportional
hazards assumption and can be readily applied to both low- and higher-dimensional
data. A remaining limitation of RSF, however, arises from the fact that the method
is almost entirely focussed on continuously measured event times. This issue may
become problematic in studies where time is measured on a discrete scale t = 1, 2, ...,
referring to time intervals [0, a1), [a1, a2), . . .. In this situation, the application of
methods designed for continuous time-to-event data may lead to biased estimators and
inaccurate predictions if discreteness is ignored. To address this issue, we develop a
RSF algorithm that is specifically designed for the analysis of (possibly right-censored)
discrete event times. The algorithm is based on an ensemble of discrete-time survival
trees that operate on transformed versions of the original time-to-event data using
tree methods for binary classification. As the outcome variable in these trees is typi-
cally highly imbalanced, our algorithm implements a node splitting strategy based on
Hellinger’s distance, which is a skew-insensitive alternative to classical split criteria
such as theGini impurity. The new algorithm thus provides flexible nonparametric pre-
dictions of individual-specific discrete hazard and survival functions. Our numerical
results suggest that node splitting by Hellinger’s distance improves predictive perfor-
mance when compared to the Gini impurity. Furthermore, discrete-time RSF improve
prediction accuracy when compared to RSF approaches treating discrete event times
as continuous in situations where the number of time intervals is small.
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1 Introduction

Random survival forests (RSF, Ishwaran et al. 2008) have become an established tool
to model right-censored data in observational research. They provide a valuable non-
parametric alternative to classical Cox regression in longitudinal studies, being able
to deal with higher-order interactions between covariates, higher-dimensional covari-
ate spaces, and non-proportional hazards when configured appropriately (Korepanova
et al. 2019). In recent years, RSF have been increasingly used in practice (e.g. Fan-
tazzini and Figini 2009; Pan et al. 2017; Banerjee et al. 2018; Ingrisch et al. 2018;
Verschut and Hambäck 2018), and there are numerous methodological advances and
additions, for example regarding variable selection (Ishwaran et al. 2010, 2011) and
improved split criteria (Schmid et al. 2016b; Moradian et al. 2017; Wright et al.
2017).

A remaining limitation of the RSF methodology arises from the fact that RSF
are almost entirely focussed on continuously measured event times. This limita-
tion is particularly relevant in observational studies with fixed follow-up intervals
where it is only known that events have occurred between two consecutive points
in time. In these cases, event times are grouped (constituting a special case of inter-
val censoring), and time is measured on a discrete scale t = 1, 2, . . . , k, referring
to time intervals [0, a1), [a1, a2), . . . , [ak−1,∞) with fixed boundaries a1, . . . , ak−1.
A similar situation occurs in studies where event times are “intrinsically” discrete,
for example, when analyzing time to pregnancy, which is usually measured by the
number of menstrual cycles (Scheike and Keiding 2006; Fehring et al. 2013). As
argued by many authors (e.g. Tutz and Schmid 2016; Bogaerts et al. 2017; Berger
et al. 2018), the application of statistical models designed for continuous time-to-
event data is not appropriate when interval censoring and/or grouping effects are
ignored.

The aimof thiswork is therefore to develop a random forest algorithm that is specifi-
cally designed for the analysis of (possibly right-censored) discrete time-to-event data.
Discrete-time survival trees and RSF have been first considered in Bou-Hamad et al.
(2009) and Bou-Hamad et al. (2011), respectively. The main building block of the
algorithm proposed here is a discrete-time survival tree method developed by Schmid
et al. (2016a): Conditional on the values of a set of covariates X = (X(1), . . . , X(p))

�,
the method by Schmid et al. (2016a) results in nonparametric estimates of the discrete
hazard function

λ(t |X) := P(T = t | T ≥ t, X) , t = 1, 2, . . . , k , (1)

which is the discrete-time equivalent to the hazard function considered in continuous-
time survival analysis. As with classical random forest approaches (Breiman 2001;
Ishwaran et al. 2008), a discrete-time RSF estimate of λ(t |X) is obtained by averaging
the discrete hazard estimates derived from a set of survival trees that have been applied
to bootstrap samples of the available data.
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The key features of the new RSF algorithm can be briefly summarized as follows:

(i) Based on the definition of the discrete hazard function (1), the idea is to fit proba-
bility estimation trees (PETs, Provost and Domingos 2003; Schmid et al. 2016a)
to bootstrap samples of re-shaped data sets with a binary outcome Y ∈ {0, 1}.
To generate these re-shaped data, the original time-to-event data are converted
to sets of augmented data, in which each individual is represented by multiple
data lines. Each of these data lines refers to a specific time point t = 1, 2, . . .,
and the outcome value Y = 0 indicates survival of the individual beyond the
respective time point. Conversely, each data line with Y = 1 indicates an event at
the respective time point. Details on data re-shaping will be provided in Sect. 2.2.

(ii) A major problem of tree building with re-shaped data is that Y is typically highly
imbalanced, as by definition each individual is represented by at most one data
line with Y = 1 but multiple data lines with Y = 0. This problem is known
to severely degrade tree performance and evaluation when not accounted for
(Menardi and Torelli 2014; Fernandez et al. 2018). To address this issue, we
propose to useHellinger’s distance criterion (Cieslak et al. 2012) for tree building,
which is insensitive to the skewness of the distribution of Y and has been shown
to be highly effective when used for imbalanced classification tasks (“Hellinger
Distance Decision Trees”, Cieslak et al. 2012). Details on split criteria and tree
building will be given in Sect. 2.3.

(iii) Unlike Schmid et al. (2016a), who proposed to fit discrete-time survival trees
using cardinality pruning in combination with the Gini impurity split criterion,
we propose to build discrete-time RSF using unpruned trees with a small min-
imum node size. This strategy follows the original approach to random forest
classification for binary outcome variables proposed by Breiman (2001). Details
on building the random forest ensemble, along with a formal definition of the
RSF estimates of λ(t |X), will be given in Sect. 2.4.

In Sects. 3 and 4 we will analyze the properties of the discrete-time RSF algorithm
using simulation studies and a data set on the duration of unemployment spells of U.S.
citizens (Cameron and Trivedi 2005). Our numerical results suggest that node splitting
by Hellinger’s distance improves predictive performance when compared to skew-
sensitive split criteria such as the Gini impurity. Furthermore, discrete-time RSF tend
to improve prediction accuracy when compared to continuous-time RSF algorithms
ignoring discreteness in situations where the number of time intervals is small.

The findings of this paper will be summarized and discussed in Sect. 5. The sup-
plementary materials contain the results of additional simulations as well as another
real-world application on the analysis of the time to first childbirth in German women
(German Family Panel, Huinink et al. 2011).

2 Methods

Throughout this paper, we denote by T ∈ {1, 2, . . . , k} a discrete survival outcome
and by C ∈ {1, 2, . . . , k} a discrete censoring time independent of T . The aim of
the discrete-time RSF algorithm is to obtain a nonparametric estimate of the dis-
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crete hazard function λ(t |X) defined in (1). It is assumed that the RSF algorithm is
applied to a set of i.i.d. learning data with n independent observations and p covari-
ates (T̃i ,Δi , Xi ), i = 1, . . . , n, where T̃i and Δi denote the sample variables of the
(possibly right-censored) observed survival time T̃i := min(Ti , Ci ) and the status indi-
cator Δi := I(Ti ≤ Ci ), respectively. Figure 1 provides a schematic overview of the
discrete-time RSF algorithm. The various steps of the algorithm will be described in
detail in the next subsections. For a general description of the rationale of the random
forest methodology, see e.g. Breiman (2001) and Ishwaran et al. (2008).

2.1 Initialization

Before the algorithm starts, one needs to specify the number of trees of theRSF (termed
ntree) and the number of covariates available for splitting at each node (termed mtry).
Common choices are mtry = �√p	 and ntree = 500. These values have been pre-
specified in the R package ranger (Wright and Ziegler 2017) and will also be used
here.

2.2 Data re-shaping

Instead of fitting the discrete-time RSF directly to the learning data (T̃i ,Δi , Xi ),
i = 1, . . . , n, we propose to define the input of the RSF algorithm by a set of re-
shaped (“augmented”) data with binary outcome variable. This approach is motivated
by parametric and semiparametric discrete time-to-event modeling (e.g., Berger and
Schmid 2018), which is based on the optimization of the log-likelihood of the data-
generating process described above. The main idea is to express the log-likelihood
of a discrete-time survival model in terms of the hazards λ(t |X), which results in a
binomial log-likelihood function

� =
n∑

i=1

T̃i∑

t=1

yit log (λ(t |Xi )) + (1 − yit ) log (1 − λ(t |Xi )) (2)

with the sequences yi = (yi1, . . . , yi T̃i
) of length T̃i that are defined by yi :=

(0, . . . , 0, 1) if Δi = 1 and yi := (0, . . . , 0, 0) if Δi = 0. Note that each entry
of yi corresponds to one of the time points t = 1, 2, . . . , T̃i , where yit = 0 indicates
survival beyond t and yit = 1 indicates an event at t .

Based on the result stated in (2), estimates of λ(t |X) can generally be obtained by
fitting a statistical model with binary outcome to the set of augmented data, which are
defined for each individual by

Mi :=

⎛

⎜⎜⎜⎜⎜⎝

0 1 X�
i

0 2 X�
i

0 3 X�
i

...
...

...

1 T̃i X�
i

⎞

⎟⎟⎟⎟⎟⎠
(3)

123



816 M. Schmid et al.

if Δi = 1 and

Mi :=

⎛

⎜⎜⎜⎜⎜⎝

0 1 X�
i

0 2 X�
i

0 3 X�
i

...
...

...

0 T̃i X�
i

⎞

⎟⎟⎟⎟⎟⎠
(4)

if Δi = 0. The first columns of the matrices (3) and (4) contain the binary values yit

whereas the third columns contain copies of the covariate values. The values in the
second columns of (3) and (4) refer to the time intervals 1, . . . , T̃i ; the role of these
columns will be explained later. The augmented data matrix of the whole sample is
obtained by concatenating the individual augmented data matrices Mi , i = 1, . . . , n,
resulting in a matrix with m := ∑n

i=1 T̃i rows. Each row refers to one of the
∑n

i=1 T̃i

summands in the binomial log-likelihood function (2). For further details on data
augmentation we refer to Tutz and Schmid (2016) and Schmid et al. (2016a).

An important consequence of the structure of the log-likelihood function in (2) is
that it allows the model fitting algorithm to treat the values yit as realizations of a
binary outcome variable Y . The idea of the proposed RSF algorithm is therefore to
augment the available learning data analogously to (3) and (4) (“Data Preparation”
step in Fig. 1), to generate a set of ntree bootstrap samples from the augmented data,
and to fit ntree probability estimation trees with binary outcome variable Y to the
augmented data sets (“Tree Building” step in Fig. 1).

2.3 Tree building

Following Schmid et al. (2016a), we propose to base tree building on the classification
and regression trees (CART) approach by Breiman et al. (1984). Starting with the
root node (referring to the whole covariate space), the idea of CART is to recursively
subdivide the support of X into a set of terminal nodes. Partitioning of the covariate
space is done by recursively optimizing a split criterion, which is computed from the
learning data and is chosen according to the type of outcome variable. For each of
the splits a single variable X( j), j ∈ {1, . . . , p} is selected. Then the support of X( j)

is subdivided into two mutually exclusive subsets termed children nodes. Generally,
partitioning is done such that within-node homogeneity with respect to the distribution
of the outcome variable is maximized. The choice of the split criterion generally
depends on the scale of the outcome variable. If the outcome is a categorical variable,
a popular strategy is to construct a classification tree or a probability estimation tree
(PET) byminimizing the Gini criterion or some other impurity measure in the children
nodes. If the outcome is a continuous survival time, a survival tree can be constructed
by maximizing the log-rank statistic obtained from the survival times in the children
nodes. The latter strategy is e.g. used in the continuous-time RSF method by Ishwaran
et al. (2008). Node splitting in CART has been the topic of many articles and books;
for details, we refer to Breiman et al. (1984).
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Initialization: Fix ntree and mtry.
Data Preparation: Re-shape the learning data by generating an augmented data ma-

trix. Draw ntree bootstrap samples with replacement from the augmented learning
data (Section 2.2).

Tree Building: Fit a discrete survival tree to each of the ntree bootstrap samples
(Section 2.3). More specifically, in each node of the trees,
• draw mtry candidate variables out of the available covariates,
• calculate Hellinger’s distance for each possible binary partition of the supports of
the mtry candidate variables; select the candidate variable and the partition that
maximize Hellinger’s distance; split the support of X into two children nodes,

• continue tree growing as long as the number of observations in each node is larger
than a pre-specified minimum node size.

Ensemble Estimation: For a new observation, generate an augmented data matrix
and drop the augmented data down to the final nodes of the ntree trees built in
the “Tree Building” step. Compute the ensemble estimate of the discrete hazard
function by averaging the ntree tree estimates of λ(t|X) (Section 2.4).

Fig. 1 Schematic overview of the discrete-time RSF algorithm

Based on the definition of the log-likelihood in (2), Schmid et al. (2016a) developed
a discrete-time survival tree algorithm that applies the CART approach with binary
outcome variable Y to the augmented data matrix defined in Sect. 2.2. For this, the
rows of the matrices (3) and (4) are subject to recursive partitioning, implying that
(i) each individual is represented by multiple rows in the augmented learning data,
and that (ii) each terminal node of the discrete-time survival tree contains a set of
zeros and ones. Estimates of the discrete hazard λ(t |X) are then obtained by the
proportions of ones in the terminal nodes. Since the discrete hazard function does not
only condition on the values of the covariates X but also on the event “T ≥ t”, the idea
is to use both X and the values t̃i := (1, 2, . . . , T̃i ) contained in the second columns
of (3) and (4) for node splitting. This strategy implies that the vector (t̃1, . . . , t̃n)�
is treated like an ordinal covariate during tree building, so that the estimates of the
discrete hazard function capture interactions between the covariates and time. Also,
by definition of the augmented data matrix and the recursive partitioning procedure,
each terminal node refers to a hazard estimate that is constant within a node-specific
time interval T ⊂ {1, . . . , k} (cf. Schmid et al. 2016a). Estimates of the discrete
hazard function λ(t |X) over the whole time range t = 1, . . . , k are obtained for
each individual by concatenating the hazard estimates (i.e., the proportions of ones)
in the terminal nodes. For example, assume that an individual i ∈ {1, . . . , n} has a
covariate combination Xi and an observed survival time T̃i resulting in T̃i rows in the
augmented data matrix. The values of these rows are then dropped down the discrete-
time survival tree and result in a set of hazard estimates that are definedwithinmutually
exclusive time intervals T . Concatenating these time intervals and their associated
hazard estimates defines an estimate of the individual’s hazard function across the
whole time range t = 1, . . . , k. As illustrated in Schmid et al. (2016a) and Berger and
Schmid (2018), this strategy results in a flexible nonparametric estimator of λ(t |X)

that is able to incorporate both higher-order interactions and time-dependent covariate
effects.
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The discrete-time RSF proposed in this paper is based on a similar tree-building
algorithm, which differs from the method in Schmid et al. (2016a) mainly by the
choice of the split criterion. With regard to the latter, Schmid et al. (2016a) argued
that the focus of a discrete-time survival tree is not on the correct classification of the
values yit ∈ {0, 1} but on the accurate estimation of the probabilities λ(t |X) (“prob-
ability estimation tree”, PET, Provost and Domingos 2003). For this reason, Schmid
et al. (2016a) proposed to use the Gini impurity (Breiman et al. 1984) for node split-
ting, as this criterion is asymptotically equivalent to the Brier score (Gneiting and
Raftery 2007) for evaluating the accuracy of probabilistic binary forecasts. Schmid
et al. (2016a) demonstrated that the Gini-based splitting approach works well in single
trees, in particular when combined with a cardinality pruning strategy that guarantees
sufficiently large numbers of observations in the terminal nodes (thereby controlling
the variance of the discrete hazard estimates). Unlike Schmid et al. (2016a), however,
we do not propose to use cardinality pruning in the development of the discrete-time
RSF algorithm, as the aim is to control the variance of the hazard estimates by averag-
ing the predictions of an ensemble of unpruned trees with small terminal node sizes.
Moreover, it is well known that the Gini split criterion, which was also considered
in the original random forest algorithm for binary outcome variables by Breiman
(2001), may heavily deteriorate the performance of CART when the distribution of
the outcome variable is imbalanced (Cieslak and Chawla 2008). This issue is par-
ticularly problematic in discrete-time survival analysis, which is based on the binary
outcome sequences yi containing multiple numbers of zeroes but at most one value
with yit = 1 each (see Sect. 2.2). For example, under the assumption of independent
uniformly distributed discrete event and censoring times with k = 10 intervals (result-
ing in a moderately high censoring rate of 45%), data augmentation will yield only
approximately 14% values with yit = 1.

We therefore propose to replace the Gini impurity by Hellinger’s distance, which
has been recommended byCieslak et al. (2012) as a split criterion in decision treeswith
a highly imbalanced outcome. For any pair of children nodes M,N ⊂ {1, . . . , m},
M ∩ N = ∅, that result from splitting the support of a covariate X( j), the idea is to
consider all observations in M as “positive” instances and all observations in N as
“negative” instances. Based on this concept, Hellinger’s distance is defined by

dH (M,N ) :=
√(√

tpr − √
f pr

)2 +
(√

1 − tpr − √
1 − f pr

)2
, (5)

where tpr and f pr refer to the pair of true and false positive rates defined by

tpr := ∣∣M ∩ O
∣∣ /

∣∣O
∣∣ , (6)

f pr := ∣∣M ∩ (
(M ∪ N )\O)∣∣ /

∣∣(M ∪ N )\O∣∣ , (7)

and O ⊂ (M ∪ N ) is the set of elements with outcome value yit = 1 in the joint
set M ∪ N . In each node of the ntree trees, splitting is done such that Hellinger’s
distance in (5) is maximized over all possible binary partitions of the supports of the
mtry covariates (“Hellinger Distance Decision Tree”, HDDT, Cieslak et al. 2012).
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By definition, HDDTs capture deviations in the class conditionals, implying that
they are skew-insensitive and work well even when the distribution of the binary
outcome Y is highly imbalanced. For an in-depth discussion and analysis of HDDTs,
see Cieslak and Chawla (2008) and Cieslak et al. (2012).

2.4 Ensemble estimation

The discrete-time RSF ensemble is obtained by collecting the ntree Hellinger Dis-
tance Decision Trees constructed from the bootstrap samples generated in the “Data
Preparation” step in Fig. 1. Generally, there are two options for generating bootstrap
samples: One could either draw bootstrap samples from the original time-to-event data
and augment them afterwards (“bootstrapping before augmentation”), or one could
augment the time-to-event data first and draw bootstrap samples from the concate-
nated data matrices (3) and (4) (“bootstrapping after augmentation”, as proposed in
Fig. 1). Both options are explored in more detail in Sects. 3 and 4. Following the idea
of Breiman (2001), we propose to build unpruned trees with a small terminal node
size, i.e., tree building is continued until a pre-specifiedminimum node size is reached.
In the remainder of this paper, the minimum node size of all RSF algorithms will be
set to 10, which is the default value for fitting PETs in the R package ranger.

After having built the ensemble, estimates of the discrete hazardλ(t |X) are obtained
as follows: For each new observation with covariate data Xnew, one considers the
augmented data matrix

Mnew :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 X�
new

2 X�
new

3 X�
new

...
...

k − 1 X�
new

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

covering the time range t = 1, . . . , k − 1. Next, the k − 1 data lines are dropped
down each of the ntree trees, resulting in sets of estimates λ̂b(1|Xnew), λ̂b(2|Xnew),
. . ., λ̂b(k − 1|Xnew), b = 1, . . . , ntree, which are given by the proportions of ones
(computed from the learning data) in the respective terminal nodes. Note that it is
not necessary to include a k-th row in the augmented matrix (8), as λ(k|Xnew) = 1
by definition. Finally, the discrete-time RSF estimate of λ(t |Xnew) is computed by
averaging over the ntree trees, i.e.,

λ̂RSF(t |Xnew) := 1

ntree

ntree∑

b=1

λ̂b(t |Xnew) , t = 1, . . . , k − 1 . (9)

When the aim is to measure the performance of the discrete-time RSF using a single
real-valued score, it is useful to aggregate the set of discrete hazard estimates in (9)
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over time. Analogous to continuous-time RSF (Ishwaran et al. 2008), this can be done
by computing the sum of the cumulative discrete hazard estimates, which is given by

Λ̂RSF(Xnew) :=
k−1∑

t=1

(k − t) · λ̂RSF(t |Xnew) . (10)

The estimate in (10), which can be computed separately for each individual in a set of
independent test data, will be used as a predictive marker to evaluate the performance
of discrete-time RSF in Sect. 4.

3 Simulation study

3.1 Experimental design

To investigate the properties of the discrete-time RSF method, we carried out a sim-
ulation study with 100 Monte Carlo replications. The aims of the study were (i) to
compare discrete-time RSF to alternative methods, in particular to random forests
using the Gini split criterion, and (ii) to analyze the effects of the censoring rate and
the number of intervals k on the performance of discrete-time RSF.

The data-generating process for the simulation studywas defined as follows: In each
MonteCarlo replication,we generated a learning data setwith n = 1, 000 observations
and p = 50 independent standard uniformly distributed covariates. Event times were
generated according to the logistic discrete hazard model

log

(
λ(t |X)

1 − λ(t |X)

)
= η0t + η(X) , t = 1, . . . , k − 1 , (11)

where η0t ∈ R was a set of baseline coefficients independent of X and η(X) ∈ R

was an additive predictor independent of t (“proportional continuation ratio model”,
cf. Tutz and Schmid 2016). The baseline coefficients were defined by the linear
trend function (η01, . . . , η0,k−1)

� := (−1,−1 − 1/(k − 2), −1 − 2/(k − 2),−1 −
3/(k − 2), . . . ,−2)�, and the values of η(X) were obtained by multiplying the stan-
dardized sum of ten independently generated three-way interactions of the covariates
X1, . . . , X25 (defined as X( j) · X(k) · X(l), j �= k �= l ∈ {1, . . . , 25}, ( j, k, l) drawn
ten times with replacement) by the factor two. Depending on the value of k, this data-
generating process resulted in Spearman correlations between T and η(X) ranging
from −0.75 to −0.70. The covariates X26, . . . , X50 served as noise variables in the
simulation study.

Censoring times were generated independently from a continuous exponential dis-
tribution with right-shifted support (1,∞). Based on the values of the continuous
censoring times (denoted by Ccont,i , i = 1, . . . , n), the observed discrete event times
were calculated as T̃i = �min(Ti , Ccont,i )	, i = 1, . . . , n. For each value of k, the rate
of the exponential distribution was adjusted such that the censoring rate (defined as
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∑n
i=1(1 − Δi )/

∑n
i=1 I(Ti > 1)) became either 30% (“low censoring” scenario) or

70% (“high censoring” scenario).
In each Monte Carlo replication, we applied the discrete-time RSF algorithm to

the learning data using varying numbers of time points (k = 5, 6, . . . , 10). Prediction
accuracy was evaluated by applying the 100 RSF fits to an independent test sample of
size ntest = 1000 that followed the same data-generating process as the learning data.
In each Monte Carlo replication, we calculated the time-dependent average squared
difference between the values of the predicted survival function Ŝ(t |X) and the respec-
tive values of the true survival function S(t |X). Based on these differences (which in
the following will be denoted by err(t)), we computed a time-independent measure
of prediction error that was defined by Err := ∑k−1

t=1 P̂(T̃ = t) · err(t).
For each value of k we compared the following modeling approaches:

(i) discrete-time RSF with splitting by Hellinger’s distance (HD),
(ii) discrete-time RSF with splitting by the Gini impurity (GI),
(iii) discrete-time RSF with splitting by the Gini impurity, combined with synthetic

minority over-sampling (“SMOTE”) in the data preparation step (Fernandez et al.
2018; GI_SMOTE),

(iv) continuous-time RSF with splitting by the log-rank statistic (LeBlanc and Crow-
ley 1993; Ishwaran et al. 2008; RSF_cont),

(v) RSF for interval-censored continuous time-to-event data (Yao et al. 2019a, ICc-
forest), and

(vi) the correctly specified logistic discrete hazard model (11).

For the discrete-time RSF methods (i) and (ii), we additionally considered a mod-
ified version of the data preparation step in which the original time-to-event data
were re-shaped after bootstrapping (“Bootstrapping before Augmentation”, HD_BA
and GI_BA). With this strategy, PETs were fitted to ntree augmented data sets that
were generated from bootstrap samples of the original learning data. The SMOTE
method in (iii) was applied to compare splitting by Hellinger’s distance with an alter-
native method for addressing class imbalance in tree-based models. The ICcforest
method in (v) is based on a likelihood function that represents discrete event times as
interval-censored continuous event times. The logistic discrete hazard model in (vi)
was used as a benchmark model reflecting the true data-generating process. All RSF
models except ICcforest were fitted using the R add-on package ranger, which is
available on GitHub at https://github.com/imbs-hl/ranger. For the continuous-time
RSF method in (iv) we set the minimum terminal node size to three observations,
which is the default value for log-rank splitting in ranger. RSF for interval-censored
continuous time-to-event data were fitted using the implementation in the R add-on
package ICcforest (Yao et al. 2019b). Synthetic minority over-sampling was done
using the ubSMOTE function of the R add-on package unbalanced (Dal Pozzolo
et al. 2015). To achieve class balance, we adjusted the SMOTE method such that the
number of ones in the binary outcome of the re-shaped data became approximately

equal to
∑n

i=1
∑T̃i

t=1(1 − yit ).
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Fig. 2 Results of the simulation study. The plot shows the average values of the time-dependent
squared difference between the predicted survival function Ŝ(t |X) and the true survival function S(t |X),
as obtained from 100 Monte Carlo replications in the low censoring scenario (k = 7, 30% cen-
soring). The gray bars visualize the relative frequencies of the observed event times (true model =
correctly specified logistic discrete hazard model)

3.2 Results

Figure 2 shows the average values of the time-dependent squared prediction error
err(t) obtained in the low censoring scenario with k = 7. It is seen that theHDmethod
(discrete-timeRSFwith splitting byHellinger’s distance) resulted in smaller prediction
errors than the GI method (discrete-time RSF with splitting by the Gini criterion) at
all time points. The same result was observed for the alternative methods HD_BA
and GI_BA, which, however, performed worse than their respective counterparts HD
and GI. Compared to the RSF_cont method (continuous-time RSF), the HD method
resulted in smaller prediction errors at early time points and larger prediction errors
at later time points. This finding may be attributed to the fact that the HD method
considers the time points t̃i = (1, 2, . . . , T̃i ) as an additional variable during node
splitting, which results in an increased accuracy of the hazard estimates at (early)
time points that are more frequently observed in the learning data. In contrast, the
log-rank criterion used by the RSF_cont method is based on the whole time range in
each split, resulting in hazard estimates that show less variability (compared to the HD
method) at later time points with smaller observed frequencies. The ICcforest method
behaved similar to the RSF_cont method, but its prediction errors were smaller than
the respective prediction errors of RSF_cont at almost all time points. As expected, the
estimates obtained from the correctly specified logistic discrete hazard model resulted
in the smallest prediction errors in Fig. 2. Similar results (not shown) were obtained
in the high censoring scenario with k = 7.

Figure 3 presents the values of the summary measure Err obtained from the HD
and GI methods in the low censoring scenarios. It is seen that the prediction error of
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(a) (b)

Fig. 3 Results of the simulation study. The boxplots in panel a visualize the values of the summary measure
Err obtained from the GI and HD methods in the low censoring scenario (100 Monte Carlo replications,
30% censoring). The boxplots in panel b visualize the respective differences in Err between the GI and
HD methods

the HD method was smaller than the respective prediction error of the GI method for
all values of k (panel (a) of Fig. 3). Larger values of k (implying an increased class
imbalance in the binary outcome variable Y ) resulted in higher prediction errors of
both methods. Panel (b) of Fig. 3, which depicts the differences in Err between the
GI and HD methods, shows that the benefit obtained from splitting by Hellinger’s
distance increased with the value of k. This finding confirms the results by Cieslak
et al. (2012), who argued that using Hellinger’s distance for node splitting is particu-
larly beneficial in situations where class imbalance in the binary outcome variable is
high.

A comparison of the HD and RSF_cont methods (referring to discrete-time and
continuous-time RSF, respectively) is presented in Fig. 4. It is seen that the prediction
error of theHDmethodwas smaller than the respective prediction error of theRSF_cont
method for all values of k (panel (a) of Fig. 4). However, the differences between the
two methods became smaller with increasing value of k (panel (b) of Fig. 4). This
result justifies the use of the continuous-time RSF approach in situations where k is
large and where the discrete time scale may be well approximated by a continuous
time scale. On the other hand, the discrete-time RSF approach performed best when
the value of k was small and the time scale was distinctly discrete. Similar results (not
shown) were obtained in the high censoring scenarios.

Figure 5 presents a comparison of the differences in prediction error that were
obtained in the high and low censoring scenarios. Panel (a) of Fig. 5 shows that the
differences in Err between the GI and HD methods were essentially insensitive to
variations in the censoring rate (although there appeared to be a very slight decrease in
theErr difference at some values of k when the censoring rate was increased from 30%
to 70%). In contrast, the differences in Err between the RSF_cont and HD methods
became larger as the censoring rate increased (panel (b) of Fig. 5). This result confirms
earlier findings by Ishwaran et al. (2008)who stated that “the performance of [log-rank-
based] RF regression depended strongly on the censoring rate”, with the prediction
accuracy of continuous-time RSF being “poor” in high-censoring scenarios. The HD
method appeared to be more robust against high censoring rates, which might be
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(a) (b)

Fig. 4 Results of the simulation study. The boxplots in panel a visualize the values of the summary mea-
sure Err obtained from the RSF_cont and HD methods in the low censoring scenario (100 Monte Carlo
replications, 30% censoring). The boxplots in panel b visualize the respective differences in Err between
the RSF_cont and HD methods

(a) (b)

Fig. 5 Results of the simulation study. The boxplots in panel a visualize the differences in Err between the
GI method and the HD method for different values of k and different censoring rates. The boxplots in panel
b visualize the respective differences in Err between the RSF_cont method and the HD method. Censoring
rates were 30% in the low censoring scenario and 70% in the high censoring scenario

attributed to the definition and the properties of Hellinger’s distance (being insensitive
to class imbalance).

3.3 Effect of theminimum node size on prediction accuracy

To analyze the sensitivity of the various RSF methods with regard to choice of the
minimum node size, we repeated the simulation study with minimum node sizes
ranging between 3 and 100. The prediction errors of the resulting ICcforest,HD andGI
fits are summarized in Fig. 6 (low censoring scenario, k = 7).Obviously, the prediction
accuracy of the methods could be improved by optimizing the minimum node sizes of
the algorithms. On the other hand, the benefits of this additional tuning step appear to
be rather small, especially when compared to the differences in prediction accuracy
between the various RSF algorithms and split criteria. Similar results were obtained
for other values of k (see Section A of the supplementary materials).
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Fig. 6 Results of the simulation study. The boxplots visualize the effect of the minimum node size on the
values of the summary measure Err obtained from the ICcforest, HD and GI methods (100 Monte Carlo
replications, 30% censoring, k = 7)

4 Application: duration of unemployment

To illustrate the use of the discrete-time RSF approach, we analyzed a data set on
the duration of unemployment spells of n = 3, 343 U.S. citizens. The data, which
were originally analyzed by McCall (1996) and Cameron and Trivedi (2005), were
collected in the years 1986, 1988, 1990 and 1992 as part of the January Current Popu-
lation Survey’s Displaced workers supplements (DWS). Unemployment duration was
measured in two-week intervals. Analogous to the analysis by Cameron and Trivedi
(2005), Example 17.11, and Schmid et al. (2018), we defined the outcome variable as
the time to re-employment at either a part-time or a full-time job. Furthermore, we set
k = 14 and summarized all unemployment spells > 26 weeks into one category. This
strategy resulted in a censoring rate of 31.11% (see Table 1).

For RSF analysis we used the publicly available version of the data, which is
part of the R add-on package Ecdat (Croissant 2016). The covariates considered for
RSF analysis were (i) age at baseline (years), (ii) filing of an unemployment claim
(yes/no), (iii) eligible replacement rate (defined as the weekly benefit amount divided
by the amount of weekly earnings in the lost job), (iv) eligible disregard rate (defined
as the disregard, i.e. the amount up to which recipients of unemployment insurance
who accept part-time work can earn without any reduction in unemployment benefits,
divided by the weekly earnings in the lost job), (v) log weekly earnings ($) in the lost
job, and (vi) tenure in the lost job (years). A descriptive summary of the covariates
is presented in Table 1. Ninety observations were excluded from statistical analysis
because of missing values in at least one of the variables. This resulted in an analysis
data set containing n = 3253 observations.

To investigate the performance of the discrete-time RSF approach, we conducted
a benchmark experiment that was based on 100 random partitions of the data. Each
partition consisted of a learning data set of size n = 2602 and a test data set of size
ntest = 651. For model comparison we considered the same RSF approaches as in
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Table 1 Descriptive summary statistics of the variables that were used to model time to re-employment
(data frame UnempDur contained in the R package Ecdat, Croissant 2016)

Variable Categories / unit Sample proportion/
median (range)

Observed time to re-employment (T̃ ) 5 (1 – 14)

Re-employed (Δ) yes / no 68.9%/31.1%

Age years 34 (20 – 61)

Filing of unemployment claim (ui) yes / no 55.5%/44.5%

Eligible replacement rate (reprate) 0.50 (0.07 – 2.06)

Eligible disregard rate (disrate) 0.10 (0.00 – 1.02)

Log weekly earnings in lost job (logwage) log($) 5.69 (2.71 – 7.60)

Tenure in lost job (tenure) years 2 (0 – 40)

Unemployment spells were measured in two-week intervals (t = 1, . . . , 14). Abbreviations of the variable
names are given in brackets

Sect. 3 and applied them to the 100 learning data sets. Furthermore, we considered
a logistic discrete hazard model (Tutz and Schmid 2016) that was fitted to the 100
learning data sets using the default implementation of the elastic net method in the
R package glmnet (Friedman et al. 2019), E_net). The penalty parameter λ of the
elastic net method was determined using ten-fold cross-validation, as implemented in
the cv.glmnet function of the glmnet package.

To evaluate the predictive performance of the RSF fits, we computed the aggregated
hazard estimates defined in (10) and assessed the concordance between Λ̂RSF and T in
each of the 100 test samples. This was done by applying the estimator of the discrete
concordance index (“C-index”) proposed in Schmid et al. (2018). Generally, the C-
index is defined by the probability P(ζi > ζs | Ti < Ts), where ζ is a continuous
marker (here, ζ ≡ Λ̂RSF), and i and s refer to two independent individuals in the
test data. By definition, the C-index compares the rankings of the survival times and
the marker values. It takes the value 1 in case of “perfect disagreement”, which,
in case of discrete-time RSF, implies that a larger value of the aggregated hazard
is associated with a shorter event time. For the elastic net fits, we defined ζ in the
same way as the marker Λ̂RSF in (10). In addition to the C-index, we computed
estimates of the integrated squared prediction error in each test data set. Generally, the
integrated squared prediction error is defined by the time-integrated squared deviation
between the predicted survival functions and the observed survival functions (for
each observation defined by a step function dropping from one to zero at time point
Ti ) in the test data. It is thus similar to the time-independent measure Err used in
Sect. 3, which is based on the true data-generating process instead of the observed
survival functions. Unlike the C-index, which solely measures the discriminatory
power of a time-to-event model, the integrated squared prediction error also accounts
for how well a model is calibrated. For details, we refer to Tutz and Schmid (2016),
Chapter 4, and Schmid et al. (2018). The evalCindex and evalIntPredErr
functions of the R package discSurv (Welchowski and Schmid 2019) were used to
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(a) (b)

Fig. 7 Analysis of time to re-employment. The boxplots in panel a visualize the estimates of the integrated
squared prediction error, as obtained from fitting various RSF models to 100 pairs of learning and test
samples generated from the UnempDur data. The rightmost boxplot in panel a refers to a discrete-time
RSF model that included the time intervals 1, . . . , T̃i (second columns of (3) and (4)) as only covariate.
This model served as a “null” model that would have been used in the absence of any covariate information.
Note that the boxplot referring to the GI_SMOTE method was excluded from panel a, as the respective
estimates of the integrated squared prediction error (median = 0.285, range = [0.246, 0.327]) were far
higher than the values of the null model. The boxplots in panel b visualize the estimated values of the
C-index. A reference value for the C-index is given by the value 0.5 (not depicted in the right panel), which
corresponds to the C-index of the covariate-free null model

compute the estimates of the C-index and the integrated squared prediction error,
respectively.

The estimates of the integrated squared prediction error are presented in panel (a)
of Fig. 7. It is seen that, in contrast to the simulation study presented in Sect. 3,
the ICcforest method outperformed the discrete-time RSF approaches and resulted
in the smallest values of the summary measure Err. Apart from this finding, the
results of the simulation study were largely confirmed: Again, the discrete-time RSF
approaches with splitting by Hellinger’s distance (HD and HD_BA) performed better
than the respective approaches with splitting by theGini impurity (GI_BA andGI_BA).
The median values of the integrated squared prediction error (as estimated from the
100 test data sets) were 0.203 (RSF_cont), 0.194 (ICcforest), 0.198 (HD), 0.203
(HD_BA), 0.201 (GI), 0.207 (GI_BA), 0.201 (E_net), and 0.285 (GI_SMOTE). Sim-
ilar results were obtained from the estimates of the C-index presented in panel (b) of
Fig. 7: Again, the ICcforest method performed best, and the HD approach performed
better than the GI approach, although, with regard to the C-index, the alternative
methods HD_BA and GI_BA showed a slightly higher discriminatory power than
their respective counterparts HD and GI. The median values of the C-index (as
estimated from the 100 test data sets) were 0.664 (RSF_cont), 0.683 (ICcforest),
0.663 (HD), 0.665 (HD_BA), 0.660 (GI), 0.660 (GI_BA), 0.656 (E_net), and 0.623
(GI_SMOTE).

In the final step we applied the HD and GI methods to the whole data set and
computed permutation-based variable importance values, as implemented in the
importance function of the R package ranger. In case of the HD method (panel (a)
of Fig. 8), filing an unemployment claim was estimated to be the most important
covariate along with the amount of weekly earnings in the lost job. Conversely, in the
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(a) (b)

Fig. 8 Analysis of time to re-employment. The barplots in panel a visualize the permutation-based variable
importance values, as obtained from fitting the discrete-time RSF model with splitting by Hellinger’s
distance to the full UnempDur data. The barplots in panel b visualize the respective importance values
obtained from the discrete-time RSF model with splitting by the Gini impurity

case of the GI method (panel (b) of Fig. 8), the amount of weekly earnings in the lost
job was estimated to be clearly the most important covariate, followed by the eligi-
ble replacement rate. While an in-depth analysis of the underlying predictor-response
relationships is out of the scope of this paper, the results presented in Fig. 8 clearly
show that differences in the choice of the split criterion (Hellinger’s distance vs. Gini
impurity) do not only affect prediction accuracy but may also lead to differences in
the interpretation of a RSF fit.

4.1 Application: time to first childbirth

In Section B of the supplementary materials, we present the results of another real-
world application in which we analyzed the time to first childbirth in German women
(German Family Panel, “pairfam”, Huinink et al. 2011). The results of this analysis
largely confirmed the results obtained from the analysis of theUnempDur data:Again,
the discrete-time RSF approaches with splitting by Hellinger’s distance outperformed
the respective approaches with splitting by theGini impurity. In contrast to the analysis
of theUnempDur data presented in Fig. 7, the ICcforestmethod did not perform better
than the HD method with regard to the summary measure Err and the estimated C-
index (see Fig. 3 in Section B of the supplementary materials.)

5 Summary and discussion

The random forest method proposed in this paper provides a flexible approach to pre-
diction modeling in situations where the outcome variable of interest is measured
on a discrete time scale. By operating on an augmented data matrix with binary
outcome, it directly relates to the CART-based classification forest methodology by
Breiman (2001). Furthermore, ourmethodmay be viewed as an alternative to an earlier
discrete-time RSF approach by Bou-Hamad et al. (2011) that performs node splitting
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by maximizing the sum of the log-likelihood values of two covariate-free discrete
hazard models fitted to the data in the children nodes.

Unlike parametric discrete hazard models (such as the complementary log-log
model or the proportional continuation ratio model, cf. Tutz and Schmid 2016),
discrete-time RSF do not require the pre-specification of a link function relating the
discrete hazard to the covariates. By including the time variable as an additional can-
didate variable, our approach accounts for time-varying effects of the covariates on the
discrete hazard rate. As demonstrated in Sect. 4, variable importance measures can be
calculated in the same way as in “classical” random forest methods for classification
and regression.

In our simulation study, the RSF approach with splitting by Hellinger’s dis-
tance (HD) performed consistently better in terms of prediction accuracy than the
respective RSF approach with splitting by the Gini impurity (GI). This result clearly
demonstrates the benefit of accounting for class imbalance in tree-based modeling of
discrete time-to-event data. Surprisingly, random oversampling of the minority class
via the SMOTE method did not improve the performance of Gini-based RSF but
resulted in a strong decrease in prediction accuracy. This finding might be explained
by the fact that oversampling distorts the ratio of ones and zeros in the binary outcome
variable Y which is inherent in the definition of the log-likelihood function (2).

Compared to continuous-time RSF, the discrete-time RSF approach with splitting
by Hellinger’s distance resulted in a better prediction accuracy when the number of
unique time points was small and the time scale was “distinctly” discrete. As expected,
the differences in prediction accuracy between the discrete-time and the continuous-
time methods vanished when the number of unique time points increased and when
the discrete time scale could be well approximated by a continuous time scale. When
compared to the ICcforest approach that accounts for discrete time measurements by
representing them as interval-censored continuous event times, the discrete-time RSF
approach resulted in a better prediction accuracy in the simulations and in the analysis
of the pairfam data. On the other hand, ICcforest outperformed RSF with splitting by
Hellinger’s distance in the analysis of the unemployment data. These results suggest
that the appropriate use of the ICcforest and HD methods depends on the charac-
teristics of the data at hand, and that a properly designed comparison study (using
validation data or re-sampling procedures) is essential to decide on the application of
the methods in practice.

A remaining limitation of the discrete-time RSF approach arises from the size of
the augmented data matrices (3) and (4), which may lead to storage and/or run time
issues when the number of unique time points is large. Despite the fact that RSF are
ideally suited for parallel computing, this problem might restrict the application of
discrete-time RSF to “big data” sets in some situations. On the other hand, it is likely
that the increasing availability of large-scale storage solutions and high-performance
computing facilities will help to settle this problem in the near future.

We finally emphasize that all numerical results presented in this paper are based on
the default values of the minimum node size and the mtry parameter specified in the
ranger package. While these parameters are supposed to work well in practice, and
while relying on the default values ensured the comparability of the methods in the
simulations, one might expect additional tuning steps for the minimum node size and
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the mtry parameter to further improve the predictive performance of the discrete-time
RSF method (cf. Fig. 6).
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