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1  |   INTRODUCTION

The auditory event-related response is revealed by present-
ing a stimulus multiple times, and then, averaging the evoked 

magnetoencephalography (MEG) or electroencephalography 
(EEG) signal across the stimulus presentations. The resulting 
typical trial-averaged response is characterized by a sequence 
of peaks and troughs. The initial cortically generated ones, 
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Abstract
Auditory event-related fields (ERFs) measured with magnetoencephalography (MEG) 
are useful for studying the neuronal underpinnings of auditory cognition in human 
cortex. They have a highly subject-specific morphology, albeit certain characteristic 
deflections (e.g., P1m, N1m, and P2m) can be identified in most subjects. Here, we 
explore the reason for this subject-specificity through a combination of MEG measure-
ments and computational modeling of auditory cortex. We test whether ERF subject-
specificity can predominantly be explained in terms of each subject having an individual 
cortical gross anatomy, which modulates the MEG signal, or whether individual corti-
cal dynamics is also at play. To our knowledge, this is the first time that tools to address 
this question are being presented. The effects of anatomical and dynamical variation on 
the MEG signal is simulated in a model describing the core-belt-parabelt structure of 
the auditory cortex, and with the dynamics based on the leaky-integrator neuron model. 
The experimental and simulated ERFs are characterized in terms of the N1m amplitude, 
latency, and width. Also, we examine the waveform grand-averaged across subjects, 
and the standard deviation of this grand average. The results show that the intersubject 
variability of the ERF arises out of both the anatomy and the dynamics of auditory 
cortex being specific to each subject. Moreover, our results suggest that the latency 
variation of the N1m is largely related to subject-specific dynamics. The findings are 
discussed in terms of how learning, plasticity, and sound detection are reflected in the 
auditory ERFs. The notion of the grand-averaged ERF is critically evaluated.
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called long-latency responses, reach extrema at approxi-
mately 50, 100, and 200 ms after stimulus onset. The respec-
tive labels for these responses are P1, N1, and P2 when these 
are observed in EEG as the part of the event-related potential 
(ERP). The corresponding labels are P1m, N1m, and P2m 
when measurements are done in MEG to reveal the event-re-
lated field (ERF). Of these, the N1/N1m tends to be the most 
prominent response. However, there is a large between-sub-
ject variability of auditory event-related responses. The peak 
amplitude of the N1m ranges from several tens of fT to al-
most 1 pT, a similar order-of-magnitude variation can be seen 
with the N1, and the peak latency of the N1/N1m is observed 
in the 70–130 ms range. Thus, averaging the peak amplitude 
and the peak latency across subjects results in sizeable stan-
dard deviations. Also, the grand-averaged response tends to 
be broader than any of the individual responses because of 
the variations in peak latencies. Further, the waveform of the 
event-related response comes in many morphological vari-
eties. The N1/N1m can have a double-peak structure, or its 
rising or falling slope can have a pronounced shoulder, and 
many subjects exhibit no clear P2/P2m response at all.

Importantly, the intersubject variability of the event-related 
response is not merely due to noise in the measurement. Rather, 
ERFs and ERPs are intrinsically subject-specific, remaining 
stable from measurement session to session, when these are 
separated by days, weeks, or even years (see, e.g., Ahonen 
et al., 2016; Atcherson et al., 2006; Dalebout & Robey, 1997; 
Michalewski et  al.,  1986; Sandman & Patterson,  2000; 
Segalowitz & Barnes,  1993). Figure  1 demonstrates the in-
trasubject stability (reproducibility) and the intersubject vari-
ability of auditory ERFs recorded from two subjects in our 
laboratory. The test–retest measurements were performed with 
the identical experimental paradigm and auditory stimuli (sim-
ple tone repetition), and the interval between the two MEG 
recordings was a year for one subject and 3 years for the other. 
For each subject, the two recordings are from the same MEG 
channel above the temporal lobe that shows the largest N1m 
response. There are two observations to be made. First, the two 
subjects produce substantially different waveforms, with sub-
ject-specific peak amplitudes and latencies. Second, the wave-
forms are reproducible across the long time intervals.

One interpretation of the between-subject differences in audi-
tory ERFs relates to anatomical variations of the auditory cortex 
(AC) between individual subjects and, within a subject, between 
the two hemispheres. This is because the magnetic field gener-
ated by source activity in cortex depends on the source's orien-
tation and on its distance to the measuring sensor, and these in 
turn are determined by the topography of the cortex, that is, the 
ridges and folds of the cortical surface (Hämäläinen et al., 1993). 
For example, Shaw et al. (2013) concluded that the rightward 
bias of the N1m amplitude, a phenomenon frequently observed 
in MEG measurements, is based on a larger degree of cortical 
folding in the left compared to the right hemisphere. Anatomical 

work has demonstrated that the morphology of Heschl's gyrus 
(HG), which harbors the primary auditory cortex, exhibits large 
cross-subject variability. Different morphotypes manifest them-
selves in different numbers of gyri, ranging from a single HG to 
a common stem and a complete posterior duplication to multi-
ple duplications, which also vary between the two hemispheres 
(Heschl, 1878; Morosan et al., 2001; Rademacher et al., 2001; 
von Economo & Horn, 1930). Moreover, larger morphological 
differences can be observed in higher cortical areas as compared 
to primary areas (Fischl et al., 2008).

Theoretically, the origin of cross-subject variability of 
ERFs is suggested by Maxwell's equations, which, in combi-
nation with the continuity equation, forms the mathematical 

F I G U R E  1   Examples of intrasubject reproducibility and 
subject-specificity of ERFs. The figure shows trial-averaged ERFs 
evoked in two subjects, S1 and S2, by a sequence of identical stimuli 
(1.5-kHz tone, sound-pressure level: 80 dB, stimulus onset interval: 
7 s, approximately 100 stimulus repetitions). The interval between the 
two measurements was 3 years for S1 and 1 year for S2. Data show 
recordings from the MEG channels (magnetometers of the two MEG 
systems) with the maximum absolute N1m-peak amplitude above 
the posterior part of the right (S1) and left (S2) hemisphere. For each 
subject, we found a compelling agreement between the first and second 
measurements. The variability of the ERFs among subjects is clearly 
reflected in the large differences in the N1m-peak amplitudes and peak 
latencies. The waveforms of the second measurement were scaled by 
a factor of about 1.5 to achieve good agreement between the earlier 
and later record. This is because we show magnetic field responses 
from the sensors with the largest N1m amplitude. A slight difference 
in the positioning of the subject's head between the measurements will 
scale the response. The shaded region around each of the trial-averaged 
waveforms represent the 95% confidence interval (CI) of the estimated 
mean, which was achieved by applying 1,000 bootstrap repetitions 
(with replacement) to the single trials underlying the means. In each 
subject, there is a strong overlap of the 95% CI for the test and retest 
waveforms
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basis for the computation of the MEG signal. Assuming that 
the brain is a conducting volume H with constant conductiv-
ity σ, the quasistatic approximation of Maxwell's equations, 
where all time-derivative terms can be ignored as source 
terms, provides simple solutions to this so-called forward 
problem. Specifically, the magnetic field B(r) at a location 
r outside the brain generated by electric currents at a lo-
cation r՛ inside the brain follows the Ampère–Laplace law 
(Hämäläinen et al., 1993; Mosher et al., 1999; Sarvas, 1987; 
Williamson & Kaufman, 1981):

The neural activity is described by the total current density 
J(rꞌ) = JP(rꞌ) + JV(rꞌ). Its first component is the primary cur-
rent density JP(rꞌ) which describes the movement of electrical 
charge inside the dendritic tree. The second component is the 
volume current density JV(rꞌ) which is proportional to JP(rꞌ) 
and denotes the passive return current in extracellular space. 
Further, it is assumed that the magnetic permeability of tissue 
µ is equal to the permeability µ0 of free space. The Ampère–
Laplace law indicates that the generation of ERFs can be sep-
arated into two conceptually different components connected 
by their cross-product: (a) the total current density J(rꞌ) is pro-
duced by neural activity and is thus determined by the brain as 
a dynamical system; (b) the term r − rꞌ denotes the position 
of the intracranial current source in relation to the extracranial 
position of the measurement sensor, and thus, reflects the anat-
omy of the brain, but not the brain dynamics. Notably, ERFs 
show distinct—and opposite—dependencies on these two 
components. B(r) increases linearly with increasing source 
strength and decreases nonlinearly with increasing distance 
from the source (Brody et al., 1973; Hämäläinen et al., 1993; 
Sarvas, 1987; Zhang, 1995). Thus, the ERF reflects neural dy-
namics via its linear relationship to source strengths, and it also 
reflects the gross anatomy of the brain, that is, the physical lay-
out of the sources, via a nonlinear relationship to distance and 
orientation of the sources. Cross-subject variability of ERFs 
could, therefore, arise out of subject-specific dynamics, sub-
ject-specific anatomy, or a combination of both.

In our previous work, we addressed the impact of anatomi-
cal and dynamical contributions to the auditory ERF by using 
simulations of auditory cortex (Figure 10a,b in Hajizadeh 
et al., 2019). We found that when the modulating effect of the 
anatomy was varied while keeping the dynamics of the model 
fixed, the peak amplitude of the N1m became distributed 
across a wide range, whereas the peak latency of the N1m was 
little affected. A very different picture emerged when the sim-
ulated anatomy remained fixed but the dynamical parameters 
of the model were varied. In this case, both the peak amplitude 
and the peak latency of the N1m had a wide distribution, and 
these two measures were strongly correlated.

The aim of this work is to investigate why ERFs vary from 
subject to subject by testing the predictions of our computa-
tional model (Hajizadeh et al., 2019) in MEG measurements 
in human subjects. The current, largely unwritten under-
standing attributes the subject-specificity of ERFs mainly to 
well-established cross-subject differences in the gross anat-
omy of cortex. It remains an open question to which degree 
subject-specific ERFs also reflect the presence of brain dy-
namics that is specific to the subject. Here, we address this 
question by linking experimental observations from previous 
studies (König et al., 2015; Matysiak et al., 2013) and pre-
viously unpublished data to simulations from our computa-
tional model of auditory cortex.

2  |   METHOD

2.1  |  Computational model

Simulations were performed on a model of auditory cortex 
which was originally developed to examine the consequences 
of short-term synaptic plasticity on auditory processing (May 
et al., 2015; May & Tiitinen, 2010, 2013; Westö et al., 2016). 
Its basic dynamical unit is the cortical column, which is de-
scribed as a pool of excitatory (pyramidal) neurons interacting 
with a pool of inhibitory interneurons, much as in Wilson and 
Cowan (1972). The dynamic equations for this interaction are 
those of the leaky-integrator neuron (LIN; e.g., Hopfield & 
Tank, 1986), whereby the time derivative of the state variable, 
which is equivalent to the membrane potential, is proportional 
to the sum of a leak term and the synaptic input currents. Each 
current depends linearly on the presynaptic spiking rate and the 
synaptic strength. Furthermore, the excitatory connections be-
tween the pyramidal neurons are modulated by a term describ-
ing short-term synaptic plasticity as in Loebel et al. (2007). The 
output of the LIN is the instantaneous spiking rate derived by 
passing the state variable through a nonlinear function. In the 
model, each pool of neurons is described by a single state vari-
able and a single spiking rate representing the mean activity of 
the pool. Thus, each cortical column is described by a pair of 
ordinary differential equations, one for the pool of excitatory 
neurons, the other for the interneurons. In the current simula-
tions, we also included two areas of subcortical processing: the 
inferior colliculus (IC) and the thalamus. As with cortical col-
umns, we assumed that their dynamical units were interacting 
pools of inhibitory and excitatory neurons.

Structurally, the model mimics the AC of the macaque 
monkey with 13 cortical fields (Hackett et al., 2014; Kaas & 
Hackett, 2000). The input stage of the model represents tonoto-
pically organized IC which feeds into a tonotopically organized 
thalamus. The thalamocortical input stream represents the lem-
niscal pathway and targets three tonotopically organized, inter-
connected fields of the core area, also known as the primary 
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auditory cortex. From there, activity spreads along multiple, 
topographically organized feedforward pathways to eight sur-
rounding belt fields, which form part of the secondary auditory 
cortex. Each belt field, in turn, is interconnected predominantly 
with its nearest neighboring belt fields. Activation from the belt 
fields is also fed forward to two parabelt fields, also part of the 
secondary auditory cortex. The feedforward pathways are com-
plemented by reciprocal, feedback pathways. Though being 
a vastly simplified description of the AC, the model (May 
et al., 2015; May & Tiitinen, 2010, 2013) is able to reproduce 
a variety of intra- and extracortically measured effects showing 
that cortical activation depends both on the incoming stimulus 
and the historical context of that stimulation (e.g., Brosch & 
Schreiner, 1997, 2000; Näätänen, 1992).

The dynamical equations of the model comprising N cor-
tical columns (May et al., 2015; May & Tiitinen, 2010, 2013) 
are given by:

Here, τm is the membrane time constant, and u(t) = [u1(t), 
…, uN(t)] and v(t) = [v1(t), …, vN(t)] are time-dependent vectors 
of the state variables of excitatory (index “e”) and inhibitory 
(index “i”) cell populations, respectively. In the current simula-
tions, there were 208 cortical columns in total distributed over 
13 cortical fields, with 16 columns per field. The IC and thala-
mus, each comprising 16 column-like units, were also described 
by the above equations. Thus, there were a total of 240 dynami-
cal units in the model. The connections between the cell popula-
tions are mathematically expressed by the four weight matrices 
Wee, Wei, Wie, and Wii. The elements of Wee represent excitato-
ry-to-excitatory connections, and the elements of Wie describe 
lateral inhibition. The matrices Wei and Wii have diagonal ele-
ments only and describe local, within-column connections of 
the inhibitory-to-excitatory and inhibitory-to-inhibitory type, 
respectively. Note that a connection weight describes the inten-
sity with which two populations can interact, and it encapsulates 
both the average synaptic strengths as well as the density of the 
connections. The nonlinear function S(t) represents the short-
term synaptic plasticity and modifies the weights between the 
excitatory cell populations in the weight matrix Wee at each time 
point with an entry-wise multiplication (expressed by the sym-
bol “◦” for the Hadamard product). The spiking rate functions 
g[u(t)] and g[v(t)] are sigmoid functions of the state variables, 
and the vectors Iaff,e(t) and Iaff,i(t) represent the afferent input to 
the excitatory and inhibitory cell populations.

Due to the nonlinearities of the functions S(t), g[u(t)], 
and g[v(t)], Equations (2) and (3) need to be solved numer-
ically. Thus, simulations are required to investigate how the 

anatomical connectivity pattern and other model parameters 
shape the ERF. To gain deeper insight into the confluence of 
stimulation, system parameters, and cortical dynamics gen-
erating the event-related response, we recently developed a 
linear approximation of the model (for a full treatment, see 
Hajizadeh et al., 2019). This approach provides explicit solu-
tions to the system dynamics and enables the characterization 
of AC activity in terms of normal modes. These are damped 
harmonic oscillators emerging out of the excitatory and in-
hibitory coupling of the cortical columns; they are described 
by:

Here, the decay constant γd and the damping frequency 
δd depend solely on the connection matrices, and the co-
efficients aud, avd, bud, bvd, cud, and cvd are functions of the 
connection matrices and the afferent inputs. Each normal 
mode depends explicitly on all parameters of the system, in-
cluding the pattern of the connections between all columns. 
Therefore, a normal mode on its own does not represent 
the activity of any individual column. Instead, it should be 
thought of as a dynamic building block that is spread across 
the whole system, contributing to the activity of each column 
with a specific weight. Conversely, the activity of any one 
column represents the weighted sum of all the normal modes 
of the system, and, thus, is directly dependent on the anatom-
ical structure of the AC.

In the original model (May et  al.,  2015; May & 
Tiitinen, 2013), lateral inhibition was realized by the excit-
atory populations making lateral connections to the inhibitory 
populations of neighboring columns so that Wie had off-diag-
onal elements. In order to generate the analytical solutions, it 
was necessary to remove these off-diagonal elements. Lateral 
inhibition was included in the analytical model by introduc-
ing negative connections into Wee, effectively combining the 
original matrices Wee and Wie into a matrix WAC. This con-
tained all lateral and long-range (i.e., nondiagonal) connec-
tions, both excitatory and inhibitory. In practice, WAC was 
constructed by using Gaussians with stochastic terms to de-
termine the connection strength as a function of the distance 
between the connecting columns on the tonotopic map (for 
details, see Hajizadeh et al., 2019).

2.2  |  MEG simulation

The MEG signal was calculated by approximating the pri-
mary current in each column as being a linear function of the 

(2)

τmu̇ (t) = −u (t) + S (t) ◦Wee ⋅ g [u (t)] − Wei ⋅ g [v (t)] + Iaff,e (t) ,

(3)

τmv̇ (t) = −v (t) + Wie ⋅ g [u (t)] − Wii ⋅ g [v (t)] + Iaff,i (t) .

(4)
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synaptic inputs targeting the excitatory cell population of the 
column. The contribution of each input was multiplied by a 
connection-specific anatomical factor. These factors account 
for the magnetic field depending not just on the strength of 
the primary current, but also on the distance of the current 
to the MEG sensor, and on the orientation of the current 
(Hämäläinen et al., 1993), as seen in Equation 1. The orienta-
tion of the current not only depends on the subject-specific 
folding of the cortical surface, which embeds the current, but 
it also depends on the apical-dendrite location of the synapse 
driving the current and on whether the synapse is excitatory 
or inhibitory. Thus, the MEG signal produced by the model 
is the product of two mutually independent factors: (a) the 
dynamics of the auditory cortex, as reflected in the synaptic 

inputs that the cortical columns receive, and (b) the subject-
specific anatomical parameters.

The anatomical parameters, as described above, are de-
noted by A, which is a collection of multipliers, one per con-
nection made onto the excitatory populations. As in Hajizadeh 
et  al.  (2019), we construct these multipliers by first defining 
three matrices K1, K2, and K3 comprising multipliers accord-
ing to connection type. K1 modulates the contribution made 
by the excitatory connections in WAC, and therefore, has the 
same structure as Wee, which encapsulates how the 13 corti-
cal fields are connected with each other (Figure 2a). The ele-
ments of K1 are further divided into feedforward, feedback, and 
within-field (diagonal) types. The matrices K2 and K3 have an 
identical structure and modulate the contribution made by the 

F I G U R E  2   The matrices for computing the MEG signal. (a) The matrix K1 contains the multipliers for the contribution of the MEG signal 
coming from the excitatory connections of type feedforward (blue), feedback (dark red), and intra-field (dark blue). (b) The matrices K2 and K3 are 
identical to each other, and they provide multipliers for the intra-column inhibitory connections and the lateral inhibitory connections, respectively. 
(c) The topography matrix T represents the gross anatomy of auditory cortex and it modulates the MEG in a field-specific way. Each row represents 
the field-specific effect that the field has on the MEG signal via orientation and distance to the sensor. (d, e) Element-wise multiplication of Ki 
and the T results in the final multipliers which modulate the contribution to the MEG from each connection. Note that this figure displays 15 × 15 
matrices where the indexing runs over the 2 subcortical and 13 cortical fields. Each element represents 16 × 16 connections made by the 16 
subcortical neuronal units or cortical columns per field
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intra-column inhibitory connections in Wei and lateral inhibition 
connections in WAC, respectively (Figure 2b). These three Ki-
matrices have default values that reflect the orientation of the 
current produced by the various types of connections (for de-
tails, see Section 4.1 of Hajizadeh et al., 2019). Extending from 
the approach in our previous study (Hajizadeh et al., 2019), the 
effect of subject-specific gross anatomy was taken into account 
in the generation of the MEG signal. To model the effect of the 
column orientation and distance to the MEG sensor—that is, 
of the gross anatomy of the cortical folding—the elements of 
Ki were multiplied by a random number that was specific to 
each of the 13 cortical fields. This is a simplification, which as-
sumes that the columns in a field have approximately the same 
orientation and the same distance to the sensor. For notational 
convenience, these 13 random numbers are represented by a to-
pography matrix T where each row has identical elements and 
each column is the vector of the 13 field-specific multipliers 
(see Figure 2c). Further, to model the effect of cross-subject 
variation of the topography of the cortical surface, multiple 
T-matrices were generated, so that each T-matrix represented a 
single subject. Note that in this approach, we are not concerned 
with describing or reconstructing the effect of the actual corti-
cal gross anatomy of any particular subject but, rather, we are 
interested in the effect of cross-subject anatomical variation on 
the ERF response. Thus, each connection has an anatomical 
multiplier as part of the parameter set A, and this is the product 
of the elements in T and Ki corresponding to that connection.

The MEG response R(t) of the model is computed as the 
sum over the synaptic inputs to the excitatory populations, 
weighted by the Hadamard product of the topography matrix 
T with the Ki-matrices:

where j runs over the number of cortical columns in the 
model. The matrices WAC

+ and WAC
− represent the excitatory 

connections and lateral inhibition of WAC, respectively. The de-
fault values for the dynamical and anatomical parameters used in 
the simulations are listed in Table 1. They were chosen such that 
the model replicated a typical ERF, with P1m, N1m, and P2m 
responses. We note that according to our normal-mode charac-
terization (Hajizadeh et al., 2019), each of these responses is 
fundamentally a property of the whole system and does not have 
an anatomically localizable generator process. For example, in 
the model, subtle changes to the internal connections of the par-
abelt result in significant changes in the activation of the core 
and belt as they produce the N1m. Thus, the parabelt should be 
considered to be an integral part of the N1m generator process, 
even though its direct contribution to this response is small.

2.3  |  Simulation experiments

We carried out simulations to test how cross-subject differ-
ences in dynamics and/or anatomy of the auditory cortex im-
pacts on the auditory ERF. For this, we randomly varied the 
parameters of the dynamical equations of the model, denoted 
by D, as well as the anatomical parameter set A defined in 
Section 2.2. Further, each set of parameters produced in the 
randomizations represented an individual subject. The set 
of dynamical parameters D comprised the weight matrices 
WAC, Wei, Wie, and Wii. The membrane time constant τm is 
also a dynamical parameter, although it was not varied in the 
current simulations. For randomizing the D-parameters, the 
same method was used as in Hajizadeh et al. (2019). That is, 
for each of the diagonal matrices Wei, Wie, and Wii, a random 
number was generated from a flat distribution over a prede-
fined range. The elements of the matrix were then multiplied 
by that number. The matrix WAC, describing the long-range 
excitatory and lateral inhibitory connections, was generated 
as a sum of Gaussians with stochastic terms (see Appendix 
A1 of Hajizadeh et al., 2019). Cross-subject random varia-
tion in these column-to-column connection strengths was 
achieved by regenerating WAC while keeping the Gaussian 
parameters fixed. Because of the stochastic terms, the overall 
connectivity pattern remained the same, but weight values 
varied slightly from subject to subject. To summarize the 
effect of the randomizations, these essentially altered the 
balance between excitation and inhibition and they also mod-
ified the connectivity patterns at a fine resolution.

The A- and D-parameters were each randomized with five 
different ranges of the random multiplier. The distribution of ran-
dom multipliers from each range was evenly distributed around 
unity, which generated the default value of the modulated pa-
rameter (see Table 1). This was achieved by dividing each range 
into two subsets of random numbers, those larger than unity and 
those smaller, and then, picking an equal number of multipliers 
from each subset. For randomizing the D-parameters, the lower 
bounds of these ranges were chosen as (1–1/2), (1–1/4), (1–1/8), 
(1–1/16), and unity (1–0). The upper bound was the inverse of 
the lower bound, and this resulted in the ranges [0.50, 2.00], 
[0.75, 1.33], [0.88, 1.14], [0.94, 1.07], and [1.00, 1.00] (i.e., no 
variation). Similarly, for randomizing the A-parameters, we used 
five different ranges from which the random multipliers were 
picked to populate the T-matrix (see Section 2.2). These ranges 
had lower bounds of (1/8), (1/4), (1/2), (3/4), and (1). Again, 
the upper bound was the inverse of the lower bound, producing 
the ranges [0.12, 8.00], [0.25, 4.00], [0.50, 2.00], [0.75, 1.33], 
and [1.00, 1.00]. With five ranges each for the D and A multi-
pliers, there were a total of 5 × 5 = 25 combinations of param-
eter variations. For each combination of A- and D-parameters, 
1,000 simulations representing 1,000 subjects were run with 
parameter values generated randomly with multipliers from the 
respective ranges of that combination. The resulting ERFs were 

(6)
R(t)=

N∑

j= 1

[T ◦K1◦W+

AC
u (t)

+T◦K2◦Weiv (t)

+T◦K3◦W−

AC
u (t)

]
j
.
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then analyzed in terms of the peak amplitude, peak latency, and 
3-dB width of the N1m response. We focused on the N1m, be-
cause it is usually the most prominent ERF response generated 
by the auditory cortex. To account for the time delay due to sub-
cortical processing, we added a 35-ms shift to the waveforms. 
This resulted in the N1m peaking at 100 ms with the default 
parameter values. Further, going beyond the analysis methods 
of Hajizadeh et  al.  (2019), we arithmetically grand-averaged 
the ERF waveforms across the subjects and inspected the mean 
waveform as well as its standard deviation.

2.4  |  MEG experiments with 
human subjects

We present MEG data from two separate studies, which were 
conducted with two different subject populations, with the total 
number of subjects being 25. Here, we show the analyses of the 
ERFs from the right hemisphere, and we note that the left-hemi-
spheric ERFs yield the same results with respect to the origin of 
subject-specificity. Further details on the first study (Experiment 
A) can be found in Zacharias et al. (2012). Data of the second 
study (Experiment B) have not been published before, and in-
formation on acquisition and pre-analysis is briefly summarized 

here. For both studies, subjects were recruited from the academic 
environment at the Leibniz Institute for Neurobiology and the 
Otto von Guericke University in Magdeburg. All subjects gave 
written informed consent to participate in the measurements, 
and both studies received independent approval by the Ethics 
Committee of Otto von Guericke University.

Both studies used the same experimental paradigm. 
Sequences of 1.5-kHz tones with 100-ms duration were pre-
sented at a sensation level of 80 dB in separate blocks where 
each block was characterized by a constant stimulus onset 
interval (SOI). Two consecutive blocks were separated by a 
pause of about 30 s, and the order in which the blocks were 
presented was randomized across subjects. In Experiment A, 
tones were delivered monaurally to the subjects' left ear, and 
the SOIs ranged from 0.5 to 10 s in five steps. The recording 
device was the Magnes 3600 WH system (4-D Neuroimaging) 
with 248 magnetometers. In Experiment B, tones were deliv-
ered binaurally, and 10 different SOIs were used in the 0.25-s 
to 7-s range. Magnetic fields were measured with the Elekta 
Neuromag TRIUX system which consists of 102 magnetome-
ters and 204 planar gradiometers (102 measurement locations 
in total). For the current study, we focused on the measure-
ments performed with the magnetometers of the two sys-
tems. The same standard preprocessing procedure (including 

T A B L E  1   Default dynamical and anatomical parameter values used in the simulations. The matrix WAC includes lateral inhibition (within-
field inhibitory) connections and column-to-column excitatory connections. It also contains pre-cortical connections from inferior colliculus (IC) 
to thalamus, from thalamus to the core areas as well as recurrent connections in IC and thalamus. The cortical intra- and inter-field connections 
in WAC are defined by Gaussian distributions of the form Q(x) = r exp[−(x + µ + s N(0,1))2/2σ2], with the distance x between column i and j, 
amplitude r, constant µ, variance σ2, stochasticity s of the Gaussian distribution Q(x), and the standard normal distribution N(0,1) (for further 
details, see Hajizadeh et al., 2019)

Dynamical parameter set D Value

τm 25 ms

Wei 1.15

Wie 1.00

Wii 0.20

WAC (subcortical) IC recurrent 0.09

IC to Thalamus connections 0.015

Thalamus recurrent connections 0.09

Thalamus to core connections 0.015

r µ σ2 s

WAC (cortical) Between-field excitatory 0.09 0 1.5 0.2

Within-field excitatory 0.105 0 2.0 0.4

Within-field inhibitory 0.09 3.0, −3.0 1.5 0.4

Anatomical parameter set A Value

K1 feedforward elements −4

K1 feedback elements 20

K1 within-field elements −5

K2 2

K3 2
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artifact rejection, heartbeat correction, filtering and averaging 
across trials) was applied to the raw data of both experiments 
(Zacharias et  al.,  2012). The trial-averaged MEG responses 
were baseline-corrected (200 ms) and filtered with a band pass 
of 1–30 Hz (Butterworth, zero phase shift).

As with the simulated responses, the ERFs were analyzed 
in terms of the peak amplitude, peak latency, and 3-dB width 
of the N1m response, and also in terms of the grand-averaged 
ERF and its standard deviation. The measurements relating to 
the N1m were expressed in terms of histograms, for which we 
computed 95% confidence intervals for the individual bins. 
This was achieved via the bootstrap method, that is, random 
sampling with replacement (Efron, 1979). For this, we con-
structed 1,000 resamples of the data of the 25 subjects, and 
then, rejected the 2.5% smallest and the 2.5% largest values 
in each histogram bin. The remaining values fall in the range 
depicted in the error bars in the figures.

In Hajizadeh et  al.  (2019) and in the current study, we 
ignore the effect of synaptic plasticity, which has a lifetime 
of several seconds. Hence, for the experimental data, we se-
lected the ERFs from the blocks with the longest SOIs, that 
is, SOI = 10 s in Experiment A and SOI = 7 s in Experiment 
B. The interval between individual stimuli in these blocks 
was long enough for full recovery from adaptation to occur 
(see, e.g., Lü et  al.,  1992; McEvoy et  al.,  1997; Zacharias 
et al., 2012). Further, the model offers only an approximation 
of AC dynamics in terms of damped harmonic oscillators. 
There are therefore ERF waveforms that it cannot produce 
but which can nonetheless be observed in a small number of 
subjects. These are double-peak structures of the N1m wave-
form and the emergence of a sustained field following the 
N1m. We excluded such cases from the experimental data to 
ensure comparability between the simulated waveforms and 
the experimental data. This led to a rejection of 2/15 subjects 
in Experiment A and 3/15 subjects in Experiment B.

3  |   RESULTS

The current study uses simulations of auditory cortex and 
experimental data to address how the ERF is shaped by the 
anatomy of the auditory cortex, on the one hand, and by the 
system dynamics of the auditory cortex, on the other hand. In 
simulations, the ERFs of populations of subjects are gener-
ated with the assumption that, in each population, the ana-
tomical parameters A and the dynamical parameters D vary 
across the population in a specified way. We compare simu-
lated ERFs with ERFs from two different MEG experiments 
(Experiment A and Experiment B; recordings are from mag-
netometers above the right posterior temporal lobe where the 
largest ERF response was measured), focusing on the N1m 
response, the most prominent ERF wave generated in the 
auditory cortex. We characterize the N1m for each subject 

separately in terms of the peak amplitude, the peak latency, 
and the width of the N1m. Further, we consider the arithmetic 
mean and arithmetic standard deviation of the waveforms of 
populations of subjects.

3.1  |  Experimental and simulated ERFs

Figure 3a shows trial-averaged MEG responses from individ-
ual subjects (thin gray curves) collected in Experiment A and 
B. Also shown is the corresponding arithmetic mean (grand 
mean, thick black curve) and arithmetic standard deviation 
(thick red curve). The subject-specificity of the waveform is 
apparent in the different peak amplitudes, peak latencies, and 
waveform widths of the N1m. We note that the peak latency 
of the N1m in the grand mean occurs at ∼105 ms, and that 
the peaks of the individual waveforms are scattered around 
that value by ±20 ms, as indicated in the inset of Figure 3a. 
The standard deviation is time-dependent and shows a pro-
nounced maximum ∼15 ms before the peak of the N1m of 
the grand mean. This heteroscedasticity is due the fact that 
the individual waveforms, and their N1m peaks in particu-
lar, predominantly differ by a multiplicative factor, rather 
than by an additive amount (König et  al.,  2015; Matysiak 
et al., 2013).

We simulated cross-subject variability of the ERF by 
varying the anatomical A-parameters and the dynamical D-
parameters of the model (see Table  1). Changing only the 
anatomical factors while keeping the dynamical parameters 
constant leads to a large distribution of the peak amplitudes 
of the P1m, N1m, and P2m responses (Figure 3b). However, 
the inset shows that there is only a small effect on the peak 
latencies, which cluster around the respective peak latency 
in the grand mean waveform. Therefore, the grand mean and 
the corresponding standard deviation exhibit maxima for the 
P1m, N1m, and P2m deflections roughly at the same laten-
cies, respectively.

In contrast, a very different pattern is revealed in sim-
ulations where the anatomical parameters are fixed but 
the dynamical parameters are randomized (Figure 3c). In 
this scenario, the waveforms show very similar P1m de-
flections. These then evolve into N1m deflections through 
near-identical positive slopes which fan out into a wide dis-
tribution of N1m-peak amplitudes and latencies. There is a 
strong positive correlation between the peak amplitude and 
latency of the N1m, as shown in the inset, and the width of 
the N1m deflection becomes larger with increasing peak 
amplitude (as in the simulations of Hajizadeh et al., 2019). 
The spread of the waveforms continues beyond the N1m, 
and entails a large variety of P2m deflections—contrary 
to the situation where only anatomical variations are in-
troduced (Figure 3b). The standard deviation shows a pro-
nounced peak at around 130 ms, that is, after the N1m peak 
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of the grand mean. Note that the simulated data in each 
panel was normalized such that the N1m-peak amplitude of 
the grand mean of the simulations was equal to the N1m-
peak amplitude of the grand mean of the experimental data 
(350 fT).

However, neither of the waveform dispersions in 
Figure 3b,c bears a close resemblance with that observed in 
the MEG experiments (Figure 3a). The dispersion due to an-
atomical variations (Figure 3b) resembles the experimental 
results in that the standard deviation peaks before the N1m 
of the grand mean. Nevertheless, the peak latencies of the 
simulated N1m and P2m are too concentrated. A better corre-
spondence with experimental results is achieved in Figure 3d, 
which shows simulations where both the anatomical and the 
dynamical parameters were randomized simultaneously using 
the respective parameter ranges of the simulations shown in 
Figure 3b,c. This leads to a wider dispersion of the individual 
peak latencies of the N1m and P2m, as also demonstrated in 
the inset, and to a more realistic spread in the N1m widths. 
These observations suggest that both anatomy and dynamics 
might be the cause of the subject-specificity of ERFs.

3.2  |  The N1m response

The dependence of the N1m response on anatomy and dy-
namics was investigated systematically by using five dif-
ferent ranges of variation for the A-parameters and another 
five for the D-parameters. Thus, parameter variations were 
generated in a total of 5 × 5 = 25 combinations of parameter 

F I G U R E  3   Comparison of experimental and simulated 
waveforms for two illustrative parameter ranges, with the N1m-
peak latency plotted against the N1m-peak amplitude in the inset of 
each panel. (a) Waveforms of individual subjects (thin gray curves; 
N = 25) and their corresponding mean (black curve) and standard 
deviation (red curve) are shown for the two MEG experiments. The 
peak amplitude of the N1m varies in a range from about 200 to 
800 fT [mean ± SD: (352 ± 140) fT]. The peak latency ranges from 
around 80 to 130 ms [(104 ± 10) ms]. (b) Simulated waveforms and 
the corresponding grand-averaged waveform and standard deviation 
were generated by randomizing the anatomical parameters A while 
keeping the dynamical parameters D fixed. A total of 50 waveforms 
were generated such that the elements of the topography matrix T 
were randomly picked from the [0.12, 8.00] range. The resulting 
waveforms are similar in shape. There is large variation in the peak 
amplitude of the N1m [(327 ± 126) fT] and a narrow variation of 
the peak latency [(98 ± 2) ms]. (c) The panel shows how varying the 
dynamical parameters (range of random multiplier [0.75, 1.33]) affects 
the waveform while the anatomical parameters were fixed. There is 
a strong positive correlation between the amplitude [(352 ± 90) fT] 
and latency [(100 ± 8) ms] of the N1m peak, as well as between peak 
amplitude and width of the N1m. (d) The simultaneous randomization 
of both D- and A-parameters leads to a set of ERF waveforms that 
resembles that obtained in the experiments and shown in (a). There is 
a large variation in the N1m-peak amplitude [338 ± 150] fT as well as 
in the N1m-peak latency [(98 ± 9) ms]. Note that the simulation results 
here show a random subset of 50 single-subject responses taken from 
the 1,000 single-subject simulations, which are the basis of the results 
shown in the subsequent figures
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ranges. For each range combination, 1,000 simulated single 
subjects were generated. The ERF of each subject was char-
acterized in terms of the peak amplitude, the peak latency, 
and the 3-dB width of the N1m. The normalized distribution 
of each of these measures was then compared to the normal-
ized distribution of the corresponding measure from the ex-
perimental data shown in Figure 3a. The results are shown 
in Figure 4, where the rows represent the results for the peak 
amplitude (top), peak latency (middle), and waveform width 
(bottom) of the N1m, and where the five columns represent 
the five variation ranges of the D-parameters in ascending 
order from left to right. Within each panel, the five colored 
curves represent the distributions of the N1m measure, each 
one gained for a specific range of A-parameters.

The gray histograms in the top row of Figure 4 show the 
distribution of the peak amplitude of the experimentally mea-
sured N1m (bin width 100 fT). The distribution is skewed and 
it has a maximum at the [200–300] fT bin. The corresponding 
distributions for the simulated ERFs exhibit no A-dependence 
for the largest D-range (Figure 4e), as is evident in the colored 
distribution curves resembling each other. As the D-range is 
decreased (moving from right to left), the amplitude distribu-
tions for the different A-ranges become increasingly diverse 
for each D-range. The best match between simulations and 
experiments is achieved with the A-ranges with the random-
ization factor [0.25, 4.00] (purple curves) and [0.12, 8.00] 
(orange curves). These produce N1m-amplitude distributions 
which are similar across all the D-ranges. On the basis of 
these results, the subjects have individual cortical anatomies, 
but no conclusion can be drawn on the presence of dynamical 
variations across subjects.

The distributions of the peak latency and width of exper-
imentally measured N1m are shown in Figure 4 in the histo-
grams of the middle and bottom row, respectively. The latency 
distribution is skewed, whereas the width distribution is sym-
metrical. In both cases, the distributions for the different A-
ranges closely resemble each other for any given D-range, 
with the one exception of the leftmost panel of the latency 
row (Figure 4f), where the D-range is [1.00, 1.00], that is, 
when there is no randomization of the dynamical parameters. 
The best match between experiment and simulation occurs 
with the D-range [0.75, 1.33] both in the case of peak latency 
(Figure 4i) and in the case of waveform width (Figure 4n). 
From these findings, we conclude that the subject-specific 
peak latency and width of the N1m response is explained by 
cross-subject variations in dynamical parameters, rather than 
by variations in anatomical factors. This corroborates our ob-
servations in Figure 3 that dynamical variations are needed to 
produce N1m latency variations across subjects.

Figure 5 summarizes the similarity between experimental 
and simulated data shown in Figure  4. This similarity was 
quantified separately for each D-range and A-range combina-
tion through the histogram intersection algorithm (Swain & 

Ballard, 1991). The similarity results for the peak amplitude, 
peak latency, and width of the N1m response are shown as 
similarity maps in Figure 5a-c, respectively. The x and y axis 
represent the D-ranges and A-ranges, respectively, and the 
color codes the similarity measure, with red elements refer-
ring to high and blue elements to low similarity. For the peak 
amplitude of the N1m (Figure 5a), we note a high similarity 
across many D- and A-ranges, with the exception of the nar-
rowest ones (blue panels in the bottom left corner). For the 
peak latency (Figure 5b), there is a narrow, vertical band of 
high similarity stretching across all A-ranges at the D-range 
of [0.75, 1.33]. Likewise, for the N1m width (Figure  5c), 
there is a similar vertical band at the D-range of [0.75, 1.33]. 
To identify an overall similarity pattern, the three similarity 
maps have been averaged in Figure 5d. The dark orange el-
ement of this mean map shows which D- and A-range com-
bination yields the overall best match between experimental 
and simulated data. This indicates that the subject-specificity 
of the ERFs is not only based on anatomical variations across 
subjects, but it also reflects subject-specific dynamics of the 
auditory cortex.

3.3  |  The grand-averaged ERF versus the 
standard deviation

The correspondence between experimental and simulated 
data can be examined by looking at the entire ERF wave-
form rather than at singular time points or deflections such 
as the N1m response, as was done above. For this broader 
examination, we used two measures: the ERF waveform 
grand-averaged across subjects, and the corresponding stand-
ard deviation. The results are shown in Figure 6, where the 
standard deviation is plotted against the grand mean for each 
of the 25 D- and A-range combinations (red curves). The five 
columns represent the five D-ranges in increasing order from 
left (narrow range) to right (wide range), and the five rows 
represent the A-ranges in increasing order from bottom (nar-
row range) to top (wide range). Each panel also shows the 
same standard-deviation-versus-mean plot (black curves) for 
the experimental data extracted from the waveforms shown 
in Figure 3a. As noted above, the experimental data are het-
eroscedastic, and this is evident in the characteristic balloon 
shape of the standard-deviation-versus-mean plot.

In Figure 6, the plots for the simulated data come in a va-
riety of patterns, many of them revealing heteroscedastic-
ity, but only a few of them resemble the experimental data. 
The panels with the light gray background indicate the best 
matches in terms of the root mean square analysis between 
the simulated and the experimental data. They are found 
in the region with large variations of the A-parameters 
and intermediate variations of the D-parameters. These 
best cases largely overlap with the best matches seen in 
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Figure  5, where the correspondence between the exper-
imental and simulated N1m response is displayed. All 
other panels show marked differences between simula-
tions and experiments. For example, simulations displayed 
in the final column, with the largest D-range [0.50, 2.00], 
show a wide loop. In these cases, the dynamical parame-
ters dominate the characteristics of the ERFs, leading to a 
wide distribution of the peak latencies of the N1m, and, 
consequently, to a shift of the maximum of the standard 
deviation to a value larger than the maximum of the grand 
mean (see, e.g., Figure 3d). Similar loops, though less pro-
nounced, and therefore, matching the experimental data, 
can be seen in the fourth column with a D-range [0.75, 
1.33]. When there is no A-variation ([1.00, 1.00], bottom 
row) and as the range of the D-variation is decreased (from 
right to left), the relationship between the standard devia-
tion and grand mean approaches homoscedastic behavior, 
which is finally reached in the case where neither D- nor 
A-parameters are varied. As the range of the A-variation 
is increased, homoscedasticity gradually turns into het-
eroscedasticity, and the relationship between standard de-
viation and grand mean gradually approaches the pattern 
identified in the experiments. This pattern indicates both 
in experiment and simulations, that the individual wave-
forms in the vicinity of the N1m peak predominantly differ 
by factors, not by amounts (see Matysiak et al., 2013). In 
sum, these results confirm the N1m analyses in Section 
3.2 according to which the cross-subject variability of the 
ERF can best be explained by both the cortical anatomy 
and the dynamical parameters of auditory cortex varying 
across subjects.

4  |   DISCUSSION

While the auditory ERF often comprises a series of landmark 
deflections identified as the P1m, N1m, and P2m, there is 
considerable variability across subjects in the peak ampli-
tudes and latencies of these deflections and in the shape of 
the ERF in general. Indeed, the ERF is much like a finger-
print—in that it is both specific to the individual subject and 
reproducible across repeated measurements (see Figure  1). 
We pursued the question of whether this subject-specificity 
is due to different gross anatomies of the AC, or whether it 
also reflects subject-specific dynamics. We compared experi-
mental MEG data with simulations of a computational model 
of the auditory cortex. Our results indicate that the subject-
specificity of ERFs is due to a mixture of effects, with both 
the gross anatomy and dynamics varying across subjects.

4.1  |  Main findings

Our model of auditory cortex is based on the anatomical or-
ganization of AC in terms of core, belt, and parabelt fields 
(Hajizadeh et al., 2019; May et al., 2015). There were two 
sets of parameters that we manipulated in simulations. First, 
the anatomical parameters represented the effect of the corti-
cal gross anatomy on the generation of the ERF signal, with-
out having an effect on the dynamics. Second, the dynamical 
parameters were the strengths of the connections between 
cortical columns. In our simulations, changing these led to a 
modulation of the balance between excitation and inhibition, 
and it also affected the patterns of long-range connectivity at 

F I G U R E  5   Comparison of simulated and measured N1m responses. (a) The distribution of the simulated N1m-peak amplitude resembles 
the experimental results maximally when the D-parameter variation range is [0.75, 1.33] and the A-parameter range is [0.25, 4.00]. (b) For the 
peak latency of the N1m, the best correspondence between simulation and experiment is reached with the variation ranges [0.75, 1.33] and [0.12, 
8.00] for the D- and A-parameters, respectively. (c) In the case of the N1m width, the best match is reached with the same range [0.75, 1.33] for 
the D- and A-parameters. (d) Averaging over the previous similarity measures reveals that, overall, the best match between simulation results 
and experimental data occurs when the variation range of the D-parameters is [0.75, 1.33] and that of the A-parameters is [0.25, 4.00]. Thus, 
these results are consistent in indicating that the distributions from experimental data are explained by both the cortical anatomy and the cortical 
dynamics varying from subject to subject. Each panel represents simulations carried out with the 25 combinations of variations of the dynamical 
parameters D and the anatomical parameters A. The ranges of the D- and A-variations are represented on the abscissa and ordinate, respectively, 
with the ranges increasing from left to right and from bottom to top. The similarity between distributions was measured with the histogram 
intersection algorithm (Swain & Ballard, 1991), with high similarity coded in red and low similarity in blue. The actual distributions are shown in 
Figure 4

(a) (b) (c) (d)
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a fine resolution. The default parameter values were chosen 
such that the model replicated a typical ERF. We then intro-
duced variations to both sets of parameter values to generate 
subject specificity. The simulations thus included 25 sets of 
ERFs resulting from different combinations of anatomical 
and dynamical parameter variations. Each set represented the 
ERFs measured from a subject group, with each individual 
ERF representing the ERF of a single subject.

The data were analyzed in two ways. First, we consid-
ered characteristic quantities of the N1m response, namely 
its peak amplitude, peak latency, and waveform width. The 
N1m was chosen for this analysis because it tends to be a 
landmark response in most subjects, reaching higher peaks 
than the other ERF responses. On each of these measures, 

the experimental data reached a best match with the simu-
lations in which both anatomical and dynamical parameters 
were varied. Second, we considered the arithmetic mean plot-
ted against the corresponding standard deviation. In simula-
tions, these plots took on a wide variety of shapes, ranging 
from wide circular orbits to linear-like behavior. Again, we 
found that the best match between simulations and experi-
ment occurred for the simulations where both the anatomi-
cal and dynamical parameters are varied. Furthermore, the 
variation ranges for the best matches agreed well with each 
other across the different analyses (compare Figure 5d with 
Figure  6). In all our comparisons, the experimental results 
deviated considerably from the predictions at the extremes, 
whereby either anatomical factors or dynamical factors alone 

F I G U R E  6   Standard deviation versus grand mean: Comparison of simulated and measured ERFs. The experimental data are represented by 
the black curve, which is replotted in each panel. The simulated data are in red and it represents the 25 combinations of the variation ranges of the 
dynamical parameters D (abscissa) and anatomical parameters A (ordinate). The width of the D-ranges increases from left to right, and the width of 
the A-ranges increases from bottom to top. The three best matches between simulations and experiment (based on the root-mean-square differences) 
are highlighted, and they all display heteroscedastic behavior. These best matches coincide with those shown in Figure 5, and they confirm that the 
cross-subject variation of the ERF is due to a combination of subject-specific cortical anatomy and subject-specific cortical dynamics. The single-
subject ERFs measured in the MEG experiments are shown in Figure 3a. A subset of the waveforms corresponding to the top panel in the fourth 
column is shown in Figure 3d
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would explain the subject-specificity of the ERF. Overall, 
our results agree—unsurprisingly—with the well-established 
notion that individual subjects have individual cortical gross 
anatomies. Importantly, they indicate that subjects display 
cortical dynamics, which is specific to the subject.

We emphasize that our approach relies on analyzing pop-
ulation data and that we are drawing conclusions on sub-
ject-specificity on the basis of population data. While this 
allows us to conclude that both the gross anatomy and the 
cortical dynamics are subject-specific, it does not, however, 
permit us to say much about particular individual subjects. 
For example, our method cannot be used to pinpoint the or-
igin of ERF differences between two subjects, because the 
number of data points would be too low.

4.2  |  N1m-peak latency as an index of group 
differences in auditory function

On a general level, one might expect that dynamical varia-
tion of AC has perceptual consequences. For example, in our 
model, this variation was brought about by changing the con-
nection strengths between the cortical columns. Connection 
strengths are fundamental to information processing in that 
they determine how a stimulus representation is mapped 
from one stage of processing to the next. Our results suggest 
that the peak latency of the N1m is a good indicator of cross-
subject dynamical variations because it is weakly influenced 
by anatomy. In contrast, the N1m-peak amplitude is a less 
sensitive indicator because it is influenced both by dynami-
cal and anatomical variation. Thus, on the group level, it is to 
be expected that latency should correlate better than ampli-
tude with perception as measured in psychoacoustic experi-
ments, and latency variance should correlate with variance 
of perception. Indirect evidence suggests that this is indeed 
the case.

First, the transient sound detection response reported by 
Mäkinen et  al.  (2004) and Tiitinen et  al.  (2005) is an ERF 
response elicited by long-duration sounds that slowly (over 
hundreds of milliseconds to seconds) increase in intensity 
from an imperceptible to a clearly perceptible level. During 
such looming sound stimulation there emerges a response that 
is like the N1m in terms of its morphology, polarity, width, 
and source location in the AC. Furthermore, the timing of 
the response militates against a fixed-amplitude threshold 
model, which is also the case with the N1m (Biermann & 
Heil, 2000). Importantly, the peak latency of this N1m-like 
response predicts extremely well the behavioral reaction time 
(RT) indicating sound detection. On the group level, subjects 
with a short RT display the sound detection response at an 
earlier latency than subjects with a long RT. Also, the vari-
ance in the peak latency of the response is correlated with the 
variance of the RT.

Second, subjects with musical training tend to produce 
ERFs that differ from those produced by nonmusicians. 
Amemiya et al. (2014) presented short melodies to subjects 
and measured the N1m response elicited by the final tone. 
They found that musicians have shorter right-hemispheric 
N1m latencies than nonmusicians. There was no difference 
in the N1m-peak amplitude between the groups, and the P2m 
was also unaffected by musical training. The behavioral task 
was to report on the sense of completeness of the melody. 
No differences were found between musicians and nonmusi-
cians in this relatively nondemanding task. Similarly, Kuriki 
et al. (2006) reported that musical training resulted in shorter 
peak latencies of the N1m, but that the peak latencies of the 
P1m and P2m were unaffected. Further, Park et  al.  (2018) 
found that musicians, compared to nonmusicians, produced 
N1m responses of shorter peak latency but similar peak 
amplitude. Interestingly, multiplications of Heschl's gyrus 
are much more common in musicians (in 90% of the cases, 
Benner et  al.,  2017) than in the general population (Marie 
et al., 2015). Therefore, it seems that both the dynamics and 
gross anatomy of auditory cortex are changed by musical 
training.

Further evidence for event-related responses reflecting dy-
namical variations might be found by looking at the effect of 
perceptual learning. In this case, the gross anatomy remains 
unchanged, but cortex undergoes functional changes due 
to synaptic plasticity (for a review, see Weinberger,  2015). 
Based on the current results, perceptual learning should be 
reflected in the group mean of the latency, and/or in the vari-
ance of the latency. In line with this, Reincke et al.  (2003) 
found that the N1 and P2 latency shifted earlier and the P2 
amplitude became larger when subjects learned to discrim-
inate vowels. This should be contrasted with the results of 
Tremblay et al. (2001) and Tremblay and Kraus (2002), who 
found learning to discriminate consonant-vowel syllables 
was reflected in N1 and P2 amplitudes rather than in their 
latency. However, the analyses of the above studies were car-
ried out for group means only, and the latency variance was 
not addressed at the single-subject level.

In sum, previous studies indicate that the latency with 
which the auditory cortex reaches peak activity in an N1m-
like response is a good predictor of sound detection. Further, 
musical training and perceptual learning affects the aspect 
of the ERF—the N1m latency—which we suggest is the 
sensitive indicator of dynamical variation in AC. Also, la-
tency seems to be a consistent indicator of musical training, 
whereas the N1m amplitude is less so. Thus, the N1m latency 
appears to be functionally meaningful, reflecting perception 
and learning. Our results presented in Figures  3–5 explain 
why this should be the case: variations in cortical dynamics 
show up in the N1m latency, whereas the amplitude of N1m 
represents a mixture of dynamical and anatomical effects, 
which can cancel each other out.
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4.3  |  On the usefulness of the grand mean of 
ERF waveforms

The current findings give us pause to consider the useful-
ness of grand means in ERF research. Grand-averaging the 
ERF waveform is a continuation of averaging single trial 
responses. It is rooted in the idea of noise cancelation and 
in the notion that there is a true population response buried 
in the noise carried by each single-subject measurement. 
This practice can be criticized from several viewpoints. 
First, it almost always relies on arithmetic averaging, 
which is the convention in ERF research. Arithmetic av-
eraging is based on the assumption of the so-called ad-
ditive model whereby one response differs from another 
by a constant. Whereas this assumption is appropriate for 
single trials (König et al., 2015), the additive model does 
not apply when computing the grand mean across trial-
averaged waveforms. This is because ERFs of individual 
subjects do not differ from each other by amounts but, 
rather, they differ predominantly by factors, and follow 
the so-called mixed model. Therefore, the use of arithme-
tic averaging is not recommended for comparing the grand 
mean of ERFs across stimuli or conditions; instead geo-
metric grand-averaging—or, more precisely, arithmetic 
averaging of the asinh-transformed data—should be used 
(König et  al.,  2015; Matysiak et  al.,  2013). Further, the 
test–retest reliability of event-related responses of indi-
vidual subjects is high, meaning that single-trial averaging 
is successful in removing noise and revealing a response 
that is stable. These results taken together with the find-
ings of the current study imply that response stability ema-
nates from an unchanging gross anatomy of each subject 
and from the cortical dynamics of each subject remaining 
stable. That is, each subject does not introduce noise that 
should be removed through further cross-subject averag-
ing. If cross-subject variation of ERFs reflected individual 
gross anatomies only, then, geometric grand-averaging 
might arguably produce a waveform that represented the 
true dynamics of the brain, undistorted by measurement 
noise. However, as the ERF of each subject emerges from 
the subject-specificity of both gross anatomy and dynam-
ics, it is unclear what the grand mean represents. It blurs 
the waveforms of individual subjects, and it is unlikely 
to represent a response produced by average dynamics in 
an average gross anatomy, even assuming that such no-
tions are useful and can be defined. Therefore, when using 
grand-averaging, one must ensure that the end justifies the 
means. We used arithmetic averaging (see Figure 3) to in-
vestigate the origin of the subject-specificity of ERFs. If 
the focus is on differences between groups or experimen-
tal conditions, then, geometric averaging or the arithme-
tic averaging of asinh-transformed waveforms should be 
employed.

4.4  |  Outlook

Our current modeling approach is, to our knowledge, 
unique for two reasons. First, we are including a descrip-
tion of the entire AC, as opposed to concentrating on a 
specific cortical field (e.g., A1). As described in our previ-
ous study (Hajizadeh et al., 2019), this allows us to charac-
terize the ERF as a holistic waveform being generated by 
the entire system of the AC, rather than as a series of re-
sponses—P1m, N1m, and P2m—with dedicated, spatially 
constrained generator processes. Second, we are interested 
in describing subject-specific dynamics and subject-spe-
cific anatomical effects on the generation of the auditory 
ERF, and how these are reflected in group statistics and 
grand-averaged responses. These strengths should be jux-
taposed with the simplifications of the model: For exam-
ple, it is based on the anatomy of the macaque monkey AC 
and gross anatomy is modeled as a set of random variables. 
These simplifications might be seen as springboards for 
further development, given elasticity by the strengths of 
our approach. The anatomy of the human auditory cortex 
is at present unknown in the detail of the macaque mon-
key (Baumann et  al.,  2013; Besle et  al.,  2019; Norman-
Haignere et al., 2019). We are not certain how many fields 
the human AC has and what the connection patterns be-
tween the fields are. In contrast, the gross anatomy of 
subjects is accessible through high-resolution MRI imag-
ing (Moerel et al., 2014). It might be possible to adapt our 
approach to assist in the mapping of the cortical fields of 
human AC. This could involve constructing forward mod-
els, with multiple MEG sensor locations, on the basis of 
actual subject-specific cortical topographies. It should be 
possible to project various field constellations onto these 
topographies to model the ERF. This might allow one to 
find the best fits between simulation and experiment in 
terms of number of fields and general connection patterns 
between fields, with the constraint that these features are 
shared across subjects.

Although the current model includes multiple feedback 
pathways, it is dynamically driven by the afferent input. 
Looking beyond the auditory cortex, we suspect that the 
auditory cortex might function as a forum where oscilla-
tions driven by the bottom-up sensory input mix with os-
cillations driven by top-down internal models generated 
beyond the parabelt. This could be one of the ways that the 
cognitive auditory cortex (Scheich et al., 2007) manifests 
itself dynamically and where the top-down-driven oscilla-
tions function as filters for the oscillations driven by the 
afferent input (Morillon & Schroeder, 2015) or vice versa. 
Thus, the approach of the current study might be extended 
to examine the auditory ERF—and therefore, the function-
ing of auditory cortex—in terms of this mixing of these 
two kinds of oscillations.
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