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1 | INTRODUCTION

The auditory event-related response is revealed by present-
ing a stimulus multiple times, and then, averaging the evoked

| André Brechmann®? | Reinhard Kiinig1 |

Abstract

Auditory event-related fields (ERFs) measured with magnetoencephalography (MEG)
are useful for studying the neuronal underpinnings of auditory cognition in human
cortex. They have a highly subject-specific morphology, albeit certain characteristic
deflections (e.g., PIm, N1m, and P2m) can be identified in most subjects. Here, we
explore the reason for this subject-specificity through a combination of MEG measure-
ments and computational modeling of auditory cortex. We test whether ERF subject-
specificity can predominantly be explained in terms of each subject having an individual
cortical gross anatomy, which modulates the MEG signal, or whether individual corti-
cal dynamics is also at play. To our knowledge, this is the first time that tools to address
this question are being presented. The effects of anatomical and dynamical variation on
the MEG signal is simulated in a model describing the core-belt-parabelt structure of
the auditory cortex, and with the dynamics based on the leaky-integrator neuron model.
The experimental and simulated ERFs are characterized in terms of the N1m amplitude,
latency, and width. Also, we examine the waveform grand-averaged across subjects,
and the standard deviation of this grand average. The results show that the intersubject
variability of the ERF arises out of both the anatomy and the dynamics of auditory
cortex being specific to each subject. Moreover, our results suggest that the latency
variation of the N1m is largely related to subject-specific dynamics. The findings are
discussed in terms of how learning, plasticity, and sound detection are reflected in the

auditory ERFs. The notion of the grand-averaged ERF is critically evaluated.

KEYWORDS

anatomy, auditory cortex, computational modeling, dynamics, event-related field, ERF, latency,
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magnetoencephalography (MEG) or electroencephalography
(EEG) signal across the stimulus presentations. The resulting
typical trial-averaged response is characterized by a sequence
of peaks and troughs. The initial cortically generated ones,
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called long-latency responses, reach extrema at approxi-
mately 50, 100, and 200 ms after stimulus onset. The respec-
tive labels for these responses are P1, N1, and P2 when these
are observed in EEG as the part of the event-related potential
(ERP). The corresponding labels are P1m, N1m, and P2m
when measurements are done in MEG to reveal the event-re-
lated field (ERF). Of these, the N1/N1m tends to be the most
prominent response. However, there is a large between-sub-
ject variability of auditory event-related responses. The peak
amplitude of the N1m ranges from several tens of fT to al-
most 1 pT, a similar order-of-magnitude variation can be seen
with the N1, and the peak latency of the N1/N1m is observed
in the 70-130 ms range. Thus, averaging the peak amplitude
and the peak latency across subjects results in sizeable stan-
dard deviations. Also, the grand-averaged response tends to
be broader than any of the individual responses because of
the variations in peak latencies. Further, the waveform of the
event-related response comes in many morphological vari-
eties. The N1/N1m can have a double-peak structure, or its
rising or falling slope can have a pronounced shoulder, and
many subjects exhibit no clear P2/P2m response at all.

Importantly, the intersubject variability of the event-related
response is not merely due to noise in the measurement. Rather,
ERFs and ERPs are intrinsically subject-specific, remaining
stable from measurement session to session, when these are
separated by days, weeks, or even years (see, e.g., Ahonen
et al., 2016; Atcherson et al., 2006; Dalebout & Robey, 1997;
Michalewski et al., 1986; Sandman & Patterson, 2000;
Segalowitz & Barnes, 1993). Figure 1 demonstrates the in-
trasubject stability (reproducibility) and the intersubject vari-
ability of auditory ERFs recorded from two subjects in our
laboratory. The test-retest measurements were performed with
the identical experimental paradigm and auditory stimuli (sim-
ple tone repetition), and the interval between the two MEG
recordings was a year for one subject and 3 years for the other.
For each subject, the two recordings are from the same MEG
channel above the temporal lobe that shows the largest NIm
response. There are two observations to be made. First, the two
subjects produce substantially different waveforms, with sub-
ject-specific peak amplitudes and latencies. Second, the wave-
forms are reproducible across the long time intervals.

One interpretation of the between-subject differences in audi-
tory ERFs relates to anatomical variations of the auditory cortex
(AC) between individual subjects and, within a subject, between
the two hemispheres. This is because the magnetic field gener-
ated by source activity in cortex depends on the source's orien-
tation and on its distance to the measuring sensor, and these in
turn are determined by the topography of the cortex, that is, the

For example, Shaw et al. (2013) concluded that the rightward
bias of the N1m amplitude, a phenomenon frequently observed
in MEG measurements, is based on a larger degree of cortical
folding in the left compared to the right hemisphere. Anatomical
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FIGURE 1
subject-specificity of ERFs. The figure shows trial-averaged ERFs

Examples of intrasubject reproducibility and

evoked in two subjects, S1 and S2, by a sequence of identical stimuli
(1.5-kHz tone, sound-pressure level: 80 dB, stimulus onset interval:

7 s, approximately 100 stimulus repetitions). The interval between the
two measurements was 3 years for S1 and 1 year for S2. Data show
recordings from the MEG channels (magnetometers of the two MEG
systems) with the maximum absolute N1m-peak amplitude above

the posterior part of the right (S1) and left (S2) hemisphere. For each
subject, we found a compelling agreement between the first and second
measurements. The variability of the ERFs among subjects is clearly
reflected in the large differences in the N1m-peak amplitudes and peak
latencies. The waveforms of the second measurement were scaled by

a factor of about 1.5 to achieve good agreement between the earlier
and later record. This is because we show magnetic field responses
from the sensors with the largest NIm amplitude. A slight difference
in the positioning of the subject's head between the measurements will
scale the response. The shaded region around each of the trial-averaged
waveforms represent the 95% confidence interval (CI) of the estimated
mean, which was achieved by applying 1,000 bootstrap repetitions
(with replacement) to the single trials underlying the means. In each
subject, there is a strong overlap of the 95% CI for the test and retest
waveforms

work has demonstrated that the morphology of Heschl's gyrus
(HG), which harbors the primary auditory cortex, exhibits large
cross-subject variability. Different morphotypes manifest them-
selves in different numbers of gyri, ranging from a single HG to
a common stem and a complete posterior duplication to multi-
ple duplications, which also vary between the two hemispheres
(Heschl, 1878; Morosan et al., 2001; Rademacher et al., 2001;
von Economo & Horn, 1930). Moreover, larger morphological
differences can be observed in higher cortical areas as compared
to primary areas (Fischl et al., 2008).

Theoretically, the origin of cross-subject variability of
ERFs is suggested by Maxwell's equations, which, in combi-
nation with the continuity equation, forms the mathematical
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basis for the computation of the MEG signal. Assuming that
the brain is a conducting volume H with constant conductiv-
ity o, the quasistatic approximation of Maxwell's equations,
where all time-derivative terms can be ignored as source
terms, provides simple solutions to this so-called forward
problem. Specifically, the magnetic field B(r) at a location
r outside the brain generated by electric currents at a lo-
cation r' inside the brain follows the Ampére-Laplace law
(Hamadldinen et al., 1993; Mosher et al., 1999; Sarvas, 1987,
Williamson & Kaufman, 1981):

p - :
B(r):ﬁ.LJ(r/)xﬁdr . (1)

The neural activity is described by the total current density
Ja) =JPa@") + 3V ("), Its first component is the primary cur-
rent density Jp(r') which describes the movement of electrical
charge inside the dendritic tree. The second component is the
volume current density JV(r') which is proportional to JFah
and denotes the passive return current in extracellular space.
Further, it is assumed that the magnetic permeability of tissue
u is equal to the permeability y, of free space. The Ampere—
Laplace law indicates that the generation of ERFs can be sep-
arated into two conceptually different components connected
by their cross-product: (a) the total current density J(r') is pro-
duced by neural activity and is thus determined by the brain as
a dynamical system; (b) the term r — r' denotes the position
of the intracranial current source in relation to the extracranial
position of the measurement sensor, and thus, reflects the anat-
omy of the brain, but not the brain dynamics. Notably, ERFs
show distinct—and opposite—dependencies on these two
components. B(r) increases linearly with increasing source
strength and decreases nonlinearly with increasing distance
from the source (Brody et al., 1973; Hamaldinen et al., 1993;
Sarvas, 1987; Zhang, 1995). Thus, the ERF reflects neural dy-
namics via its linear relationship to source strengths, and it also
reflects the gross anatomy of the brain, that is, the physical lay-
out of the sources, via a nonlinear relationship to distance and
orientation of the sources. Cross-subject variability of ERFs
could, therefore, arise out of subject-specific dynamics, sub-
ject-specific anatomy, or a combination of both.

In our previous work, we addressed the impact of anatomi-
cal and dynamical contributions to the auditory ERF by using
simulations of auditory cortex (Figure 10a,b in Hajizadeh
et al., 2019). We found that when the modulating effect of the
anatomy was varied while keeping the dynamics of the model
fixed, the peak amplitude of the N1m became distributed
across a wide range, whereas the peak latency of the N1m was
little affected. A very different picture emerged when the sim-
ulated anatomy remained fixed but the dynamical parameters
of the model were varied. In this case, both the peak amplitude
and the peak latency of the N1m had a wide distribution, and
these two measures were strongly correlated.

IPSYCHUPHYSIOI.OGY K | sorms

The aim of this work is to investigate why ERFs vary from
subject to subject by testing the predictions of our computa-
tional model (Hajizadeh et al., 2019) in MEG measurements
in human subjects. The current, largely unwritten under-
standing attributes the subject-specificity of ERFs mainly to
well-established cross-subject differences in the gross anat-
omy of cortex. It remains an open question to which degree
subject-specific ERFs also reflect the presence of brain dy-
namics that is specific to the subject. Here, we address this
question by linking experimental observations from previous
studies (Konig et al., 2015; Matysiak et al., 2013) and pre-
viously unpublished data to simulations from our computa-
tional model of auditory cortex.

2 | METHOD

2.1 | Computational model

Simulations were performed on a model of auditory cortex
which was originally developed to examine the consequences
of short-term synaptic plasticity on auditory processing (May
et al., 2015; May & Tiitinen, 2010, 2013; Westo et al., 2016).
Its basic dynamical unit is the cortical column, which is de-
scribed as a pool of excitatory (pyramidal) neurons interacting
with a pool of inhibitory interneurons, much as in Wilson and
Cowan (1972). The dynamic equations for this interaction are
those of the leaky-integrator neuron (LIN; e.g., Hopfield &
Tank, 1986), whereby the time derivative of the state variable,
which is equivalent to the membrane potential, is proportional
to the sum of a leak term and the synaptic input currents. Each
current depends linearly on the presynaptic spiking rate and the
synaptic strength. Furthermore, the excitatory connections be-
tween the pyramidal neurons are modulated by a term describ-
ing short-term synaptic plasticity as in Loebel et al. (2007). The
output of the LIN is the instantaneous spiking rate derived by
passing the state variable through a nonlinear function. In the
model, each pool of neurons is described by a single state vari-
able and a single spiking rate representing the mean activity of
the pool. Thus, each cortical column is described by a pair of
ordinary differential equations, one for the pool of excitatory
neurons, the other for the interneurons. In the current simula-
tions, we also included two areas of subcortical processing: the
inferior colliculus (IC) and the thalamus. As with cortical col-
umns, we assumed that their dynamical units were interacting
pools of inhibitory and excitatory neurons.

Structurally, the model mimics the AC of the macaque
monkey with 13 cortical fields (Hackett et al., 2014; Kaas &
Hackett, 2000). The input stage of the model represents tonoto-
pically organized IC which feeds into a tonotopically organized
thalamus. The thalamocortical input stream represents the lem-
niscal pathway and targets three tonotopically organized, inter-
connected fields of the core area, also known as the primary
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auditory cortex. From there, activity spreads along multiple,
topographically organized feedforward pathways to eight sur-
rounding belt fields, which form part of the secondary auditory
cortex. Each belt field, in turn, is interconnected predominantly
with its nearest neighboring belt fields. Activation from the belt
fields is also fed forward to two parabelt fields, also part of the
secondary auditory cortex. The feedforward pathways are com-
plemented by reciprocal, feedback pathways. Though being
a vastly simplified description of the AC, the model (May
et al., 2015; May & Tiitinen, 2010, 2013) is able to reproduce
a variety of intra- and extracortically measured effects showing
that cortical activation depends both on the incoming stimulus
and the historical context of that stimulation (e.g., Brosch &
Schreiner, 1997, 2000; Naitianen, 1992).

The dynamical equations of the model comprising N cor-
tical columns (May et al., 2015; May & Tiitinen, 2010, 2013)
are given by:

Tl (D)= —u(@®)+85@) oW - g[u®] = Wei - g [Vl + Lygre (1),
@)

TVO ==+ W -glu@]—W;-g[vOl+ Ly (1)
3)

Here, 7,,, is the membrane time constant, and u(?) = [u,(¥),
<o uy®] and v(1) = [v(9), ..., vy(?)] are time-dependent vectors
of the state variables of excitatory (index “e”) and inhibitory
(index “i”) cell populations, respectively. In the current simula-
tions, there were 208 cortical columns in total distributed over
13 cortical fields, with 16 columns per field. The IC and thala-
mus, each comprising 16 column-like units, were also described
by the above equations. Thus, there were a total of 240 dynami-
cal units in the model. The connections between the cell popula-
tions are mathematically expressed by the four weight matrices
Wee, Wy, Wi, and Wj;. The elements of W, represent excitato-
ry-to-excitatory connections, and the elements of W,, describe
lateral inhibition. The matrices W,; and W; have diagonal ele-
ments only and describe local, within-column connections of
the inhibitory-to-excitatory and inhibitory-to-inhibitory type,
respectively. Note that a connection weight describes the inten-
sity with which two populations can interact, and it encapsulates
both the average synaptic strengths as well as the density of the
connections. The nonlinear function S(7) represents the short-
term synaptic plasticity and modifies the weights between the
excitatory cell populations in the weight matrix W,, at each time
point with an entry-wise multiplication (expressed by the sym-
bol “o” for the Hadamard product). The spiking rate functions
glu(?)] and g[v(?)] are sigmoid functions of the state variables,
and the vectors L (¢) and L;(7) represent the afferent input to
the excitatory and inhibitory cell populations.

Due to the nonlinearities of the functions S(7), glu(?)],
and g[v(#)], Equations (2) and (3) need to be solved numer-
ically. Thus, simulations are required to investigate how the

anatomical connectivity pattern and other model parameters
shape the ERF. To gain deeper insight into the confluence of
stimulation, system parameters, and cortical dynamics gen-
erating the event-related response, we recently developed a
linear approximation of the model (for a full treatment, see
Hajizadeh et al., 2019). This approach provides explicit solu-
tions to the system dynamics and enables the characterization
of AC activity in terms of normal modes. These are damped
harmonic oscillators emerging out of the excitatory and in-
hibitory coupling of the cortical columns; they are described
by:

uy (1) = exp (—ydt) [audsin (5dt) + b, 4cos (6dt)] + Cuqs
“

vg (1) =exp (—7yt) [aygsin (842) + bygcos (847)] + cyq
Q)

Here, the decay constant y; and the damping frequency
04 depend solely on the connection matrices, and the co-
efficients a,g, dyg, bug» Dygs Cug» and ¢4 are functions of the
connection matrices and the afferent inputs. Each normal
mode depends explicitly on all parameters of the system, in-
cluding the pattern of the connections between all columns.
Therefore, a normal mode on its own does not represent
the activity of any individual column. Instead, it should be
thought of as a dynamic building block that is spread across
the whole system, contributing to the activity of each column
with a specific weight. Conversely, the activity of any one
column represents the weighted sum of all the normal modes
of the system, and, thus, is directly dependent on the anatom-
ical structure of the AC.

In the original model (May et al., 2015; May &
Tiitinen, 2013), lateral inhibition was realized by the excit-
atory populations making lateral connections to the inhibitory
populations of neighboring columns so that W, had off-diag-
onal elements. In order to generate the analytical solutions, it
was necessary to remove these off-diagonal elements. Lateral
inhibition was included in the analytical model by introduc-
ing negative connections into W, effectively combining the
original matrices W,, and W, into a matrix Wyc. This con-
tained all lateral and long-range (i.e., nondiagonal) connec-
tions, both excitatory and inhibitory. In practice, Wy was
constructed by using Gaussians with stochastic terms to de-
termine the connection strength as a function of the distance
between the connecting columns on the tonotopic map (for
details, see Hajizadeh et al., 2019).

2.2 | MEG simulation

The MEG signal was calculated by approximating the pri-
mary current in each column as being a linear function of the
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synaptic inputs targeting the excitatory cell population of the
column. The contribution of each input was multiplied by a
connection-specific anatomical factor. These factors account
for the magnetic field depending not just on the strength of
the primary current, but also on the distance of the current
to the MEG sensor, and on the orientation of the current
(Hamaléinen et al., 1993), as seen in Equation 1. The orienta-
tion of the current not only depends on the subject-specific
folding of the cortical surface, which embeds the current, but
it also depends on the apical-dendrite location of the synapse
driving the current and on whether the synapse is excitatory
or inhibitory. Thus, the MEG signal produced by the model
is the product of two mutually independent factors: (a) the
dynamics of the auditory cortex, as reflected in the synaptic

(c)
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inputs that the cortical columns receive, and (b) the subject-
specific anatomical parameters.
The anatomical parameters, as described above, are de-

noted by A, which is a collection of multipliers, one per con-
nection made onto the excitatory populations. As in Hajizadeh
et al. (2019), we construct these multipliers by first defining
three matrices K, K,, and K5 comprising multipliers accord-
ing to connection type. K; modulates the contribution made
by the excitatory connections in W,c, and therefore, has the
same structure as W,., which encapsulates how the 13 corti-
cal fields are connected with each other (Figure 2a). The ele-
ments of K, are further divided into feedforward, feedback, and
within-field (diagonal) types. The matrices K, and K5 have an
identical structure and modulate the contribution made by the

(d)
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FIGURE 2 The matrices for computing the MEG signal. (a) The matrix K, contains the multipliers for the contribution of the MEG signal
coming from the excitatory connections of type feedforward (blue), feedback (dark red), and intra-field (dark blue). (b) The matrices K, and K; are

identical to each other, and they provide multipliers for the intra-column inhibitory connections and the lateral inhibitory connections, respectively.

(c) The topography matrix T represents the gross anatomy of auditory cortex and it modulates the MEG in a field-specific way. Each row represents

the field-specific effect that the field has on the MEG signal via orientation and distance to the sensor. (d, ) Element-wise multiplication of K;

and the T results in the final multipliers which modulate the contribution to the MEG from each connection. Note that this figure displays 15 X 15

matrices where the indexing runs over the 2 subcortical and 13 cortical fields. Each element represents 16 X 16 connections made by the 16

subcortical neuronal units or cortical columns per field
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intra-column inhibitory connections in W,; and lateral inhibition
connections in W), respectively (Figure 2b). These three K;-
matrices have default values that reflect the orientation of the
current produced by the various types of connections (for de-
tails, see Section 4.1 of Hajizadeh et al., 2019). Extending from
the approach in our previous study (Hajizadeh et al., 2019), the
effect of subject-specific gross anatomy was taken into account
in the generation of the MEG signal. To model the effect of the
column orientation and distance to the MEG sensor—that is,
of the gross anatomy of the cortical folding—the elements of
K; were multiplied by a random number that was specific to
each of the 13 cortical fields. This is a simplification, which as-
sumes that the columns in a field have approximately the same
orientation and the same distance to the sensor. For notational
convenience, these 13 random numbers are represented by a to-
pography matrix 7 where each row has identical elements and
each column is the vector of the 13 field-specific multipliers
(see Figure 2c). Further, to model the effect of cross-subject
variation of the topography of the cortical surface, multiple
T-matrices were generated, so that each 7-matrix represented a
single subject. Note that in this approach, we are not concerned
with describing or reconstructing the effect of the actual corti-
cal gross anatomy of any particular subject but, rather, we are
interested in the effect of cross-subject anatomical variation on
the ERF response. Thus, each connection has an anatomical
multiplier as part of the parameter set A, and this is the product
of the elements in 7 and K; corresponding to that connection.

The MEG response R(f) of the model is computed as the
sum over the synaptic inputs to the excitatory populations,
weighted by the Hadamard product of the topography matrix
T with the K;-matrices:

N

R(t)= Z [T oK oW* u (1)

j=1
+ToK,oW v (1)

+ToK;30W, u (t)]j.

(6)

where j runs over the number of cortical columns in the
model. The matrices W," and W~ represent the excitatory
connections and lateral inhibition of W), respectively. The de-
fault values for the dynamical and anatomical parameters used in
the simulations are listed in Table 1. They were chosen such that
the model replicated a typical ERF, with P1m, N1m, and P2m
responses. We note that according to our normal-mode charac-
terization (Hajizadeh et al., 2019), each of these responses is
fundamentally a property of the whole system and does not have
an anatomically localizable generator process. For example, in
the model, subtle changes to the internal connections of the par-
abelt result in significant changes in the activation of the core
and belt as they produce the N1m. Thus, the parabelt should be
considered to be an integral part of the N1m generator process,
even though its direct contribution to this response is small.

2.3 | Simulation experiments

We carried out simulations to test how cross-subject differ-
ences in dynamics and/or anatomy of the auditory cortex im-
pacts on the auditory ERF. For this, we randomly varied the
parameters of the dynamical equations of the model, denoted
by D, as well as the anatomical parameter set A defined in
Section 2.2. Further, each set of parameters produced in the
randomizations represented an individual subject. The set
of dynamical parameters D comprised the weight matrices
Wac, Wei» Wi, and Wj;. The membrane time constant 7, is
also a dynamical parameter, although it was not varied in the
current simulations. For randomizing the D-parameters, the
same method was used as in Hajizadeh et al. (2019). That is,
for each of the diagonal matrices W, W,,, and W;;, a random
number was generated from a flat distribution over a prede-
fined range. The elements of the matrix were then multiplied
by that number. The matrix Wy, describing the long-range
excitatory and lateral inhibitory connections, was generated
as a sum of Gaussians with stochastic terms (see Appendix
Al of Hajizadeh et al., 2019). Cross-subject random varia-
tion in these column-to-column connection strengths was
achieved by regenerating W, while keeping the Gaussian
parameters fixed. Because of the stochastic terms, the overall
connectivity pattern remained the same, but weight values
varied slightly from subject to subject. To summarize the
effect of the randomizations, these essentially altered the
balance between excitation and inhibition and they also mod-
ified the connectivity patterns at a fine resolution.

The A- and D-parameters were each randomized with five
different ranges of the random multiplier. The distribution of ran-
dom multipliers from each range was evenly distributed around
unity, which generated the default value of the modulated pa-
rameter (see Table 1). This was achieved by dividing each range
into two subsets of random numbers, those larger than unity and
those smaller, and then, picking an equal number of multipliers
from each subset. For randomizing the D-parameters, the lower
bounds of these ranges were chosen as (1-1/2), (1-1/4), (1-1/8),
(1-1/16), and unity (1-0). The upper bound was the inverse of
the lower bound, and this resulted in the ranges [0.50, 2.00],
[0.75, 1.33], [0.88, 1.14], [0.94, 1.07], and [1.00, 1.00] (i.e., no
variation). Similarly, for randomizing the A-parameters, we used
five different ranges from which the random multipliers were
picked to populate the 7-matrix (see Section 2.2). These ranges
had lower bounds of (1/8), (1/4), (1/2), (3/4), and (1). Again,
the upper bound was the inverse of the lower bound, producing
the ranges [0.12, 8.00], [0.25, 4.00], [0.50, 2.00], [0.75, 1.33],
and [1.00, 1.00]. With five ranges each for the D and A multi-
pliers, there were a total of 5 X 5 =25 combinations of param-
eter variations. For each combination of A- and D-parameters,
1,000 simulations representing 1,000 subjects were run with
parameter values generated randomly with multipliers from the
respective ranges of that combination. The resulting ERFs were



HAJIZADEH ET AL.

7 of 18

TABLE 1
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Default dynamical and anatomical parameter values used in the simulations. The matrix W, includes lateral inhibition (within-

field inhibitory) connections and column-to-column excitatory connections. It also contains pre-cortical connections from inferior colliculus (IC)

to thalamus, from thalamus to the core areas as well as recurrent connections in IC and thalamus. The cortical intra- and inter-field connections

in W, are defined by Gaussian distributions of the form Q(x) = rexp[—(x + u+ s N(O,l))2/202], with the distance x between column i and j,

amplitude 7, constant y, variance &, stochasticity s of the Gaussian distribution Q(x), and the standard normal distribution N(0,1) (for further

details, see Hajizadeh et al., 2019)

Dynamical parameter set D Value
Tm 25 ms
Wi 1.15
Wie 1.00
Wy 0.20
Wac (subcortical) IC recurrent 0.09
IC to Thalamus connections 0.015
Thalamus recurrent connections 0.09
Thalamus to core connections 0.015
r u I s
Wac (cortical) Between-field excitatory 0.09 0 1.5 0.2
Within-field excitatory 0.105 0 2.0 0.4
Within-field inhibitory 0.09 3.0,-3.0 1.5 0.4
Anatomical parameter set A Value
K, feedforward elements —4
K, feedback elements 20
K, within-field elements -5

Ky
K3

then analyzed in terms of the peak amplitude, peak latency, and
3-dB width of the N1m response. We focused on the N1m, be-
cause it is usually the most prominent ERF response generated
by the auditory cortex. To account for the time delay due to sub-
cortical processing, we added a 35-ms shift to the waveforms.
This resulted in the N1m peaking at 100 ms with the default
parameter values. Further, going beyond the analysis methods
of Hajizadeh et al. (2019), we arithmetically grand-averaged
the ERF waveforms across the subjects and inspected the mean
waveform as well as its standard deviation.

2.4 | MEG experiments with
human subjects

We present MEG data from two separate studies, which were
conducted with two different subject populations, with the total
number of subjects being 25. Here, we show the analyses of the
ERFs from the right hemisphere, and we note that the left-hemi-
spheric ERFs yield the same results with respect to the origin of
subject-specificity. Further details on the first study (Experiment
A) can be found in Zacharias et al. (2012). Data of the second
study (Experiment B) have not been published before, and in-
formation on acquisition and pre-analysis is briefly summarized

here. For both studies, subjects were recruited from the academic
environment at the Leibniz Institute for Neurobiology and the
Otto von Guericke University in Magdeburg. All subjects gave
written informed consent to participate in the measurements,
and both studies received independent approval by the Ethics
Committee of Otto von Guericke University.

Both studies used the same experimental paradigm.
Sequences of 1.5-kHz tones with 100-ms duration were pre-
sented at a sensation level of 80 dB in separate blocks where
each block was characterized by a constant stimulus onset
interval (SOI). Two consecutive blocks were separated by a
pause of about 30 s, and the order in which the blocks were
presented was randomized across subjects. In Experiment A,
tones were delivered monaurally to the subjects' left ear, and
the SOIs ranged from 0.5 to 10 s in five steps. The recording
device was the Magnes 3600 WH system (4-D Neuroimaging)
with 248 magnetometers. In Experiment B, tones were deliv-
ered binaurally, and 10 different SOIs were used in the 0.25-s
to 7-s range. Magnetic fields were measured with the Elekta
Neuromag TRIUX system which consists of 102 magnetome-
ters and 204 planar gradiometers (102 measurement locations
in total). For the current study, we focused on the measure-
ments performed with the magnetometers of the two sys-
tems. The same standard preprocessing procedure (including
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artifact rejection, heartbeat correction, filtering and averaging
across trials) was applied to the raw data of both experiments
(Zacharias et al., 2012). The trial-averaged MEG responses
were baseline-corrected (200 ms) and filtered with a band pass
of 1-30 Hz (Butterworth, zero phase shift).

As with the simulated responses, the ERFs were analyzed
in terms of the peak amplitude, peak latency, and 3-dB width
of the N1m response, and also in terms of the grand-averaged
ERF and its standard deviation. The measurements relating to
the N1m were expressed in terms of histograms, for which we
computed 95% confidence intervals for the individual bins.
This was achieved via the bootstrap method, that is, random
sampling with replacement (Efron, 1979). For this, we con-
structed 1,000 resamples of the data of the 25 subjects, and
then, rejected the 2.5% smallest and the 2.5% largest values
in each histogram bin. The remaining values fall in the range
depicted in the error bars in the figures.

In Hajizadeh et al. (2019) and in the current study, we
ignore the effect of synaptic plasticity, which has a lifetime
of several seconds. Hence, for the experimental data, we se-
lected the ERFs from the blocks with the longest SOIs, that
is, SOI = 10 s in Experiment A and SOI = 7 s in Experiment
B. The interval between individual stimuli in these blocks
was long enough for full recovery from adaptation to occur
(see, e.g., Lii et al., 1992; McEvoy et al., 1997; Zacharias
et al., 2012). Further, the model offers only an approximation
of AC dynamics in terms of damped harmonic oscillators.
There are therefore ERF waveforms that it cannot produce
but which can nonetheless be observed in a small number of
subjects. These are double-peak structures of the N1m wave-
form and the emergence of a sustained field following the
N1m. We excluded such cases from the experimental data to
ensure comparability between the simulated waveforms and
the experimental data. This led to a rejection of 2/15 subjects
in Experiment A and 3/15 subjects in Experiment B.

3 | RESULTS

The current study uses simulations of auditory cortex and
experimental data to address how the ERF is shaped by the
anatomy of the auditory cortex, on the one hand, and by the
system dynamics of the auditory cortex, on the other hand. In
simulations, the ERFs of populations of subjects are gener-
ated with the assumption that, in each population, the ana-
tomical parameters A and the dynamical parameters D vary
across the population in a specified way. We compare simu-
lated ERFs with ERFs from two different MEG experiments
(Experiment A and Experiment B; recordings are from mag-
netometers above the right posterior temporal lobe where the
largest ERF response was measured), focusing on the N1m
response, the most prominent ERF wave generated in the
auditory cortex. We characterize the N1m for each subject

separately in terms of the peak amplitude, the peak latency,
and the width of the N1m. Further, we consider the arithmetic
mean and arithmetic standard deviation of the waveforms of
populations of subjects.

3.1 | Experimental and simulated ERFs
Figure 3a shows trial-averaged MEG responses from individ-
ual subjects (thin gray curves) collected in Experiment A and
B. Also shown is the corresponding arithmetic mean (grand
mean, thick black curve) and arithmetic standard deviation
(thick red curve). The subject-specificity of the waveform is
apparent in the different peak amplitudes, peak latencies, and
waveform widths of the NIm. We note that the peak latency
of the N1m in the grand mean occurs at ~105 ms, and that
the peaks of the individual waveforms are scattered around
that value by +20 ms, as indicated in the inset of Figure 3a.
The standard deviation is time-dependent and shows a pro-
nounced maximum ~15 ms before the peak of the N1m of
the grand mean. This heteroscedasticity is due the fact that
the individual waveforms, and their N1m peaks in particu-
lar, predominantly differ by a multiplicative factor, rather
than by an additive amount (Konig et al., 2015; Matysiak
et al., 2013).

We simulated cross-subject variability of the ERF by
varying the anatomical A-parameters and the dynamical D-
parameters of the model (see Table 1). Changing only the
anatomical factors while keeping the dynamical parameters
constant leads to a large distribution of the peak amplitudes
of the P1m, N1m, and P2m responses (Figure 3b). However,
the inset shows that there is only a small effect on the peak
latencies, which cluster around the respective peak latency
in the grand mean waveform. Therefore, the grand mean and
the corresponding standard deviation exhibit maxima for the
P1m, N1m, and P2m deflections roughly at the same laten-
cies, respectively.

In contrast, a very different pattern is revealed in sim-
ulations where the anatomical parameters are fixed but
the dynamical parameters are randomized (Figure 3c). In
this scenario, the waveforms show very similar P1m de-
flections. These then evolve into N1m deflections through
near-identical positive slopes which fan out into a wide dis-
tribution of N1m-peak amplitudes and latencies. There is a
strong positive correlation between the peak amplitude and
latency of the N1m, as shown in the inset, and the width of
the N1m deflection becomes larger with increasing peak
amplitude (as in the simulations of Hajizadeh et al., 2019).
The spread of the waveforms continues beyond the N1m,
and entails a large variety of P2m deflections—contrary
to the situation where only anatomical variations are in-
troduced (Figure 3b). The standard deviation shows a pro-
nounced peak at around 130 ms, that is, after the N1m peak
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of the grand mean. Note that the simulated data in each
panel was normalized such that the N1m-peak amplitude of
the grand mean of the simulations was equal to the N1m-
peak amplitude of the grand mean of the experimental data
(350 £T).
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FIGURE 3 Comparison of experimental and simulated

waveforms for two illustrative parameter ranges, with the N1m-

peak latency plotted against the N1m-peak amplitude in the inset of
each panel. (a) Waveforms of individual subjects (thin gray curves;

N = 25) and their corresponding mean (black curve) and standard
deviation (red curve) are shown for the two MEG experiments. The
peak amplitude of the N1m varies in a range from about 200 to

800 fT [mean + SD: (352 + 140) {fT]. The peak latency ranges from
around 80 to 130 ms [(104 + 10) ms]. (b) Simulated waveforms and
the corresponding grand-averaged waveform and standard deviation
were generated by randomizing the anatomical parameters A while
keeping the dynamical parameters D fixed. A total of 50 waveforms
were generated such that the elements of the topography matrix 7
were randomly picked from the [0.12, 8.00] range. The resulting
waveforms are similar in shape. There is large variation in the peak
amplitude of the N1m [(327 + 126) fT] and a narrow variation of

the peak latency [(98 + 2) ms]. (c) The panel shows how varying the
dynamical parameters (range of random multiplier [0.75, 1.33]) affects
the waveform while the anatomical parameters were fixed. There is

a strong positive correlation between the amplitude [(352 + 90) {T]
and latency [(100 + 8) ms] of the N1m peak, as well as between peak
amplitude and width of the N1m. (d) The simultaneous randomization
of both D- and A-parameters leads to a set of ERF waveforms that
resembles that obtained in the experiments and shown in (a). There is
a large variation in the N1m-peak amplitude [338 + 150] fT as well as
in the N1m-peak latency [(98 + 9) ms]. Note that the simulation results
here show a random subset of 50 single-subject responses taken from
the 1,000 single-subject simulations, which are the basis of the results
shown in the subsequent figures

However, neither of the waveform dispersions in
Figure 3b,c bears a close resemblance with that observed in
the MEG experiments (Figure 3a). The dispersion due to an-
atomical variations (Figure 3b) resembles the experimental
results in that the standard deviation peaks before the N1m
of the grand mean. Nevertheless, the peak latencies of the
simulated N1m and P2m are too concentrated. A better corre-
spondence with experimental results is achieved in Figure 3d,
which shows simulations where both the anatomical and the
dynamical parameters were randomized simultaneously using
the respective parameter ranges of the simulations shown in
Figure 3b,c. This leads to a wider dispersion of the individual
peak latencies of the N1m and P2m, as also demonstrated in
the inset, and to a more realistic spread in the N1m widths.
These observations suggest that both anatomy and dynamics
might be the cause of the subject-specificity of ERFs.

3.2 | The N1m response

The dependence of the N1m response on anatomy and dy-
namics was investigated systematically by using five dif-
ferent ranges of variation for the A-parameters and another
five for the D-parameters. Thus, parameter variations were
generated in a total of 5 X 5 = 25 combinations of parameter
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ranges. For each range combination, 1,000 simulated single
subjects were generated. The ERF of each subject was char-
acterized in terms of the peak amplitude, the peak latency,
and the 3-dB width of the N1m. The normalized distribution
of each of these measures was then compared to the normal-
ized distribution of the corresponding measure from the ex-
perimental data shown in Figure 3a. The results are shown
in Figure 4, where the rows represent the results for the peak
amplitude (top), peak latency (middle), and waveform width
(bottom) of the N1m, and where the five columns represent
the five variation ranges of the D-parameters in ascending
order from left to right. Within each panel, the five colored
curves represent the distributions of the N1m measure, each
one gained for a specific range of A-parameters.

The gray histograms in the top row of Figure 4 show the
distribution of the peak amplitude of the experimentally mea-
sured N1m (bin width 100 fT). The distribution is skewed and
it has a maximum at the [200-300] fT bin. The corresponding
distributions for the simulated ERFs exhibit no A-dependence
for the largest D-range (Figure 4¢), as is evident in the colored
distribution curves resembling each other. As the D-range is
decreased (moving from right to left), the amplitude distribu-
tions for the different A-ranges become increasingly diverse
for each D-range. The best match between simulations and
experiments is achieved with the A-ranges with the random-
ization factor [0.25, 4.00] (purple curves) and [0.12, 8.00]
(orange curves). These produce N1m-amplitude distributions
which are similar across all the D-ranges. On the basis of
these results, the subjects have individual cortical anatomies,
but no conclusion can be drawn on the presence of dynamical
variations across subjects.

The distributions of the peak latency and width of exper-
imentally measured N1m are shown in Figure 4 in the histo-
grams of the middle and bottom row, respectively. The latency
distribution is skewed, whereas the width distribution is sym-
metrical. In both cases, the distributions for the different A-
ranges closely resemble each other for any given D-range,
with the one exception of the leftmost panel of the latency
row (Figure 4f), where the D-range is [1.00, 1.00], that is,
when there is no randomization of the dynamical parameters.
The best match between experiment and simulation occurs
with the D-range [0.75, 1.33] both in the case of peak latency
(Figure 4i) and in the case of waveform width (Figure 4n).
From these findings, we conclude that the subject-specific
peak latency and width of the N1m response is explained by
cross-subject variations in dynamical parameters, rather than
by variations in anatomical factors. This corroborates our ob-
servations in Figure 3 that dynamical variations are needed to
produce N1m latency variations across subjects.

Figure 5 summarizes the similarity between experimental
and simulated data shown in Figure 4. This similarity was
quantified separately for each D-range and A-range combina-
tion through the histogram intersection algorithm (Swain &

Ballard, 1991). The similarity results for the peak amplitude,
peak latency, and width of the N1m response are shown as
similarity maps in Figure 5a-c, respectively. The x and y axis
represent the D-ranges and A-ranges, respectively, and the
color codes the similarity measure, with red elements refer-
ring to high and blue elements to low similarity. For the peak
amplitude of the N1m (Figure 5a), we note a high similarity
across many D- and A-ranges, with the exception of the nar-
rowest ones (blue panels in the bottom left corner). For the
peak latency (Figure 5b), there is a narrow, vertical band of
high similarity stretching across all A-ranges at the D-range
of [0.75, 1.33]. Likewise, for the NIm width (Figure 5c),
there is a similar vertical band at the D-range of [0.75, 1.33].
To identify an overall similarity pattern, the three similarity
maps have been averaged in Figure 5d. The dark orange el-
ement of this mean map shows which D- and A-range com-
bination yields the overall best match between experimental
and simulated data. This indicates that the subject-specificity
of the ERFs is not only based on anatomical variations across
subjects, but it also reflects subject-specific dynamics of the
auditory cortex.

3.3 | The grand-averaged ERF versus the
standard deviation

The correspondence between experimental and simulated
data can be examined by looking at the entire ERF wave-
form rather than at singular time points or deflections such
as the N1m response, as was done above. For this broader
examination, we used two measures: the ERF waveform
grand-averaged across subjects, and the corresponding stand-
ard deviation. The results are shown in Figure 6, where the
standard deviation is plotted against the grand mean for each
of the 25 D- and A-range combinations (red curves). The five
columns represent the five D-ranges in increasing order from
left (narrow range) to right (wide range), and the five rows
represent the A-ranges in increasing order from bottom (nar-
row range) to top (wide range). Each panel also shows the
same standard-deviation-versus-mean plot (black curves) for
the experimental data extracted from the waveforms shown
in Figure 3a. As noted above, the experimental data are het-
eroscedastic, and this is evident in the characteristic balloon
shape of the standard-deviation-versus-mean plot.

In Figure 6, the plots for the simulated data come in a va-
riety of patterns, many of them revealing heteroscedastic-
ity, but only a few of them resemble the experimental data.
The panels with the light gray background indicate the best
matches in terms of the root mean square analysis between
the simulated and the experimental data. They are found
in the region with large variations of the A-parameters
and intermediate variations of the D-parameters. These
best cases largely overlap with the best matches seen in
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Comparison of simulated and measured N1m responses
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FIGURE 5 Comparison of simulated and measured N1m responses. (a) The distribution of the simulated N1m-peak amplitude resembles
the experimental results maximally when the D-parameter variation range is [0.75, 1.33] and the A-parameter range is [0.25, 4.00]. (b) For the
peak latency of the N1m, the best correspondence between simulation and experiment is reached with the variation ranges [0.75, 1.33] and [0.12,
8.00] for the D- and A-parameters, respectively. (c) In the case of the N1m width, the best match is reached with the same range [0.75, 1.33] for
the D- and A-parameters. (d) Averaging over the previous similarity measures reveals that, overall, the best match between simulation results
and experimental data occurs when the variation range of the D-parameters is [0.75, 1.33] and that of the A-parameters is [0.25, 4.00]. Thus,
these results are consistent in indicating that the distributions from experimental data are explained by both the cortical anatomy and the cortical
dynamics varying from subject to subject. Each panel represents simulations carried out with the 25 combinations of variations of the dynamical
parameters D and the anatomical parameters A. The ranges of the D- and A-variations are represented on the abscissa and ordinate, respectively,
with the ranges increasing from left to right and from bottom to top. The similarity between distributions was measured with the histogram
intersection algorithm (Swain & Ballard, 1991), with high similarity coded in red and low similarity in blue. The actual distributions are shown in

Figure 4

Figure 5, where the correspondence between the exper-
imental and simulated N1m response is displayed. All
other panels show marked differences between simula-
tions and experiments. For example, simulations displayed
in the final column, with the largest D-range [0.50, 2.00],
show a wide loop. In these cases, the dynamical parame-
ters dominate the characteristics of the ERFs, leading to a
wide distribution of the peak latencies of the N1m, and,
consequently, to a shift of the maximum of the standard
deviation to a value larger than the maximum of the grand
mean (see, e.g., Figure 3d). Similar loops, though less pro-
nounced, and therefore, matching the experimental data,
can be seen in the fourth column with a D-range [0.75,
1.33]. When there is no A-variation ([1.00, 1.00], bottom
row) and as the range of the D-variation is decreased (from
right to left), the relationship between the standard devia-
tion and grand mean approaches homoscedastic behavior,
which is finally reached in the case where neither D- nor
A-parameters are varied. As the range of the A-variation
is increased, homoscedasticity gradually turns into het-
eroscedasticity, and the relationship between standard de-
viation and grand mean gradually approaches the pattern
identified in the experiments. This pattern indicates both
in experiment and simulations, that the individual wave-
forms in the vicinity of the N1m peak predominantly differ
by factors, not by amounts (see Matysiak et al., 2013). In
sum, these results confirm the NIm analyses in Section
3.2 according to which the cross-subject variability of the
ERF can best be explained by both the cortical anatomy
and the dynamical parameters of auditory cortex varying
across subjects.

4 | DISCUSSION

While the auditory ERF often comprises a series of landmark
deflections identified as the PIm, N1m, and P2m, there is
considerable variability across subjects in the peak ampli-
tudes and latencies of these deflections and in the shape of
the ERF in general. Indeed, the ERF is much like a finger-
print—in that it is both specific to the individual subject and
reproducible across repeated measurements (see Figure 1).
We pursued the question of whether this subject-specificity
is due to different gross anatomies of the AC, or whether it
also reflects subject-specific dynamics. We compared experi-
mental MEG data with simulations of a computational model
of the auditory cortex. Our results indicate that the subject-
specificity of ERFs is due to a mixture of effects, with both
the gross anatomy and dynamics varying across subjects.

4.1 | Main findings

Our model of auditory cortex is based on the anatomical or-
ganization of AC in terms of core, belt, and parabelt fields
(Hajizadeh et al., 2019; May et al., 2015). There were two
sets of parameters that we manipulated in simulations. First,
the anatomical parameters represented the effect of the corti-
cal gross anatomy on the generation of the ERF signal, with-
out having an effect on the dynamics. Second, the dynamical
parameters were the strengths of the connections between
cortical columns. In our simulations, changing these led to a
modulation of the balance between excitation and inhibition,
and it also affected the patterns of long-range connectivity at
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Standard deviation vs. grand mean: Simulated and measured ERFs
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FIGURE 6 Standard deviation versus grand mean: Comparison of simulated and measured ERFs. The experimental data are represented by

the black curve, which is replotted in each panel. The simulated data are in red and it represents the 25 combinations of the variation ranges of the

dynamical parameters D (abscissa) and anatomical parameters A (ordinate). The width of the D-ranges increases from left to right, and the width of

the A-ranges increases from bottom to top. The three best matches between simulations and experiment (based on the root-mean-square differences)

are highlighted, and they all display heteroscedastic behavior. These best matches coincide with those shown in Figure 5, and they confirm that the

cross-subject variation of the ERF is due to a combination of subject-specific cortical anatomy and subject-specific cortical dynamics. The single-

subject ERFs measured in the MEG experiments are shown in Figure 3a. A subset of the waveforms corresponding to the top panel in the fourth

column is shown in Figure 3d

a fine resolution. The default parameter values were chosen
such that the model replicated a typical ERF. We then intro-
duced variations to both sets of parameter values to generate
subject specificity. The simulations thus included 25 sets of
ERFs resulting from different combinations of anatomical
and dynamical parameter variations. Each set represented the
ERFs measured from a subject group, with each individual
ERF representing the ERF of a single subject.

The data were analyzed in two ways. First, we consid-
ered characteristic quantities of the NIm response, namely
its peak amplitude, peak latency, and waveform width. The
N1m was chosen for this analysis because it tends to be a
landmark response in most subjects, reaching higher peaks
than the other ERF responses. On each of these measures,

the experimental data reached a best match with the simu-
lations in which both anatomical and dynamical parameters
were varied. Second, we considered the arithmetic mean plot-
ted against the corresponding standard deviation. In simula-
tions, these plots took on a wide variety of shapes, ranging
from wide circular orbits to linear-like behavior. Again, we
found that the best match between simulations and experi-
ment occurred for the simulations where both the anatomi-
cal and dynamical parameters are varied. Furthermore, the
variation ranges for the best matches agreed well with each
other across the different analyses (compare Figure 5d with
Figure 6). In all our comparisons, the experimental results
deviated considerably from the predictions at the extremes,
whereby either anatomical factors or dynamical factors alone
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would explain the subject-specificity of the ERF. Overall,
our results agree—unsurprisingly—with the well-established
notion that individual subjects have individual cortical gross
anatomies. Importantly, they indicate that subjects display
cortical dynamics, which is specific to the subject.

We emphasize that our approach relies on analyzing pop-
ulation data and that we are drawing conclusions on sub-
ject-specificity on the basis of population data. While this
allows us to conclude that both the gross anatomy and the
cortical dynamics are subject-specific, it does not, however,
permit us to say much about particular individual subjects.
For example, our method cannot be used to pinpoint the or-
igin of ERF differences between two subjects, because the
number of data points would be too low.

4.2 | Nlm-peak latency as an index of group
differences in auditory function

On a general level, one might expect that dynamical varia-
tion of AC has perceptual consequences. For example, in our
model, this variation was brought about by changing the con-
nection strengths between the cortical columns. Connection
strengths are fundamental to information processing in that
they determine how a stimulus representation is mapped
from one stage of processing to the next. Our results suggest
that the peak latency of the N1m is a good indicator of cross-
subject dynamical variations because it is weakly influenced
by anatomy. In contrast, the N1m-peak amplitude is a less
sensitive indicator because it is influenced both by dynami-
cal and anatomical variation. Thus, on the group level, it is to
be expected that latency should correlate better than ampli-
tude with perception as measured in psychoacoustic experi-
ments, and latency variance should correlate with variance
of perception. Indirect evidence suggests that this is indeed
the case.

First, the transient sound detection response reported by
Mikinen et al. (2004) and Tiitinen et al. (2005) is an ERF
response elicited by long-duration sounds that slowly (over
hundreds of milliseconds to seconds) increase in intensity
from an imperceptible to a clearly perceptible level. During
such looming sound stimulation there emerges a response that
is like the NIm in terms of its morphology, polarity, width,
and source location in the AC. Furthermore, the timing of
the response militates against a fixed-amplitude threshold
model, which is also the case with the NIm (Biermann &
Heil, 2000). Importantly, the peak latency of this N1m-like
response predicts extremely well the behavioral reaction time
(RT) indicating sound detection. On the group level, subjects
with a short RT display the sound detection response at an
earlier latency than subjects with a long RT. Also, the vari-
ance in the peak latency of the response is correlated with the
variance of the RT.

Second, subjects with musical training tend to produce
ERFs that differ from those produced by nonmusicians.
Amemiya et al. (2014) presented short melodies to subjects
and measured the N1m response elicited by the final tone.
They found that musicians have shorter right-hemispheric
NIm latencies than nonmusicians. There was no difference
in the NIm-peak amplitude between the groups, and the P2m
was also unaffected by musical training. The behavioral task
was to report on the sense of completeness of the melody.
No differences were found between musicians and nonmusi-
cians in this relatively nondemanding task. Similarly, Kuriki
et al. (2006) reported that musical training resulted in shorter
peak latencies of the N1m, but that the peak latencies of the
P1lm and P2m were unaffected. Further, Park et al. (2018)
found that musicians, compared to nonmusicians, produced
NIm responses of shorter peak latency but similar peak
amplitude. Interestingly, multiplications of Heschl's gyrus
are much more common in musicians (in 90% of the cases,
Benner et al., 2017) than in the general population (Marie
et al., 2015). Therefore, it seems that both the dynamics and
gross anatomy of auditory cortex are changed by musical
training.

Further evidence for event-related responses reflecting dy-
namical variations might be found by looking at the effect of
perceptual learning. In this case, the gross anatomy remains
unchanged, but cortex undergoes functional changes due
to synaptic plasticity (for a review, see Weinberger, 2015).
Based on the current results, perceptual learning should be
reflected in the group mean of the latency, and/or in the vari-
ance of the latency. In line with this, Reincke et al. (2003)
found that the N1 and P2 latency shifted earlier and the P2
amplitude became larger when subjects learned to discrim-
inate vowels. This should be contrasted with the results of
Tremblay et al. (2001) and Tremblay and Kraus (2002), who
found learning to discriminate consonant-vowel syllables
was reflected in N1 and P2 amplitudes rather than in their
latency. However, the analyses of the above studies were car-
ried out for group means only, and the latency variance was
not addressed at the single-subject level.

In sum, previous studies indicate that the latency with
which the auditory cortex reaches peak activity in an N1m-
like response is a good predictor of sound detection. Further,
musical training and perceptual learning affects the aspect
of the ERF—the N1m latency—which we suggest is the
sensitive indicator of dynamical variation in AC. Also, la-
tency seems to be a consistent indicator of musical training,
whereas the N1m amplitude is less so. Thus, the N1m latency
appears to be functionally meaningful, reflecting perception
and learning. Our results presented in Figures 3-5 explain
why this should be the case: variations in cortical dynamics
show up in the N1m latency, whereas the amplitude of N1m
represents a mixture of dynamical and anatomical effects,
which can cancel each other out.
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4.3 | On the usefulness of the grand mean of
ERF waveforms

The current findings give us pause to consider the useful-
ness of grand means in ERF research. Grand-averaging the
ERF waveform is a continuation of averaging single trial
responses. It is rooted in the idea of noise cancelation and
in the notion that there is a true population response buried
in the noise carried by each single-subject measurement.
This practice can be criticized from several viewpoints.
First, it almost always relies on arithmetic averaging,
which is the convention in ERF research. Arithmetic av-
eraging is based on the assumption of the so-called ad-
ditive model whereby one response differs from another
by a constant. Whereas this assumption is appropriate for
single trials (Konig et al., 2015), the additive model does
not apply when computing the grand mean across trial-
averaged waveforms. This is because ERFs of individual
subjects do not differ from each other by amounts but,
rather, they differ predominantly by factors, and follow
the so-called mixed model. Therefore, the use of arithme-
tic averaging is not recommended for comparing the grand
mean of ERFs across stimuli or conditions; instead geo-
metric grand-averaging—or, more precisely, arithmetic
averaging of the asinh-transformed data—should be used
(Konig et al., 2015; Matysiak et al., 2013). Further, the
test—retest reliability of event-related responses of indi-
vidual subjects is high, meaning that single-trial averaging
is successful in removing noise and revealing a response
that is stable. These results taken together with the find-
ings of the current study imply that response stability ema-
nates from an unchanging gross anatomy of each subject
and from the cortical dynamics of each subject remaining
stable. That is, each subject does not introduce noise that
should be removed through further cross-subject averag-
ing. If cross-subject variation of ERFs reflected individual
gross anatomies only, then, geometric grand-averaging
might arguably produce a waveform that represented the
true dynamics of the brain, undistorted by measurement
noise. However, as the ERF of each subject emerges from
the subject-specificity of both gross anatomy and dynam-
ics, it is unclear what the grand mean represents. It blurs
the waveforms of individual subjects, and it is unlikely
to represent a response produced by average dynamics in
an average gross anatomy, even assuming that such no-
tions are useful and can be defined. Therefore, when using
grand-averaging, one must ensure that the end justifies the
means. We used arithmetic averaging (see Figure 3) to in-
vestigate the origin of the subject-specificity of ERFs. If
the focus is on differences between groups or experimen-
tal conditions, then, geometric averaging or the arithme-
tic averaging of asinh-transformed waveforms should be
employed.
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Our current modeling approach is, to our knowledge,
unique for two reasons. First, we are including a descrip-
tion of the entire AC, as opposed to concentrating on a
specific cortical field (e.g., Al). As described in our previ-
ous study (Hajizadeh et al., 2019), this allows us to charac-
terize the ERF as a holistic waveform being generated by
the entire system of the AC, rather than as a series of re-
sponses—P1m, N1m, and P2m—with dedicated, spatially
constrained generator processes. Second, we are interested
in describing subject-specific dynamics and subject-spe-
cific anatomical effects on the generation of the auditory
ERF, and how these are reflected in group statistics and
grand-averaged responses. These strengths should be jux-
taposed with the simplifications of the model: For exam-
ple, it is based on the anatomy of the macaque monkey AC
and gross anatomy is modeled as a set of random variables.
These simplifications might be seen as springboards for
further development, given elasticity by the strengths of
our approach. The anatomy of the human auditory cortex
is at present unknown in the detail of the macaque mon-
key (Baumann et al., 2013; Besle et al., 2019; Norman-
Haignere et al., 2019). We are not certain how many fields
the human AC has and what the connection patterns be-
tween the fields are. In contrast, the gross anatomy of
subjects is accessible through high-resolution MRI imag-
ing (Moerel et al., 2014). It might be possible to adapt our
approach to assist in the mapping of the cortical fields of
human AC. This could involve constructing forward mod-
els, with multiple MEG sensor locations, on the basis of
actual subject-specific cortical topographies. It should be
possible to project various field constellations onto these
topographies to model the ERF. This might allow one to
find the best fits between simulation and experiment in
terms of number of fields and general connection patterns
between fields, with the constraint that these features are
shared across subjects.

Although the current model includes multiple feedback
pathways, it is dynamically driven by the afferent input.
Looking beyond the auditory cortex, we suspect that the
auditory cortex might function as a forum where oscilla-
tions driven by the bottom-up sensory input mix with os-
cillations driven by top-down internal models generated
beyond the parabelt. This could be one of the ways that the
cognitive auditory cortex (Scheich et al., 2007) manifests
itself dynamically and where the top-down-driven oscilla-
tions function as filters for the oscillations driven by the
afferent input (Morillon & Schroeder, 2015) or vice versa.
Thus, the approach of the current study might be extended
to examine the auditory ERF—and therefore, the function-
ing of auditory cortex—in terms of this mixing of these
two kinds of oscillations.
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