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Abstract 4 

Purpose 5 

Study purposes were to develop energy expenditure (EE) prediction models from raw 6 

accelerometer data and to investigate the performance of three different accelerometers on 7 

five different wear positions in preschoolers. 8 

Methods 9 

Fourty-one children (54% boys; 3-6.3 years) wore two Actigraph GT3X (left and right hip), 10 

three GENEActiv (right hip, left and right wrist), and one activPAL (right thigh) while 11 

completing a semi-structured protocol of 10 age-appropriate activities. Participants wore a 12 

portable indirect calorimeter to estimate EE. Utilized models to estimate EE included a linear 13 

model (LM), a mixed linear model (MLM), a random forest model (RF), and an artificial 14 

neural network model (ANN). For each accelerometer, model and wear position, we assessed 15 

prediction accuracy via leave-one-out cross-validation and calculated the root-mean-squared-16 

error (RMSE).  17 

Results 18 

Mean RMSE ranged from 2.56–2.76 kJ/min for the RF, from 2.72-3.08 kJ/min for the ANN, 19 

from 2.83–2.94 kJ/min for the LM, and from 2.81-2.92 kJ/min for the MLM. The 20 

GENEActive obtained mean RMSE of 2.56 kJ/min (left and right wrist) and 2.73 kJ/min 21 

(right hip). Predicting EE using the GT3X on the left and right hip obtained mean RMSE of 22 

2.60 and 2.74 kJ/min.The activPAL obtained a mean RMSE of 2.76 kJ/min.  23 

Conclusion 24 

These results demonstrate good prediction accuracy for recent accelerometers on different 25 

wear positions in preschoolers. The RF and ANN were equally accurate in EE prediction 26 



compared with (mixed) linear models. The RF seems to be a viable alternative to linear and 27 

ANN models for EE prediction in young children in a semi-structured setting. 28 

Key words accelerometer, physical activity, validation, linear mixed model, machine 29 

learning, children  30 



Abbreviations 31 

absEE absolute energy expenditure 32 

AEE Activity-related energy expenditure 33 

ANN Artificial neural network 34 

EE Energy expenditure 35 

BMI Body mass index 36 

LM  Linear model 37 

MET Metabolic equivalent 38 

MIN Minute 39 

MLM Mixed linear model 40 

PA Physical activity 41 

REE Resting energy expenditure 42 

relEE relative energy expenditure 43 

RF Random forest 44 

RMR Resting metabolic rate 45 

RMSE Root-mean-square error 46 

  47 



Introduction 48 

It is generally agreed that regular physical activity (PA) is related to important health 49 

outcomes in children, e.g. cardiometabolic and psychosocial health (Knaeps et al., 2018; 50 

Reddon, Meyre, & Cairney, 2017; Shoup, Gattshall, Dandamudi, & Estabrooks, 2008; Skrede 51 

et al., 2017; Wafa et al., 2016). PA is defined as any bodily movement produced by skeletal 52 

muscles that results in energy expenditure (EE) (Caspersen, Powell, & Christenson, 1985). In 53 

order to monitor children’s PA, analyze associations between PA and health outcomes, and 54 

evaluate the effectiveness of interventions promoting PA among children, valid measures of 55 

children’s PA and EE are needed (Lamonte & Ainsworth, 2001). In recent years, 56 

accelerometers have gained considerable popularity as an objective measure of sedentary 57 

behaviors, PA and other outcomes, such as EE. They detect accelerations of the body and 58 

enable an estimation of intensity, frequency, duration, and type of movement (Hills, Mokhtar, 59 

& Byrne, 2014; Skotte, Korshoj, Kristiansen, Hanisch, & Holtermann, 2014). Accelerometers 60 

have several advantages over traditional questionnaire-based measures of PA, including 61 

superior reliability and validity, and are increasingly being used in studies with very young 62 

children (Hills et al., 2014). However, traditional linear model equations developed for 63 

activity count-based data do not provide accurate estimates of EE in preschoolers (Janssen et 64 

al., 2013; Reilly et al., 2006).  65 

Because the relationships between accelerometer output and EE differ in preschoolers 66 

compared with older children, prediction equations require development and validation in this 67 

specific age group (Butte et al., 2014). Considerable progress has been made in predicting EE 68 

for adults and older children (Jimmy, Seiler, & Maeder, 2013; Montoye, Begum, Henning, & 69 

Pfeiffer, 2017; Montoye, Mudd, Biswas, & Pfeiffer, 2015) whereas several methodological 70 

questions concerning the use of accelerometry in young children remain open. In their 71 

recently published review that provides age-specific practical considerations on accelerometer 72 



data collection (e.g. device placement) and processing criteria (e.g. epoch length, cut-points, 73 

and algorithms), Migueles and colleagues (2017) observed a lack of calibration and validation 74 

studies for preschoolers that address important processing criteria (such as EE algorithms for 75 

wrist- and hip-worn accelerometers). However, as studies included in the review were 76 

restricted to those applying the latest version of the Actigraph device (GT3X), no practical 77 

consideration about device selection in this age group could be drawn. Besides this, most of 78 

the research on EE prediction that has been done in preschoolers is limited by the use of direct 79 

observation as the criterion measurement and the assignment of fixed metabolic equivalents 80 

(METs) to activities and accelerometer output (Davies et al., 2012; De Decker et al., 2013; 81 

Hagenbuchner, Cliff, Trost, Van Tuc, & Peoples, 2015). Additionally, the use of highly 82 

structured protocols under laboratory settings has been found to overestimate EE in children, 83 

which limits the transfer to free-living behaviors (Nilsson et al., 2008).  84 

Recent studies in older children and adults show improvements in EE prediction using non-85 

linear models (Mackintosh, Montoye, Pfeiffer, & McNarry, 2016; Montoye et al., 2017). 86 

Preliminary evidence demonstrates that machine learning models outperform simplified 87 

regression models in preschoolers (Chowdhury et al., 2018).  88 

This study had three purposes related to accelerometer use in preschoolers: (1) to provide 89 

energy expenditure (EE) prediction models from raw accelerometry data established against 90 

indirect calorimetry, (2) to compare two linear and two machine learning models, and (3) to 91 

compare accuracy of different accelerometers placed on the hips, thigh, and wrists. 92 

Methods 93 

Study participants 94 

To recruit three to six years old children from four daycare facilities (kindergartens) in Lower 95 

Saxony, we first contacted the administration of the kindergartens. In the next step, we 96 



explained the aim and the procedures of the study to the administration as well as to parent 97 

representatives during a pre-arranged meeting in each kindergarten. Thereafter, study 98 

information material was distributed to all parents. In the course of regular kindergarten 99 

morning circle time, we demonstrated the indirect calorimetry to all children. Children with 100 

written parental informed consent were allocated to a schedule. On the measurement day, we 101 

asked for verbal assent from each child and those refusing to take part in the study were 102 

excluded. The local ethics committee (University of Bremen, Bremen) approved the 103 

procedures of the study (ethics committee running title: accelerometry in preschoolers 104 

(ACCIPS)). 105 

Study design 106 

The measurements took place from October to November 2016 and were conducted at each 107 

respective kindergarten, using the available indoor and outdoor infrastructure. The children 108 

had to fast for at least two hours before measurement, but were allowed to drink water. The 109 

measurement was restricted to two children per morning, measured one after the other, to 110 

avoid interference with lunchtime. A total of 75 min were allocated for the measurement 111 

protocol of one child. This included the assessment of anthropometrics, handedness, mounting 112 

and demounting the devices, measurement of resting metabolic rate (RMR), performance of 113 

up to nine in- and outdoor activities, changing rooms within the kindergarten, and dressing 114 

and undressing for outdoor activities (Table 1). We measured RMR during 10 min of supine 115 

rest in a quiet, dimly lit room. The child lay on a mattress and was provided with a blanket. A 116 

short learning story was shown on a tablet to keep the child calm for the measurement of 117 

RMR. We decided on a measurement period of 10 minutes as Borges et al. (2016) showed 118 

that this is an appropriate length of time to achieve steady state conditions and delineate an 119 

optimum abbreviated period to estimate RMR by indirect calorimetry. 120 

*** Table 1 here *** 121 



Activities 122 

The child was free to choose up to three friends to play with. Five activities were 123 

predetermined and ranged from light (e.g. drawing) to vigorous intensities (e.g. jogging). An 124 

additional four activities to be chosen independently with respect to the resources of the 125 

daycare facility and the child’s individual preferences were offered to each child. Examples 126 

are given in Table 1. Starting with the first predetermined activity ‘drawing’, the child was 127 

asked to sit down for five minutes at a table in a group room and to choose one out of five 128 

colouring pages with different motifs to crayon. All subsequent activities were performed 129 

continuously for at least three minutes. Additionally, the child could choose two indoor 130 

physical activities (e.g. playing with toy cars, toy blocks, hide and seek, playing with dolls). 131 

For the performance of the outdoor activities, a well-defined and plain area was chosen. On 132 

the outdoors, the child started with a predetermined activity, which was ‘tag’. Afterwards, the 133 

child chose two other outdoor activities, depending on the equipment of each of the four local 134 

daycare facilities (e.g. swing, tricycle, monkey bars, or scooter). Finally, the child performed 135 

the three activities scheduled last, which were walking at normal speed, walking fast, and 136 

jogging. During these activities, the researcher accompanied the child to ensure continuous 137 

walking and jogging, while the child set the pace. For fast walking, the researcher encouraged 138 

the child by telling an imaginary journey of a holiday trip, including catching the tram, train 139 

and plane to get to a holiday location. If the child changed to jogging during the fast walking 140 

task, the researcher immediately slowed the child down to fast walking. If the child refused to 141 

perform an activity continuously due to motivational reasons, the activity was stopped and the 142 

child was asked to continue with the next activity. The protocol was completely aborted if the 143 

child was exhausted or refused to go on any more.  144 

Accelerometers 145 



The children were equipped with six accelerometers of three different brands. One 146 

accelerometer was placed at the left and the right wrist (GENEActiv, ActivInsight Ltd, 147 

Kimbolton, UK), one accelerometer at the left hip (GT3X Actigraph, Pensacola, Florida, 148 

USA), two accelerometers at the right hip (GENEActiv, GT3X), and one accelerometer at the 149 

right thigh (activPAL, PAL Technologies Ltd, Glasgow, Scotland, UK). Accelerometers at 150 

the wrist were firmly mounted with ¾ inch Tyvek security bracelets, which were used instead 151 

of the standard bracelets provided by the manufacturer. An elastic belt was used to fix the hip 152 

worn monitors close to the lateral hip bone, and an adhesive pad was used to fix the activPAL 153 

to the skin on the front of the right thigh. All accelerometers were operated with the highest 154 

possible resolution, which was 100Hz in the GENEActiv and the GT3X, and 20Hz in the 155 

activPAL. Before each measurement we initialized and synchronized the accelerometers with 156 

the computer running the indirect calorimetry. After completion of the protocol we 157 

downloaded accelerometer data from all devices using dedicated software from the 158 

manufacturers. 159 

Physiological measures 160 

A portable, open-circuit indirect calorimetry system (MetaMax3b, Cortex Biophysics, 161 

Leipzig, Germany) was used as the criterion measure. The MetaMax3b has proven reliability 162 

in a study with adolescents but was found to slightly overestimate VO2 during moderate and 163 

vigorous exercise (Macfarlane & Wong, 2012). It is highly comparable to other common 164 

devices (Mirko Brandes, Klein, Ginsel, & Heitmann, 2015). The system was mounted to the 165 

children using a pediatric harness. In very small children, additional adhesive tape was used to 166 

adjust the harness to the child, so that the system did not interfere with the activities. A 167 

facemask was secured over the child´s nose and mouth with an adjustable nylon harness. A 168 

bidirectional turbine, inserted to the facemask, measured the volume of inspired and expired 169 

air. A sample tube, connected to the turbine, retrieved expired air samples breath-by-breath. 170 



Air samples were analysed for oxygen uptake and carbon dioxide production within the 171 

sensor unit of the system. Stable and dry weather conditions enabled sound outdoor 172 

measurements. Data were transferred via telemetry to a laptop and available in real-time 173 

(MetaSoft 3, Cortex Biophysics, Leipzig, Germany). The laptop operator used the marker 174 

function of the software to identify the beginning and the end of each activity. Each morning, 175 

prior to the first measurement, we calibrated the indirect calorimetry system according to the 176 

manufacturer recommended procedure.  177 

Data reduction and modelling 178 

Oxygen consumption and carbon dioxide production were measured continuously and 179 

converted to absolute (kJ/min) and relative (J/min/kg) EE using the equations by Weir (1949). 180 

RMR was calculated as the minimum of a rolling one-minute mean during supine rest. 181 

Metabolic equivalents (METs) were calculated by dividing the relative oxygen consumption 182 

(expressed in ml/min/kg) by 3.5.  183 

As done by Montoye et al. (2017), for each individual and device, the following 10 summary 184 

statistics were calculated in 30s non-overlapping windows for each axis (X, Y, Z) of the raw 185 

acceleration data: mean, standard deviation, minimum, maximum, lag one autocorrelation, 186 

percentiles (10%, 25%, 50%, 75%, 90%), resulting in 30 summary statistics for each time 187 

window. No filtering of the raw accelerometer data was conducted.  188 

Predictive models were created separately for each accelerometer and placement, resulting in 189 

24 (4x6) models developed and tested. We built four predictive models: (1) a linear regression 190 

model, (2) a linear mixed model, (3) a random forest, and (4) an artificial neural network 191 

model. Linear regression models (LM) and linear mixed models (MLM) were created 192 

separately for the outcome variables absolute EE (absEE), relative EE (relEE), and METs and 193 



included the above mentioned 30 summary statistics as independent variables. The MLM 194 

accounts for repeated measurements to compute EE prediction.  195 

Random forests (RF) are ensembles of classification or regression trees. Each tree is grown on 196 

a bootstrap sample of the data to create an ensemble of diverse trees, modelling different 197 

aspects of the data. Further randomization is introduced by drawing a random subset of 198 

variables at every split. We used regression RFs to predict EE (METs, absEE or relEE) with 199 

raw acceleration data, based on the 30 summary statistics.  200 

Artificial neural networks (ANNs), inspired by biological neural networks, are widely used to 201 

model complex relationships between inputs and outputs. In contrast to the LM and MLM, 202 

they do not assume a specific type of relationship between the outcome and covariates and 203 

allow for non-linear dependencies. In this study, ANNs were used to approximate the 204 

functional relationship between the response (METs, absEE or relEE) and the 30 summary 205 

statistics as covariates. 206 

All analyses were performed in R (R Core Team, 2017) with the add-on packages ‘lme4’ 207 

(Bates, Mächler, Bolker, & Walker, 2015) for MLM, ‘ranger’ (Wright & Ziegler, 2017) for 208 

RF and ‘nnet’ (Venables & Ripley, 2002) for ANN. All model fitting, cross validation, 209 

parameter tuning and evaluation was performed with the ‘mlr’ (Bischl et al., 2016) package. 210 

In the RF, we grew 500 trees and tuned the parameter ‘mtry’ using model-based optimization 211 

(Bischl et al., 2017). For the ANN we chose a single hidden layer with 15 units and tuned the 212 

regularization parameter ‘decay’ to avoid overfitting. Code for using the developed models 213 

can be found at the following link: https://github.com/bips-hb/EE_prediction . 214 

Statistical analysis 215 

https://github.com/bips-hb/EE_prediction


Separately for each of the models, accelerometers, and positions, we calculated the root-216 

mean-squared-error (RMSE) to test EE prediction accuracy. We tested all models using a 217 

leave-one-out cross-validation. 218 

  219 



Results 220 

We had written informed consent from parents of 62 children. Of these, 41 children 221 

completed the protocol. All of the participating children were Caucasians and were able to 222 

speak and understand German. Participant characteristics can be found in Table 2.  223 

*** Table 2 here *** 224 

Reasons for non-participation were withdrawals of the consent on the measurement day (11), 225 

illness (5), not being fasted for at least two hours (2), withdrawn after the second activity (1), 226 

and missing data due to calorimeter failure (2). Children completed the protocol with a 227 

median of eight out of nine possible activities. Mean EE per activity ranged from 4.2 ± 0.9  228 

kJ*m
-1

 to 16.3 ± 4.6 kJ*m
-1

 (Table 3). 229 

*** Table 3 here *** 230 

Forty (98%) children had valid data for the GENEActiv on the left wrist and for the GT3X on 231 

the right hip. Thirty-nine (95%) children had valid data for the GENEActiv on the right wrist 232 

and for the GT3X on the left hip. Thirty-eight (93%) children had valid data for the 233 

GENEActiv on the right hip and for the activPAL. Predicted METs from the four different 234 

models (GENEActiv, left wrist) and METs derived from the indirect calorimeter of one child 235 

passing the protocol are exemplarily shown in Figure 1. 236 

*** Figure 1 here *** 237 

Boxplots for RMSE for all accelerometers, locations and models are shown in Figure 2, 3 and 238 

4 for absEE, relEE and METs, respectively.  239 

 240 

*** Figure 2, 3 and 4 here *** 241 



Mean RMSE ranged from 2.56–2.76 kJ/min for the RF, from 2.72-3.08 kJ/min for the ANN, 242 

from 2.83–2.94 kJ/min for the LM, and from 2.81-2.92 kJ/min for the MLM (Table 4). A 243 

comparison of the four models shows that the RF revealed slightly lower RMSE for absEE, 244 

relEE and METs than the other three models. GENEActive devices obtained mean RMSE of 245 

2.56 kJ/min (left and right wrist) and 2.73 kJ/min (right hip). Predicting EE using the GT3X 246 

on the left and right hip obtained mean RMSE of 2.60 and 2.74 kJ/min, respectively. Use of 247 

the thigh worn activPAL provided a mean RMSE of 2.76 kJ/min. Looking at wear positions, 248 

EE prediction accuracy for devices worn at the hip obtained mean RMSE of 2.60-2.74 kJ/min. 249 

Placement at the wrists obtained slightly lower mean RMSE (2.56 kJ/min), and placement at 250 

the thigh slightly higher mean RMSE (2.76 kJ/min) (Table 4). 251 

 252 

*** Table 4 here *** 253 

 254 
 255 

Discussion 256 

The study’s purpose was to develop and to provide EE prediction models from raw 257 

accelerometry data, to compare two linear and two machine learning models, and to compare 258 

EE prediction accuracy of different accelerometers placed on the hips, thigh, and wrists. To 259 

our knowledge, this is the first study that provides a calibration and comparative validation of 260 

multiple accelerometers in preschool children aged three to six years against indirect 261 

calorimetry as the criterion measurement.  262 

For adults, similar EE prediction accuracy has been reported for  linear models vs. an ANN 263 

model using different accelerometers (Montoye et al., 2017). Only for wrist-worn devices, 264 

Montoye et al. (2017) report a significant improvement of the ANN over linear models. In 265 

children, there is preliminary evidence that the application of machine learning improves EE 266 

prediction accuracy compared to linear regression algorithms (Chowdhury et al., 2018; 267 



Mackintosh et al., 2016). In our study, machine learning models and (mixed) linear models 268 

were equally accurate in EE prediction irrespective of the device and wear position. This 269 

could be due to the fact, that our models all included the same summary statistics as 270 

independent variables whereas in the simplified approach by Chowdhury et al. (2018) only 271 

three features, including mean(x), mean(y), mean(z), were extracted from each accelerometer 272 

window. Thus our data shows preliminary evidence that application of a RF or ANN model 273 

revealed only minor improvements in EE prediction compared to (mixed) linear models 274 

should the models are built upon the same summary statistics as independent variables. We 275 

can therefor recommend using linear as well as non-linear models for EE prediction on raw 276 

accelerometry data in studies that aim at assessing young children’s EE under free-living 277 

conditions. 278 

Furthermore, comparison of mean RMSE did not reveal meaningful differences between the 279 

three different devices.  All of them can therefore be recommended for use in young children.  280 

Accelerometers are commonly worn on a waist belt, aligned with the right anterior axillary 281 

line for the entire day up to 7 days to estimate habitual PA (Hills et al., 2014). To date, most 282 

research has used the hip-worn GT3X, which has been calibrated and validated in a wide 283 

range of populations (Borghese et al., 2017; Evenson et al., 2015; Johansson, Larisch, 284 

Marcus, & Hagstromer, 2016). Compliance among young children has been shown to be 285 

better when using wrist-worn accelerometers compared to hip-worn devices (Fairclough et al., 286 

2016). Therefore, our main aim was to test whether EE prediction of wrist-, hip- and thigh-287 

worn devices is equally accurate for age-appropriate activities in preschoolers. Our results 288 

show good accuracy for all wear positions. This is in line with the findings of another study 289 

with children in which accelerometers mounted on various anatomical positions demonstrated 290 

equivalency in the accuracy to predict EE in a semi-structured setting (Mackintosh et al., 291 

2016).  292 



In our study, we further observed only small differences regarding the predictive accuracy 293 

between the dominant and non-dominant wrist. This also is in line with the findings of 294 

another study that examined the classification accuracy of the GENEActiv with a cut-point 295 

based approach for the assessment of PA intensities in preschoolers (Roscoe, James, & 296 

Duncan, 2017) and may help to inform choice of wrist placement when using accelerometers 297 

in field-based research. We assume  good accuracy in predicting EE should the accelerometer 298 

either be placed on the left or right wrist.  299 

There are several strengths of our study which are in line with best practice recommendations 300 

for calibration studies (Welk, 2005). We applied a semi-structured nature of the activity 301 

protocol, numerous accelerometer positions, and a high-quality criterion measure for EE. Our 302 

sample size of 41 children is in line with recent calibration and validation studies and the 303 

included activities enabled their differentiation into light- to vigorous intensity activities quite 304 

well, with the lowest activity-specific metabolic equivalents (AME) being observed in 305 

drawing [mean (95% CI): 1.89 (1.7–2.1)], a moderate AME in playing with cars [3.1 (2.5–306 

3.6)] and walking [3.6 (3.3–4.0)], and the most vigorous AME in jogging [7.7 (6.7–8.7)] (M. 307 

Brandes, Steenbock, & Wirsik, 2018). The generalizability of our results is indeed limited by 308 

the homogenous sample of apparently healthy Caucasian children. Therefore, our findings 309 

cannot be generalized to other ethnicities or to children with a chronic condition or disease. A 310 

further limitation of the study is that not all children completed the five predetermined 311 

activities that stretch across all activity intensities (drawing, catching, walking at regular 312 

speed, walking fast, and jogging). This was due to the young age and motivational reasons in 313 

our target group.  314 

Conclusion 315 

These findings provide preliminary evidence that recent accelerometers mounted on five 316 

different anatomical positions demonstrate equivalency in the accuracy to predict EE from 317 



raw accelerometer data. Our models are publicly available and can be used for studies 318 

assessing EE in preschoolers under free-living conditions. The RF, ANN and (mixed) linear 319 

models were equally accurate in predicting EE irrespective of the device and wear position. 320 

We therefor recommend utilizing linear as well as non-linear models for the estimation of EE 321 

in preschoolers. We recommend a further investigation of RF models for EE prediction from 322 

raw accelerometer data in young children as well as in other populations, which seems to be a 323 

viable alternative to linear and ANN models.  324 
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Figure 1: Predicted METs from the four different models (GENEActiv, left wrist) and METs 

derived from the indirect calorimeter (black line) over the time course of the study protocol. 

LM: linear model, MLM: mixed linear model, RF: random forest, ANN: artificial neural 

network 



 

Figure 2 absEE: Root mean square error (RMSE) for predicted versus measured absolute 

energy expenditure (absEE) for all accelerometers, locations and models. Data are displayed 

in boxplots with median and interquartile range. Black dots represent outliers. LM: linear 

model, MLM: mixed linear model, RF: random forest, ANN: artificial neural network. 



 

Figure 3 relEE: Root mean square error (RMSE) for predicted versus measured relative 

energy expenditure (relEE) for all accelerometers, locations and models. Data are displayed in 

boxplots with median and interquartile range. Black dots represent outliers. LM: linear model, 

MLM: mixed linear model, RF: random forest, ANN: artificial neural network. 



 

Figure 4 METs: Root mean square error (RMSE) for predicted versus measured metabolic 

equivalents (METs) for all accelerometers, locations and models. Data are displayed in 

boxplots with median and interquartile range. Black dots represent outliers. LM: linear model, 

MLM: mixed linear model, RF: random forest, ANN: artificial neural network. 

 



Table 1 Overview, order and duration of study procedures 

Activity/task Time (min) 

Welcoming the child, changing to side room for preparation and RMR 

measurement 

3 

Mounting devices (oxygen analyser, accelerometers), preparing RMR 

measurement 

12 

RMR measurement 10 

Finishing RMR measurement, changing room for indoor activities 2 

Drawing 5 

Break/transition 1 

Free choice activity indoors #1, such as building 3 

Break/transition 1 

Free choice activity indoors #2, such as playing with cars 3 

Preparing and dressing for outdoor activities 5 

Tag 3 

Free choice activity outdoors #1, such as tricycling 3 

Break/transition 1 

Free choice activity outdoors #2, such as climbing 3 

Break/transition 1 

Regular Walking 3 

Break 1 

Fast walking 3 

Break 1 

Jogging 3 

Undressing, demounting devices, say goodbye and return to group 

room/breakfast 

8 

Total 75 



Table 2 Participant characteristics 

 All (n=41) 

Age (years) 4.8 ± 0.8 (3.0, 6.3) 

Weight (kg) 20.5 ± 4.3 (12.8, 31.1) 

Height (cm) 115 ± 9 (96, 130) 

BMI (kg*m
-
²) 15.4 ± 2.1 (12.4, 22.3) 

REE (kJ*m
-1

) 2.3 ± 0.5 (1.4, 3.4) 

Note: 1 Data are displayed as mean ± standard deviation (min, max) 



 

Table 3 Energy expenditure per activity 

Activity Number of 

children (n) 

Energy expenditure 

(kJ*m
-1

) 

Ball throwing 1 11.2 

Building 29 5.4 ± 1.3 (3.3, 9.3) 

Playing with cars 17 6.6 ± 1.2 (4.6, 8.9) 

Tag 34 16.3 ± 4.6 (8.1, 27.8) 

Children's slide 1 11.2 

Climbing 24 11.6 ± 3.0 (7.4, 19.9) 

Playing with dolls 7 6.4 ± 1.1 (4.8, 8.2) 

Drawing 40 4.2 ± 0.9 (2.2, 6.2) 

Going upstairs 1 10.6 

Hide 19 6.6 ± 1.4 (3.6, 9.0) 

Hide (outside) 2 11.0 ± 3.2 (8.7, 13.2) 

Jogging 11 16.0 ± 3.9 (6.1, 21.7) 

Kitchen 1 5.0 

Layback 1 8.2 

RMR measurement (laying) 41 2.3 ± 0.5 (1.4, 3.4) 

Rocking car 1 5.4 

Rocking horse 1 4.9 

Playing soccer 3 10.9 ± 5.0 (5.9, 15.8) 

Swinging 7 8.0 ± 3.2 (5.3, 12.7) 

Playing tennis 2 10.9 ± 4.2 (7.9, 13.8) 

Trampoline 1 10.8 

Tricycle 24 13.4 ± 3.8 (5.5, 21.9) 

Regular walking 37 8.2 ± 2.4 (0.9, 14.3) 

Walking fast 30 12.4 ± 3.5 (5.5, 17.8) 

All 335 8.7 ± 5.2 (0.9, 27.8) 

Note: 2 Data are displayed as mean ± standard deviation (min, max) 



 

Table 4 Overview of energy expenditure prediction accuracy of the different models, 

accelerometers and wear positions 

Mean results (RMSE) 

Absolute energy expenditure (kJ/min) 

Algorithm GT3X left 

hip 

GT3X 

right hip 

activPAL GENEActiv 

right hip 

GENEActiv 

left wrist 

GENEActiv 

right wrist 

LM 2.84 

(0.94) 

2.91 

(0.95) 

2.94 

(0.91) 

2.89 (0.95) 2.83 (0.86) 2.85 (0.83) 

MLM 2.81 

(0.99) 

2.91 

(0.99) 

2.92 

(0.95) 

2.90 (0.98) 2.83 (0.89) 2.83 (0.87) 

RF 2.60 

(0.97) 

2.74 

(0.96) 

2.76 

(0.94) 

2.73 (1.00) 2.56 (0.83) 2.56 (0.83) 

ANN 2.78 

(1.01) 

2.86 

(0.95) 

3.08 

(1.00) 

2.83 (0.98) 2.72 (0.91) 2.74 (0.88) 

Relative energy expenditure (J/min/kg) 
 

Algorithm GT3X left 

hip 

GT3X 

right hip 

activPAL GENEActiv 

right hip 

GENEActiv 

left wrist 

GENEActiv 

right wrist 

LM 123.64 

(31.82) 

124.91 

(30.58) 

126.22 

(29.46) 

123.79 

(31.28) 

125.21 

(27.38) 

125.60 

(28.52) 

MLM 123.58 

(31.94) 

125.40 

(31.50) 

125.96 

(29.86) 

124.70 

(32.95) 

124.91 

(27.58) 

125.42 

(28.74) 

RF 112.32 

(28.40) 

115.56 

(27.35) 

115.61 

(27.93) 

112.57 

(28.83) 

108.64 

(26.33) 

109.34 

(26.98) 

ANN 116.89 

(28.41) 

121.51 

(29.57) 

125.98 

(31.50) 

118.04 

(29.80) 

114.01 

(27.88) 

115.91 

(28.55) 

Metabolic equivalents (METs) 

Algorithm GT3X left 

hip 

GT3X 

right hip 

activPAL GENEActiv 

right hip 

GENEActiv 

left wrist 

GENEActiv 

right wrist 

LM 1.67 

(0.41) 

1.70 

(0.39) 

1.69 

(0.38) 

1.68 (0.39) 1.70 (0.37) 1.69 (0.38) 

MLM 1.67 1.70 1.69 1.69 (0.42) 1.69 (0.38) 1.69 (0.38) 



(0.41) (0.40) (0.39) 

RF 1.52 

(0.38) 

1.56 

(0.36) 

1.56 

(0.38) 

1.53 (0.38) 1.47 (0.36) 1.48 (0.37) 

ANN 1.63 

(0.42) 

1.66 

(0.39) 

1.81 

(0.40) 

1.66 (0.43) 1.61 (0.44) 1.62 (0.40) 

LM: linear model. MLM: mixed linear model. RF: random forest. ANN: artificial neural 

network. RMSE: Root-mean-square error 

 

 

 


