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Understanding host–pathogen dynamics requires realistic consideration of trans-
mission events that, in the case of directly transmitted pathogens, result from con-
tacts between susceptible and infected individuals. The corresponding contact rates 
are usually heterogeneous due to variation in individual movement patterns and the 
underlying landscape structure. However, in epidemiological models, the roles that 
explicit host movements and landscape structure play in shaping contact rates are often 
overlooked.

We adapted an established agent-based model of classical swine fever (CSF) in wild 
boar Sus scrofa to investigate how explicit representation of landscape heterogeneity 
and host movement between social groups affects invasion and persistence probabili-
ties. We simulated individual movement both phenomenologically as a correlated 
random walk (CRW) and mechanistically by representing interactions of the moving 
individuals with the landscape and host population structure.

The effect of landscape structure on the probability of invasion success and disease 
persistence depended remarkably on the way host movement is simulated and the 
case fatality ratio associated with the pathogen strain. The persistence probabilities 
were generally low with CRW which ignores feedbacks to external factors. Although 
the basic reproduction number R0, a measure of the contagiousness of an infectious 
disease, was kept constant, these probabilities were up to eight times higher under 
mechanistic movement rules, especially in heterogeneous landscapes. The increased 
persistence emerged due to important feedbacks of the directed movement on the 
spatial variation of host density, contact rates and transmission events to distant areas.

Our findings underscore the importance of accounting for spatial context and 
group size structures in eco-epidemiological models. Our study highlights that the 
simulation of explicit, mechanistic movement behaviour can reverse predictions of 
disease persistence in comparison to phenomenological rules such as random walk 
approaches. This can have severe consequences when predicting the probability of dis-
ease persistence and assessing control measures to prevent outbreaks.
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Introduction

The ability of a disease to establish and persist in a host popula-
tion depends on sufficient contacts between susceptible hosts 
and the infectious source which can either be an infected indi-
vidual in the case of direct transmission or an environmental 
reservoir or intermediate vector of the pathogen. Contact rates 
among individuals are thus a key parameter for predicting  
the spread and persistence of directly transmitted infec-
tious diseases (Altizer et al. 2003, Craft 2015, Arthur et al. 
2017, Daversa et al. 2017). Even within species, contact rates 
exhibit remarkable heterogeneity due to individual variation 
in movement behaviour (Fraser  et  al. 2001, Morales  et  al. 
2010, Jeltsch et al. 2013) and due to modular organization of 
groups (Craft 2015, Sah et al. 2017). In concert with a spe-
cies’ motion and navigation capacity, internal factors such as 
sociability or behavioural decisions and external factors such 
as the abundance of resources, shelter, conspecifics or preda-
tors act as drivers of the movement decisions of individuals 
(Nathan  et  al. 2008). The emerging individual movement 
paths determine spatiotemporal heterogeneity in host den-
sity and contact rates, with potential consequences for the 
invasion success and the persistence of diseases (Hess  et  al. 
2002, Real and Biek 2007, McCallum 2008, Paull  et  al. 
2012, Craft 2015). Consequently, several recently published 
frameworks highlight the need to include mechanisms of the 
host’s movement ecology (Nathan et al. 2008) when analys-
ing and simulating dynamics of wildlife diseases (Riley et al. 
2015, Boulinier et al. 2016, Daversa et al. 2017, Fofana and 
Hurford 2017, Sih et al. 2018). Such a mechanistic approach 
would advance our understanding of how variation in host 
contact rates in interactions with the landscape heterogeneity  
affect the dynamics of pathogen transmission in a more  
realistic setup (McCallum 2008, Daversa et al. 2017, Fofana 
and Hurford 2017).

Several theoretical studies have investigated the effect of host 
population structure and contact rates on disease dynamics. 
However, most approaches model host movement implicitly 
assuming that the pathogen can spread to any susceptible host 
with constant rates globally, known as ‘homogeneous mixing’ 
(Anderson and May 1991, Grenfell et al. 1995), or depend-
ing on the distance from the infectious source (Sato  et  al. 
1994, Keeling  et  al. 2001). In models with implicit move-
ment, pathogen persistence has been found to be favoured by 
fragmentation of the population (Dye and Hasibeder 1986, 
Bolker and Grenfell 1995, Hess 1996, Lloyd and May 1996, 
Foley et al. 1999, Rozhnova et al. 2014), given a sufficiently 
large host population exceeding the ‘critical community size’ 
(Bartlett 1960, Keeling and Grenfell 1997) and a sufficient 
rate of pathogen exchange between patches (i.e. distant popu-
lations or groups) relative to the infectious period (Keeling 
and Rohani 2002, Cross  et  al. 2005). The assumptions of 
these models may be reasonable in the case that all individuals 
behave the same way but real systems rarely exhibit homoge-
neous contact rates and these differences could be critical for 
the dynamics and persistence of diseases (Bolker and Grenfell 

1995, Craft 2015, Sah et al. 2017). Furthermore, feedbacks 
of the underlying landscape on host movement and pathogen 
spread are often simplified as being homogeneous or divided 
in suitable patches and unsuitable matrix (Fig. 1).

Integrating individual movement patterns into epidemio-
logical models allows us to focus on bottom–up processes 
to understand how differences at the individual level such 
as movement behaviour affect higher-level processes, namely 
emerging disease dynamics, in a mechanistic way (Baiser et al. 
2013, Jeltsch et al. 2013, Radchuk et al. 2019a). In this con-
text, network models are flexible approaches to relax the 
assumption of homogeneous mixing and to account for dif-
ferences on the individual level that arise due to heterogene-
ity in behaviour, social organization and landscape structure 
(Bansal  et  al. 2007, Craft and Caillaud 2011, Ferrari  et  al. 
2011, Godfrey 2013, Jacoby and Freeman 2016). Network 
models summarize phenomenological movements and can 
be analysed with regard to network topologies that facili-
tate or impede the spread of a pathogen among patches that 
are either host individuals or habitat patches (Ferrari  et  al. 
2006, Fortuna et al. 2009, Craft et al. 2011, Sah et al. 2017). 
However, network approaches traditionally depict static 
edges, and connecting the temporal dynamics of real systems 
with network models is challenging (Ferrari et al. 2011), but 
first approaches of dynamic networks to capture the tempo-
ral dynamics of the spatial and social properties of the indi-
viduals are a promising new avenue (Jacoby and Freeman 
2016, Sih et al. 2018). Another option are spatially explicit 
agent-based models (ABMs) simulating individual move-
ment decisions and behaviour that are a means to capture the 
temporal and spatial variation (Grimm and Railsback 2005, 
Coulon et al. 2015, DeAngelis and Diaz 2019). Furthermore, 
ABMs allow the explicit simulation of barriers or low-quality  
habitat in the landscape that may prevent movement as well 
as contact rates and transmission events while hosts move 
through the landscape (Daversa  et  al. 2017). However, 
even though ABMs offer the opportunity to include host 
movement mechanistically, most epidemiological studies so 
far have used phenomenological approaches by imposing 
observed patterns, using random walk and correlated random  
walk approaches (Jeltsch  et  al. 1997, Nunn  et  al. 2014, 
Tracey et al. 2014, Belsare and Gompper 2015).

The effect of directed movement and spatial heteroge-
neity on host infection risk and disease persistence are not 
trivial to predict due to emerging variation of contact rates 
between patches. Segregation or clustering of high-quality  
patches may reduce the persistence probability due to 
decreased patch-to-patch contact rates in the first case, or 
favour persistence under conditions of high exchange rates 
as found in metapopulation models (Hess 1996, Grenfell 
and Harwood 1997, Hanski 1997). These effects could be 
further intensified by individual movement of host animals 
towards specific areas such as high quality patches in terms 
of resources, shelter or mates, which may either allow for 
recurrent infections to neighbouring patches sensu source–
sink dynamics or quarantine the infection in these areas  
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(Grenfell and Harwood 1997, Holt and Hochberg 2002, 
Paull et al. 2012, Faust et al. 2018).

Here, we modified an established agent-based model 
(Kramer-Schadt et al. 2009, Lange et al. 2012a, b) to investigate 
the effects of individual movement behaviour and landscape 

heterogeneity on disease dynamics, namely on rates of contact 
and transmission as well as the probability of invasion success 
and disease persistence. We simulated an economically impor-
tant livestock disease (classical swine fever, CSF) infecting a 
socially structured host, the wild boar Sus scrofa. In the previous 

Figure 1. Schematic representation of the agent-based model, possible approaches to simulate movement in epidemiological models and the 
analytical workflow. (a) Snapshot of the spatially explicit agent-based model with explicit host movement used in this study. The landscape 
represents 100 × 50 km (50 × 25 patches) of heterogeneous wild boar habitat. Colour intensity represents the habitat quality of each home 
range with consequences for the overall capacity. While grey coloured patches do not host infected individuals (i.e. only contain susceptible 
or immune individuals), orange coloured patches are currently hosting one or more infected individuals. The yellow patch in the upper row 
of the landscape indicates the release area of the pathogen. (b–d) Possible modelling approaches to simulate movement in epidemiological 
models: (b) Explicit movement as simulated in this study. For one infected boar we demonstrate that inter-patch movement is simulated 
explicitly (straight lines) and movement within the home range is assumed to be implicit (dashed lines). The ‘?’ and ‘!’ indicate possible 
transmission events to all individuals occupying the visited patches (yellow borders, ‘?’ = no transmission, ‘!’ = new infection). (c) Schematic 
representation of distance-based transmission (here depicted as ‘neighbourhood infection’ since the maximum distance of transmission is 
set to 1 patch) in a homogeneous landscape. Movement to neighbouring patches is assumed to be only temporary (i.e. individuals always 
return to their home range patch), hence only spread of the pathogen is modelled. This individual-based setup is comparable to metapopu-
lation approaches with distant-dependent transmission kernels. (d) Schematic representation of homogeneous mixing in a binary landscape 
(grey and orange = habitat, white = matrix) where all individuals are equally at risk to get infected while movement is often assumed to be 
implicit and only spread of the pathogen is modelled. This individual-based setup is comparable to classical metapopulation approaches.  
(e) Simulations were run for 624 weeks (= 12 years) with the pathogen being released in the second year (grey area) to allow the pathogen 
to spread for at least 10 years. We recorded the first and last week of each outbreak together with numbers of each health status over time. 
The dotted line indicates the first week of the exemplary outbreak simulation (movement rule: competition-driven movement, landscape 
scenario: small random clusters). (f ) For all 200 simulation runs per combination of movement rule (correlated random walk, habitat-
dependent movement and competition-driven movement) and landscape scenario (homogeneous and three levels of spatial heterogeneity), 
we recorded the first and last week of the outbreak, and classified the runs as either ‘non-persistent’ (less than 10 years since pathogen release; 
grey) or ‘persistent’ (more than 10 years; orange). Additionally, we investigated the proportion of persisting runs based on a 2.5-, 5- and 
7.5-year threshold (small dotted lines). (g) Based on this information, we calculated persistence probabilities using a 10-year threshold 
(black dotted line) as well as three shorter time periods (2.5-, 5- and 7.5-year thresholds, grey dotted lines).
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model versions infections were based on transmission prob-
abilities for individuals within and between groups (‘neigh-
bourhood infection’ with implicit host movement; Fig. 1). 
We extended the model to deal with age- and sex-dependent 
differences in movement behaviour and thus allowed for the 
emergence of individually differing contact probabilities as it 
is common in wild boar and many other social wildlife species 
(Pepin et al. 2016, Sah et al. 2017). To explore the interplay of 
movement behaviour and the underlying landscape heteroge-
neity, we ran simulations using four landscape scenarios with 
different spatial configurations of habitat quality representing 
local carrying capacities in combination with three types of 
assumed movement rules. The following types of movement 
were modelled: phenomenological description of movement 
(i.e. correlated random walks with a general tendency to con-
tinue in the same direction while ignoring external effects such 
as habitat quality) and mechanistic movement decisions related 
to the underlying landscape or conspecifics’ density.

We expected to find an effect of landscape structure  
per se on the probability of invasion success and disease per-
sistence. We predicted a lower probability of successful inva-
sions in heterogeneous landscapes due to the spatial variation 
in host density according to the theory of the ‘critical invasion 
threshold’ (Anderson and May 1991, Lloyd-Smith et al. 2005a, 
Keeling and Rohani 2008). Once the disease is established, 
homogeneity of patch quality in space should lead to relatively 
panmictic and fast dynamics, facilitating rapid face-out through 
exhaustion of the susceptible pool while intermediate levels of 
clustering might favour disease persistence due to asynchrony 
between different areas (Grenfell and Harwood 1997, Keeling 
and Grenfell 1997, Hagenaars et al. 2004). High levels of clus-
tering, however, should lead to rapid fade-outs and thus reduce 
persistence probabilities due to barrier effects and structural 
trapping (McCallum and Dobson 2002, McCallum 2008, 
Rees et al. 2011, Sah et al. 2017). Furthermore, we predicted 
higher chances of persistence when the explicit host movement 
is simulated as correlated random walks due to higher exchange 
of infectious agents since movement is independent of habi-
tat quality in comparison to mechanistic movement rules. 
However, as described above, due to complex feedbacks that 
may emerge from individual movement decisions, effects of 
directed host movement are difficult to predict and may be non-
linear and counterintuitive (Hess et al. 2002, Cross et al. 2005, 
White et al. 2018). In general, we expected habitat-dependent 
movement rules to increase negative landscape effects since 
directed movement to high-quality patches should increase spa-
tial heterogeneity of host densities, while competition-driven 
movement was expected to mask effects of landscape structure 
by equalizing local differences in host densities.

Methods

Model overview

The spatially explicit agent-based eco-epidemiological model 
is based on the study by Kramer-Schadt  et  al. (2009) and 

subsequent modifications by Lange et al. (2012a, b). In the 
original model transmission is based on nearest-neighbour 
group mixing processes, where infection pressure within and 
between neighbouring groups is based on constant transmis-
sion probabilities without movement of the host individu-
als. The modified version presented here assumes explicit  
phenomenological, fully imposed movement patterns and 
mechanistic movement based on individual decisions of 
hosts. Below we present essential parts of the model necessary 
for understanding model outcomes. The full model descrip-
tion following the overview, design concepts and details 
(‘ODD’) protocol (Grimm  et  al. 2006, 2010) is provided 
in the Supplementary material Appendix 1. The NetLogo 
model and the R code to analyse the simulation results are 
available on Zenodo (Scherer et al. 2019).

The model comprises two major components: a demo-
graphic host submodel and a virus submodel. Host individuals 
are characterised by sex, age in weeks, location, demographic 
status (residential, dispersing, ranging) and health status. The 
health status of the individuals is described by an SIR epide-
miological classification (susceptible, infected and recovered; 
Kermack and McKendrick 1927). The simulation is updated 
on a weekly basis which equals the approximate CSF incuba-
tion time (Artois et al. 2002).

Landscape structure
All processes take place on a rectangular grid where each 
cell represents an area of 4 km2 encompassing an average 
home range area of a wild boar group (Leaper  et  al. 1999, 
Podgórski  et  al. 2013, Fattebert  et  al. 2017). Each cell is 
characterised by a habitat quality value expressed as breeding 
capacity, denoting the highest possible number of breeding 
females and thus equalling the carrying capacity of the cell, 
or home ranges, respectively. We simulated landscapes repre-
senting 100 × 50 km (50 × 25 cells) and four types of land-
scape scenarios with increasing complexity of spatial structure 
(i.e. with decreasing aggregation and increasing edge density, 
fractality and Simpson’s diversity, Fig. 2, Supplementary 
material Appendix 1 Fig. A6): a homogeneous landscape with 
a uniform habitat quality of 4.5 and three landscapes with 
different levels of heterogeneity in the clustering of patches 
with the same habitat qualities (small and large random clus-
ters, and a purely random setup) and habitat qualities ranging 
from 0 to 9 (Fig. 2, Table 1). Two hundred unique landscape 
maps with an average habitat quality of 4.5 were generated 
with the R packages NLMR and landscapetools (Sciaini et al. 
2018), resulting in the reported density of five wild boars 
per km2 (Howells and Edwards-Jones 1997, Sodeikat and 
Pohlmeyer 2003, Melis et al. 2006). For each landscape sce-
nario, the same 200 maps have been reused for the different 
parameter combinations of movement rule and case fatality 
ratio to avoid pure stochastic effects of landscape generation.

Host movement
We explicitly modelled the inter-cell movement of adult  
male wild boars; movement of resident females and  
dependent offspring within their home ranges was neglected. 
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While adult female wild boars move mainly within their  
family group (staying strategy with negligible contacts between 
groups; Spitz and Janeau 1990, Pepin et al. 2016), adult males 
follow a ranging strategy and move solitarily (Morelle et al. 
2015). Individual movement distances were drawn from 
a truncated median Weibull distribution so that ranging 
males display mostly conventional (22 km per week) but also 
long-distance movement behaviour covering distances up to  
84 km per week (Podgórski et al. 2013, Morelle et al. 2015). 
We considered three different movement strategies to study 
their effects on disease dynamics. Movement was either mod-
elled as correlated random walk (CRW) or emerged from the 
individual’s decision to move towards cells with higher habi-
tat quality (habitat-dependent movement: HDM) or lower  

conspecific competition simulated as negative-density depen-
dence (competition-driven movement: CDM). Individuals 
performing a CRW do not take the underlying landscape 
structure into account, but exhibit a general tendency to con-
tinue in the same direction as the previous movement deci-
sion (Kareiva and Shigesada 1983, Codling et al. 2008). In 
contrast, individuals following rule HDM or CDM make 
mechanistic decisions related to the underlying landscape 
directly (HDM) or indirectly (CDM). While habitat qual-
ity is static and does not change with time, density of con-
specifics can be dynamic as a consequence of demographic  
processes, the movement rule and disease-induced mortal-
ity. The three movement strategies only differ in their way 
of deciding where to go each step (i.e. follow the previous  

Figure 2. Examples and landscape metrics of the landscape scenarios used in the simulation study. Landscape scenarios were ordered to 
represent gradients in different landscape characteristics such as aggregation index, edge density, fractality dimension and Simpson’s diver-
sity index. Note that only an exemplary snapshot is shown and the landscape maps used for the simulation did cover a grid of 50 × 25 cells.

Table 1. Variables and parameters that vary from the original model version of the agent-based model simulating classical swine fever in 
wild boar. Each of 60 combinations of movement rule (three levels), landscape scenario (four levels) and case fatality ratio M (five levels) 
was repeated 200 times, resulting in 12 000 runs in total. The same 200 landscape maps were used for each combination per landscape 
scenario to allow for comparability between movement strategies. For a detailed list of parameters used in the model see Supplementary 
material Appendix 1.

Name Values

(A) Variables 
 Movement rule (i) correlated random walk (CRW)

(ii) habitat-dependent movement (HDM)
(iii) competition-driven movement (CDM)

 Landscape scenario (Fig. 2) (a) homogeneous
(b) large clusters (p = 0.5)
(d) small clusters (p = 0.1)
(d) random

 Case fatality ratio M ϵ {0.1; 0.3; 0.5; 0.7; 0.9}
(B) Parameters
 Mean infectious period (weeks) μmean = 4
 Maximum infectious period (weeks) μmax = 40
 Transmission probability β = 0.022
 Pathogen release (week) U(53, 104)
 Mean movement distance (cells per week) Dmean = 12
 Maximum movement distance (cells per week) Dmax = 42
 Individual movement distance (cells per week) Di {1, Dmax} ~ Wei(26, 1.3)
 Tendency to move randomly ρ = 0.7
 Habitat quality (number of breeding females) z = 4.5 for landscape scenario (a),

z ϵ {0, 9} with z  = 4.5 for landscape scenarios (b–d)
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direction or choose cell with highest habitat quality or lowest  
competition), with 30% of their decisions being random to 
represent noise in movement decisions. In general, individuals  
were moving until the individuals’ weekly movement distance 
was reached or movement rules led to the decision to stay in 
the current cell (i.e. no surrounding cells classified as habitat 
for CRW, with same or higher habitat quality for HDM, or 
with same or lower density for CDM).

Pathogen transmission
The disease course is determined by the case fatality ratio 
M, the probability to become lethally infected or transient 
infected otherwise, and the infectious period μ of lethally 
infected hosts. M is age-specific with a lower probabil-
ity for adults (Ma = M2) and a higher probability for piglets 
(Mp = M0.5) in comparison to subadults (Ms = M) (Dahle 
and Liess 1992). The individual infectious period of lethally 
infected host is based on μ that is drawn from an exponen-
tial distribution with a mean of four weeks and a truncated 
maximum of 40 weeks. Transient infected hosts shed the 
pathogen for one week and gain lifelong immunity (Dahle 
and Liess 1992). Infection dynamics emerged from within-
group and on-the-move transmission and individual courses 
of infection. We verified our model and calibrated the trans-
mission probability by comparing emerging distributions of 
the basic reproduction number, R0 (estimated as the num-
ber of secondary infections caused by an infective agent 
in a completely susceptible population; Diekmann  et  al. 
1990) to those of the original model (Supplementary  
material Appendix 2). On average, an infected individual gen-
erated 1.6 new cases over the course of its infectious period 
(R0,CRW = 1.57, R0,HDM = 1.59 and R0,CDM = 1.63 compared to 
R0 = 1.59 for the original model with neighbourhood infec-
tion). Within family groups, the transmission probability and 
the number of infectious group members (excluding repro-
ductive males) determine the density-dependent infection 
pressure. For ranging males, individual per-step transmission 
probability is calculated as the transmission rate divided by 
the movement distance to account for the time an individual 
spends in each cell and may shed or catch the virus. If indi-
viduals stopped moving, the remaining per-step infections 
happened in the current cell.

Process scheduling
The temporal resolution equals the approximate CSF incuba-
tion time of one week (Artois et al. 2002). Each time step, 
the following procedures were executed in the given order: 
pathogen transmission, host ranging movement, natal host 
dispersal of males and females, host reproduction, host mor-
tality, host ageing and disease course. Natal dispersal of males 
and females was limited to week 17 and week 29 of the year, 
respectively, representing the typical dispersal time for each 
sex. Each simulation was run for 12 years (624 weeks) in 
total, with the virus being released in the second year (week 
53–104). The virus was introduced to a defined cell in the 
upper row with a habitat quality of 4.5 (Fig. 1). Per combina-
tion of movement rule (three levels: CRW, HDM and CDM) 

and landscape scenario (four levels: homogeneous, large  
clusters, small clusters and random), we ran 200 simulation 
runs. Furthermore, we varied the case fatality ratio to simulate 
five different levels of disease severity, ranging from a mostly 
transient (M = 0.1) to a highly lethal (M = 0.9) pathogen, result-
ing in a total of 12 000 runs (Table 1). Note that severity had 
no bearing on transmission since the transmission probabilities 
were simulated to be independent of the case fatality ratio.

Analysis

Disease persistence and outbreak duration
During each week, we recorded numbers of individuals with 
each health status. From this, we derived the duration of 
each disease outbreak, which was used to calculate persis-
tence probabilities. Disease persistence was estimated using 
a 10-year threshold, i.e. the disease was defined as persistent 
only in those simulation runs in which infected individuals 
were present 10 years after the pathogen was released to the 
naive population. This threshold is an arbitrary choice just 
like other viability thresholds, for example in population 
viability analyses (Grimm and Wissel 2004). It was based 
on previous simulation studies that estimated disease persis-
tence on similar timescales (Visser  et  al. 2009, Belsare and 
Gompper 2015, Lange et al. 2016). However, we note that 
in real-life situations, a pathogen may be classified as per-
sistent in a system after a much shorter outbreak duration. 
Thus, we additionally estimated disease persistence using a 
2.5-, 5- and 7.5-year threshold, respectively. Furthermore, we 
explored the outbreak duration measured as the weeks until 
the pathogen went extinct within the system for simulation 
runs in which the disease did not persist.

Landscape- and movement-related variables
To reveal effects of different spatial complexity and different 
movement strategies, we recorded for each time step 1) the 
variation in density of all individuals and ranging males per 
week across all cells, either occupied or unoccupied (i.e. unbi-
ased estimate of variance in number of individuals per cell), 2) 
the average realized movement distance as the mean number 
of unique cells visited by ranging males, 3) the contact rates 
between infected ranging males and susceptible individuals, 
grouped by the habitat quality of the cell, 4) the proportion 
of cells containing infected individuals, 5) the cumulative pro-
portion of affected cells (i.e. the proportion of cells containing 
infected individuals at any time in the entire run), as well as 
6) the number of transmissions within and between patches of 
the same habitat quality. To calculate these transmission rates, 
we first defined unique patches of cells of equal habitat quality 
that where adjacent to each other (Moore neighbourhood). 
We then measured within-patch transmission rates as the 
number of infections a moving individual caused within the 
patch it was infected in, while infections outside of this patch 
were used to calculate between-patch transmission rates. For 
each run, all measurements were summarized as mean over 
a time period of three months (13 weeks) starting from the 
week the pathogen was released.
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Results

Long- and short-term persistence

Probability of long-term persistence, estimated as the presence 
of infected individuals 10 years after the pathogen release, 
was considerably higher when movement was simulated as a 
mechanistic process based on the habitat quality (HDM) or the  
presence of conspecifics (CDM) instead of a phenomenological  
pattern of correlated movement steps (CRW; Fig. 3a). In gen-
eral, persistence probability was very low in homogeneous 
landscapes (probability of 0.09) compared to heterogeneous 
landscapes (0.21 or higher), with the highest probabilities 
arising in more complex landscapes (Fig. 3b). Especially in 
homogeneous landscapes persistence was very low in the case 
of CRW and HDM (0.05 and 0.04, respectively) compared 
to CDM (0.19). In heterogeneous landscapes, mechanistic 
movement strategies yielded a considerably higher propor-
tion of runs where the pathogen was able to persist for more 
than 10 years (0.21–0.4 for HDM and 0.33–0.37 for CDM) 
in comparison to CRW (0.05–0.08; Fig. 3c).

Compared to the results for the 10-year threshold we found 
similar patterns of disease persistence when evaluating persis-
tence probabilities based on a 5- and 7.5-year threshold (i.e. 
highest persistence probabilities for heterogeneous landscapes 
and mechanistic movement strategies, respectively, and low-
est persistence probabilities in homogeneous landscapes and 
when assuming CRW). However, results differed strongly 
for the 2.5-year threshold (Fig. 3, 4, Supplementary mate-
rial Appendix 1 Fig. A7). Probability of disease persistence 

for more than 2.5 years (afterwards termed probability of  
short-term persistence) was the highest in homogeneous 
landscapes for all movement strategies (Fig. 2, 4). The dif-
ference in probabilities of short- and long-term persistence 
was generally low when assuming CRW. Mechanistic move-
ment assumptions exhibited high probabilities of short-term 
persistence in homogeneous landscapes (0.86 for HDM and  
0.98 for CDM) that decreased in the case of non-homogeneous  
landscape scenarios. This effect was more pronounced in  
the case of HDM, while CDM led to considerably higher 
probabilities of short-term persistence across all landscape 
scenarios, especially in more complex landscapes (0.78 for 
small clusters and 0.87 for random).

Outbreak duration and pathogen extinction

We further explored the differences between movement  
strategies by visualizing the outbreak duration, i.e. the time 
the pathogen was present in the system before it went extinct 
(Fig. 4, Supplementary material Appendix 1 Fig. A8). In 
general, during the 10 years of outbreak simulation almost 
all pathogen extinctions happened within the first five years 
(always more than 89%). The mean extinction time of runs 
facing pathogen extinction within 10 years was slightly lower 
in heterogeneous compared to homogeneous landscapes 
(Fig. 4). The mean extinction time decreased considerably in 
the case of HDM when replacing the homogeneous land-
scape by structured landscapes, but only slightly in the case of 
CRW and CDM. When individuals followed the HDM rule 
in heterogeneous landscapes, the outbreak did not last longer 

Figure 3. Probability of disease persistence estimated as the proportion of simulation runs that lasted more than 2.5 (‘short-term persis-
tence’; empty + filled bars) and 10 years (‘long-term persistence’; filled bars) after the pathogen was released out of 200 simulation runs. 
Probabilities of persistence are grouped by (a) movement rule, (b) landscape scenario and (c) for each combination of those variables. Error 
bars show the 95% binomial confidence intervals.
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than a few months in around 25–30% of the simulation runs. 
This was rarely the case for all other setups (0.5–11.5%) that 
exhibited unimodal distributions of extinction time (Fig. 4,  
Supplementary material Appendix 1 Fig. A8) with the  
majority of extinction events happening after the initial, 
invasive spread of the pathogen that led to rather long 
periods of low spread within and between patches (Fig. 4, 
Supplementary material Appendix 1 Fig. A9).

Landscape- and movement-related variables

Introducing heterogeneity in habitat quality led to the 
expected variance of host densities (Fig. 5a), since habitat 
quality is defined as breeding capacity and thus ultimately 
limits the group size of a home range. Landscapes with high 
levels of aggregation of cells with the same habitat quality  
showed the highest variance in host densities but differences 
between the three heterogeneous landscapes were small. 
Spatial differences in densities of all individuals were most 
pronounced when assuming HDM. Depending on the 

movement rule, effects of landscape structure on the variance  
in densities of ranging males were non-existent (CRW), 
rather small (CDM), or exhibited clear trends towards 
high variance of ranging males in more complex landscapes 
(HDM). However, variances in the distribution of moving 
hosts were generally higher under CDM when compared to 
CRW but lower when compared to HDM. In accordance 
with the absence of any variance in densities of ranging 
males, the assumption of CRW did not exhibit any differ-
ences in the number of unique visited cells, irrespective of 
the landscape scenario (Fig. 6b). The number of visited cells 
was considerably lower when assuming movement behaviour 
as a mechanistic process. For HDM and CRW, the num-
ber of visited cells did not differ between pre-outbreak and  
outbreak period. However, in the case of CDM more cells 
were visited before the outbreak started than during the  
outbreak. This pattern was also visible in the variance in den-
sity of ranging males (Supplementary material Appendix 1  
Fig. A10), with higher variance emerging during the outbreak 
period compared to the burn-in phase.

Figure 4. Temporal dynamics of weekly within- and between-patch transmission rates (mean ± SD; orange and violet lines; left axis) for 
outbreaks that lasted for more than five years. We first defined unique patches of cells of equal habitat quality that where adjacent to each 
other (Moore neighbourhood). We then measured within-patch transmission rates as the number of infections a moving individual caused 
within the patch it was infected in; infections outside of this patch were used to calculate between-patch transmission rates. 200 simulation 
runs were conducted for each combination of movement rule (columns) and landscape scenario (row) allowing the pathogen to spread for 
a total of 520 weeks (10 years) after release. The histogram depicts the outbreak duration of all runs with an outbreak duration with less 
than 10 years, measured as weeks until the pathogen became extinct (grey bars and rugs; right axis). The vertical dashed line indicates  
the mean extinction time of runs that did not last 10 years. For each landscape scenario an exemplary scenario is shown on the right.  
The proportion of simulation runs lasting for more than 10 years is equal to the probability of persistence (cf. Fig. 3).
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Figure 5. Landscape- and movement-related variables as a function of movement rule (columns) and landscape scenario (x-axis), estimated 
from 200 model runs. For each run, measurements were summarized as mean over a time period of three months (13 weeks) starting from 
the week the pathogen was released. (a) Variance of host density, either for all individuals (turquoise) or ranging males only (blue). (b) Mean 
number of unique visited cells per week before the outbreak started (light blue) and during the outbreak (dark blue). (c) Number of contacts 
between infected ranging males and susceptible hosts for three groups of habitat quality (low: habitat quality > 0 and ≤ 3, light green; 
medium: > 3 and ≤ 6, medium green; high: > 7 and ≤ 9, dark green). The dashed line indicates the mean contact rates over all habitat 
qualities. (d) Proportion of habitat cells that contained at least one infected individual in the same time step. (e) Proportion of habitat cells 
that contained at least one infected individual during the simulated outbreak. (f ) Proportion of infections that were caused by ranging males 
either within the patch in which they got infected (yellow) or between different patches (purple). Since homogeneous landscapes consist of 
similar habitat quality, within- and between-patch transmission rates are obsolete for these setups.
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Infected ranging males were much more likely to have 
high numbers of contacts with susceptible hosts in high-
quality habitat (defined as the upper ⅓ of the habitat quality; 
Fig. 6c). At the same time, contact rates in medium- and low-
quality habitat (defined as middle and lower ⅓ of the habitat 
quality, respectively) were lower when assuming HDM than 
in the case of either CRW or CDM. The contact rates when 
assuming CDM differed between different levels of habitat 
quality but the effect was much less pronounced compared to 
the patterns found in HDM. As before, CRW in general only 
led to low variation in contact rates between different habitat 
qualities and landscape scenarios.

Movement behaviour had a strong effect on the propor-
tion of affected cells (Fig. 6d–e). The maximum proportion 
of simultaneously affected cells, estimated as patches that 
contain at least one infected individual, was higher in the 
case of CRW in comparison to CDM and especially HDM 
in heterogeneous landscapes. Similarly, CRM resulted in 
the highest proportions of cumulatively affected cells, esti-
mated as patches that contained at least one infected indi-
vidual during the simulated outbreak, but CDM yielded only 
slightly lower proportions. In the case of HDM in hetero-
geneous landscapes, a considerable number of simulations 
resulted in very low proportions of both simultaneously and 
cumulatively affected cells. This pattern is also visible in the  
temporal dynamics of the epidemic size: CRW led to dis-
tinct and high peaks of infected individuals and affected cells 
during the initial spread of the pathogen which was mostly 
pronounced in heterogeneous landscapes (Supplementary 

material Appendix 1 Fig. A11, A12). In contrast to the 
dynamics under the assumption of CRW, HDM and CDM 
led to considerably damped but also longer invasion periods 
in terms of the number of infected individuals.

The interplay of landscape structure and individual move-
ment strategies had a strong impact on the transmission rates 
within a patch (i.e. within the same group of cells of simi-
lar habitat quality that the ranging male was infected in) or 
between patches (Fig. 4, 6f ). While the general pattern of high 
within- and low between-patch transmission rates in highly 
clustered landscapes and vice versa was comparable, there 
were remarkable differences between movement strategies: 
the proportion of within-patch transmission on average never 
exceeded 50% when assuming CRW, but accounted for more 
than 39–90% of all transmissions when assuming HDM in 
heterogeneous landscapes. The same but less pronounced pat-
tern emerged when simulating host movement as CDM that 
led to a proportion of 14–75% of within-patch transmissions.

Variation in the case fatality ratio

Probabilities of persistence based on 5, 7.5 and 10 years 
exhibited the same pattern when varying the case fatal-
ity ratio (M; Supplementary material Appendix 1 Fig. A8). 
Long-term disease persistence was highly unlikely in the 
case of mostly transient (M = 0.1) or highly severe infections 
(M = 0.9; Fig. 5a). Short-term persistence (based on the 2.5-
year threshold) in homogeneous landscapes was very robust 
in the case M shifted towards more transient infections and in 

Figure 6. Probabilities of (a) long-term persistence (i.e. outbreaks that lasted longer than 10 years) and (b) short-term persistence (i.e. out-
breaks that lasted longer than s.5 years) with variation in the case fatality ratio M (ranging from mostly transient, M = 0.1, to mostly lethal 
infections, M = 0.9) per landscape scenario and movement rule (cf. Supplementary material Appendix 1 Fig. A8).



661

general when simulating host movement as CDM. Changes 
of M towards more lethal infections decreased the probability 
of short-term persistence especially for CRW and HDM.

Discussion

By extending an agent-based model mimicking an outbreak 
of an infectious agent in a social host, we demonstrated that 
including mechanistic movement decisions based on the 
external factors can reverse the findings of models based on 
phenomenological movement rules. We expected high rates of 
exchange, as in the case of correlated random walks (CRW), 
to increase disease persistence as predicted by other studies 
(Hess 1996, Jesse et al. 2008). Interestingly, CRW resulted in 
the lowest probabilities of both short- and long-term persis-
tence of the pathogen. On the contrary, the emerging varia-
tion in host density and contact rates in combination with 
movement arising from individual decisions allowed for per-
sistence probabilities that were up to eight times higher than 
under random conditions.

Movement decisions increase disease persistence in 
structured landscapes

In an important theoretical work on the effect of connectivity 
on disease persistence, Hess (1996) developed an epidemio-
logical metapopulation model where fractions of the suscep-
tible and infected compartments were transferred between 
populations at equal rates. He showed that the probability 
that a disease becomes persistent increases as the transfer rates 
among populations increase, especially in the case of highly 
contagious diseases of moderate severity. Our findings of a 
severe decrease in disease persistence when simulating move-
ment as CRW contrasts those of the study by Hess (1996). 
Although R0 and the host density were kept constant among 
simulations, the pathogen depletes the susceptible hosts too 
fast due to randomly chosen movement directions and long 
movement distances imposed by CRW. Contrary, the slower 
and more directed spread of the disease emerging in the case of 
mechanistic movement decisions ensures continuous sources 
of both susceptible and infectious hosts (Read and Keeling 
2003, Tildesley et al. 2010). In contrast to the homogeneous 
mixing assumption that all susceptible hosts have the same 
chance to get infected, in spatially explicit models such as ours 
the number of susceptible hosts in the focal and surround-
ing cells is of importance for transmission and persistence 
(Tildesley  et  al. 2010, White  et  al. 2018). Due to the fast 
spread resulting from CRWs, irrespective of the underlying 
landscape, a considerably higher proportion of cells is simulta-
neously infected. In consequence, the pool of susceptible hosts 
becomes quickly and simultaneously exploited across the 
entire spatial domain and the system becomes more prone to 
stochastic fade-outs due to the low density of susceptible indi-
viduals, which is corroborated by studies on oscillatory infec-
tion cycles (Dietz 1976, Lloyd and May 1996, Grenfell and 
Harwood 1997, Rohani et al. 1999, Hagenaars et al. 2004).

In contrast, we found that the probability of persistence 
was considerably higher in heterogeneous, non-binary land-
scapes when explicitly representing individual movement 
decisions. As a consequence of the mechanistic movement, 
host movements were more restricted to certain areas, thereby 
intensifying spatial variation in host density while causing 
remarkable spatial heterogeneity in contact and transmission 
rates. These differences to mean-field approaches result from 
the feedbacks of directed host movement in response to land-
scape structure on host density and contact rates (White et al. 
2018). The assumption of homogeneous mixing of hosts on a 
population-level in conventional compartmental metapopu-
lation models does not allow for the observed variation in 
contact rates (Read and Keeling 2003, Lloyd-Smith  et  al. 
2005b, Cross  et  al. 2013, VanderWaal and Ezenwa 2016). 
In contrast, the individual-based model presented in this 
study allows for emerging changes in contact rates and 
host density due to individual movements (Swingland and 
Greenwood 1983, Turchin 1991). Two related epidemio-
logical mechanisms may explain increased probabilities of 
persistence we have found under decision-based movement: 
‘disease hotspots’ (Real and Biek 2007, ‘transmission islands’; 
Paull et al. 2012) and ‘structural delay’ (‘structural trapping 
effect’; Sah et al. 2017).

The mechanisms behind disease persistence

Changes in host susceptibility, community structure and 
contact rates that generate disease hotspots in animal species 
are frequently associated with anthropogenic impacts such as 
eutrophication and fragmentation that alter habitat quality and 
landscape complexity (Patz et al. 2004, Johnson et al. 2010, 
Paull et al. 2012). The role of these ‘disease hotspots’, namely 
areas that contain high densities of (susceptible) hosts leading 
to heterogeneous contact and transmission rates in popula-
tions, has recently received much attention (Hosseini  et  al. 
2004, Cross  et  al. 2005, Real and Biek 2007, Paull  et  al. 
2012). In our model, high-quality cells served as hotspots, 
thereby increasing contact rates and restricting spread. While 
this effect was more pronounced and rather obvious in the 
case of habitat-dependent movement (HDM), we did not 
expect to find such a pattern when movement was repre-
sented as negatively density-dependent in the competition-
driven movement (CMD). However, while this movement 
rule yielded quite low variation in density during disease-free 
periods, the infection itself induced movement into areas that 
were recently affected. Thereby, these hotspot areas did not 
only exhibit the highest contact rates between infected and 
susceptible individuals, but also caused a ‘structural delay’ 
effect with only a few individuals leaving the infected area and 
thus delaying the spread to other cells (Sah et al. 2017).

Accounting for other factors in the modeling 
approach

Our model accounted for spatial variation and temporal 
changes in host density as well as phenomenological and 
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mechanistic movement rules to investigate disease dynamics,  
but several other key factors that might influence disease 
persistence such as seasonal changes in movement behaviour 
or the distribution of resources could be addressed in our 
framework as well. For example in mammals, adult males 
often exhibit higher levels of activity and space use, especially 
in the case of polyandrous males during the mating season 
(Greenwood 1980, Dobson 1982, King et al. 2013). While 
during this season movement decisions of males may be mostly 
driven by the presence of females, decisions may be driven by 
resources and shelter during other seasons of the year. In addi-
tion, seasonal or unpredictable short-term disturbances may 
influence the dynamics of the host population (Radchuk et al. 
2019b). Such rare events in wildlife could, however, be deci-
sive for explaining the system’s behaviour (Jeltsch et al. 1997, 
Lloyd-Smith et al. 2005b, Paull et al. 2012). Finally, here we 
considered a limited set of epidemiological and movement 
parameters based on the CSF-wild boar system for the sake 
of simplicity. Since one of the suggested main factors for 
increased chances of persistence of CSF in wild boar popula-
tions is the long-term change from a highly virulent CSF virus 
strain to a strain of moderate virulence (Mittelholzer  et  al. 
2000, Lange et al. 2012a, b), we have tested several case fatal-
ity ratios, highlighting that more moderate strains enable dis-
ease persistence in the presence of decision-based movement. 
However, changes in epidemiological or movement param-
eters, e.g. infectious period or movement distance, are likely 
to cause additional feedback on the observed disease dynam-
ics (Cross et al. 2005, Lloyd-Smith et al. 2005b, White et al. 
2018). To account for comparability among simulations, we 
fixed R0 and allowed for a sufficient long infectious period in 
relation to the movement rate, thus enabling the pathogen to 
invade the population successfully in absence of spatial hetero-
geneity (Lloyd-Smith et al. 2005a) since we were rather inter-
ested in long-term persistence than in examining the range of 
epidemiological parameters that cause fade-outs due to too 
low rates of spread. An alternative approach would be a fixed 
epidemic growth rate as a measure of the speed of epidemic 
growth that conveys more information about the time scale of 
disease spread as opposed to R0. However, the decision on the 
parameterization approach would be more important in the 
context of predictive modeling in combination with empirical 
data than in the case of our theoretical model. To account for 
the time scale and the stochasticity in infectious periods when 
estimating R0 we have run the calibration runs for longer than 
one timestep (one week).

Simulation of individual variation and host 
movement in disease models

Individual-based approaches are a means to relax the assump-
tion of homogeneous mixing among individuals within a 
population and also subgroups. When focussing on the indi-
vidual instead of the population, differences in behaviour that 
drive social interactions, individual movements and segregation 
into groups can be included (Grimm and Railsback 2005, 

Craft 2015). Ultimately, the social and spatial structuring 
limits interactions between individuals and thus transmis-
sion dynamics might differ within and between groups, 
forming a heterogeneous network of contacts and transmis-
sion (Newman 2002, Altizer et al. 2003, Craft and Caillaud 
2011, Ferrari et al. 2011, Sah et al. 2017). A major advan-
tage of a network-centric epidemiological view is the long 
history of networks in graph theory thereby providing many 
quantitative tools and mechanisms for the description and 
the analysis of network models (Keeling and Eames 2005, 
Ferrari et al. 2011). Network models have become very popu-
lar approaches to capture individual variation and have been 
used to explore the role of different factors such as group size, 
modularity and transmission rates on global disease dynam-
ics (Meyers  et  al. 2005, Craft  et  al. 2011, Sih  et  al. 2018, 
White et al. 2018). For example, Craft et al. (2011) charac-
terized the social contact network of Serengeti lions Panthera 
leo and investigated the contribution of nomadic males on 
the dynamics of the canine distemper virus (CDV). Similar 
to our model, groups of individuals were assigned to spa-
tial locations and nomadic males were moving among these 
groups. However, in contrast to our model they allowed for 
transmission between neighbouring and non-neighbouring 
groups. These occasional long-range connections were suf-
ficient enough to drive the epidemic while nomads did not 
qualitatively alter the network structure. This is in contrast to 
our approach where ranging host individuals are needed to 
connect spatially distinct groups and thus by definition form 
the network between groups. Another interesting network 
model focussing on host movement between family groups is 
the work by Davis et al. (2008) on plague in populations of 
great gerbils Rhombomys opimus. By modelling transport of 
infectious flea from burrow to burrow, they showed that, in 
contrast to conventional theory based on abundance thresh-
old, the local depletion of susceptibles arising from spatial 
restrictions in contacts among groups leads to so-called ‘per-
colation thresholds’. These spatially explicit thresholds of 
local host abundance lead, similarly to the structural delay 
effect, to spatio–temporal barriers and recurrent and occa-
sional spread to distinct groups. This pattern is supported by 
our findings of reduced euclidian movement distances. This 
structural delay slows the spread of the pathogen in space 
and thus allows for persistence of the disease within the  
host population.

In general, basically each model that simulates structured 
populations can be seen as a network: in the classical meta-
population model, nodes are formed by populations and 
any given node is connected with all other nodes, while lat-
tice-based models are regularly connected nodes on a grid 
(Colizza and Vespignani 2008, Keeling and Rohani 2008, 
Daversa et al. 2017). While network approaches traditionally 
depict static edge, recent development of dynamic network 
models are a promising avenue to enable the incorporation 
of spatiotemporal variation in contacts and external key fac-
tors causing these changes (Godfrey et al. 2013, Craft 2015, 
Jacoby and Freeman 2016, Sih  et  al. 2018). One example 
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are stochastic actor-oriented models (SAOMs), a class of  
individual-level networks that simulates transitions between 
discrete time points and that is increasingly applied in animal 
network studies thanks to recent increases of high-resolution 
data (Fisher et al. 2017). An alternative approach are agent-
based models (ABMs) that are flexible tools to capture the 
spatial and temporal dynamics found in social and trans-
mission networks. A major advantage is their mechanistic 
nature from which higher-level processes emerge (Grimm 
and Railsback 2005, Radchuk  et  al. 2019a, b). ABMs are 
thus excellent candidates to simulate the interplay of land-
scape structure and individual host movement, while incor-
porating variation in movement based on step length and 
turning angle or behavioural and environmental preferences 
(Grimm and Railsback 2005, Avgar et al. 2013, Coulon et al. 
2015, DeAngelis and Diaz 2019). In combination with basic 
assumptions on transmission rates that are a function of con-
tact duration (as in the model presented here) or frequency, 
individual movement and resulting transmission networks 
can be upscaled to spatiotemporal patterns on a population 
scale (Craft 2015, Dougherty et al. 2018b, Sih et al. 2018). 
Due to their simplicity, random walk approaches are the most 
widely used tool to model movement of animals in ecological 
studies (Codling et al. 2008) and have been used in several  
eco-epidemiological models (Jeltsch et al. 1997, Craft et al. 
2011, Belsare and Gompper 2015, Fofana and Hurford 
2017). The CRW approach extends the simple random walk 
model to more realistically account for short-term correla-
tions in the movement direction, thereby imitating observed 
movement patterns of area-restricted search and long-range 
movements between these areas (Lotka 1925, Patlak 1953, 
Kareiva and Shigesada 1983, Bovet and Benhamou 1988). 
However, classical random walk approaches are purely phe-
nomenological, thus imposing movement patterns similar to 
those that have been observed (Kareiva and Shigesada 1983, 
Codling et al. 2008). Hence, these models ignore any feed-
backs of the underlying landscape structure and other factors 
on the movement decision that may affect population-level 
characteristics such as density, spatial distribution and demog-
raphy of populations (Gaillard  et  al. 2010, Morales  et  al. 
2010) with important consequences for encounter and 
contact rates (Hutchinson and Waser 2007). One of the 
first epidemiological agent-based models that included host 
movement explicitly was a study by Jeltsch and colleagues 
(1997) that highlighted the importance of rare long-scale  
dispersal on the dynamics of rabies in a population of foxes 
performing random walks. Using different types of random 
walk approaches (simple, correlated or biased) in combina-
tion with a probability of leaving habitat cells, Tracey et al. 
(2014) simulated bobcat movements in binary landscapes 
with varying fragmentation levels to investigate transmis-
sion patterns of the feline immunodeficiency virus. Their 
model showed, similar to ours, that between-patch transmis-
sion rates were higher in more fragmented landscapes and 
that CRW yields the highest proportion of infectives. In our 
model, we have used two mechanistic movement rules, HDM 

and CDM, in addition to the phenomenological CRW rule. 
Movement decisions based on the in response to environ-
mental factors such as resources and shelter or to conspecifics 
is a typical driver of animal movement and used as a basis 
for movement analyses and simulation (Smouse et al. 2010, 
Doherty and Driscoll 2018). In our approach, HDM leads 
to crowding of animals in high-quality patches and thus can 
be seen as a positive density-dependent movement while we 
simulate CDM as negative density-dependent. Both move-
ment rules led to increase chances of pathogen persistence 
but only CDM exhibited high persistence probabilities in 
homogeneous landscapes. This is caused by the response of 
ranging hosts to conspecifics, leading to heterogeneous distri-
butions within the homogeneous landscape. Consequently, 
the spatial segmentation of the ranging individuals allows for 
structural delay effects in the absence of varying group sizes.

Using rather simple behavioural movement rules, our 
study supports and extends previous findings by showing 
that decision-based movement has the potential to reduce 
transmission rates between habitat patches due to decreases 
in movement distances and emerging spatial variation in the 
movement. Thereby, our findings underline the importance 
of mechanistic bottom–up processes caused by individual 
movement decisions (Nathan et al. 2008) in epidemiological 
models to investigate emerging contact rates on the population-
level. Recent developments in telemetry sensor technol-
ogy allow to track various animals of the same species with 
great detail (Nathan et al. 2008, Kays et al. 2015), thereby 
offering the ability to evaluate spatiotemporal changes in 
movement behaviour and to incorporate these insights into 
eco-epidemiological models using mechanistic movement 
rules (Dougherty et al. 2018b, Sih et al. 2018, Tardy et al. 
2018). For example, by combining empirical near-contin-
uous tracking data and behavioural rules, Dougherty  et  al. 
(2018a) investigated emerging contact rates between hosts 
and infectious reservoirs of Anthrax in a theoretical setup, 
showing that probabilities of contact were always greater than 
expected by random movement alone but lower than esti-
mated on a home range resolution. These findings together 
with our model study highlight the possible over- or underes-
timation of rates of contact, prevalence and ultimately disease 
persistence when simulating host movement implicitly or 
explicitly but using phenomenological movement patterns.

Conclusion

Our findings underscore the importance of accounting for spa-
tial context and group size structures in eco-epidemiological 
models. Our study highlights that the simulation of explicit, 
mechanistic movement behaviour can reverse predictions of 
disease persistence in comparison to phenomenological rules 
such as random walk approaches. The change in emerging 
contact rates can have severe consequences when predicting 
the probability of disease persistence and assessing control 
measures to prevent outbreaks. Thus, individual movement 
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should desirably be modelled as a mechanistic process based 
on external abiotic and/or biotic factors rather than as phe-
nomenological pattern to avoid over- or underestimation 
of contacts leading to potentially biased conclusions about 
the infectiousness and persistence probability of a pathogen 
(Hess et al. 2002, Cross et al. 2005, Dougherty et al. 2018a). 
Our relatively simple yet mechanistically-based movement 
depiction provides insights for understanding the emergence 
of contact heterogeneity and the effect of individual move-
ment decisions in interaction with landscape heterogeneity 
on pathogen spread. Furthermore, approaches such as ours 
can be easily implemented in existing and future epidemio-
logical ABMs and extended to simulate movement decisions 
on several criteria simultaneously or depending on the loca-
tion or season. The rather simple, theoretical rules in the 
study presented here highlight feedbacks of great importance 
for the spatial spread and the persistence of directly transmit-
ted diseases.
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