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Abstract
The inhomogeneous Poisson point process is a common model for time series of discrete, stochastic events. When an event 
from a point process is detected, it may trigger a random dead time in the detector, during which subsequent events will fail 
to be detected. It can be difficult or impossible to obtain a closed-form expression for the distribution of intervals between 
detections, even when the rate function (often referred to as the intensity function) and the dead-time distribution are given. 
Here, a method is presented to numerically compute the interval distribution expected for any arbitrary inhomogeneous 
Poisson point process modified by dead times drawn from any arbitrary distribution. In neuroscience, such a point process 
is used to model trains of neuronal spikes triggered by the detection of excitatory events while the neuron is not refractory. 
The assumptions of the method are that the process is observed over a finite observation window and that the detector is not 
in a dead state at the start of the observation window. Simulations are used to verify the method for several example point 
processes. The method should be useful for modeling and understanding the relationships between the rate functions and 
interval distributions of the event and detection processes, and how these relationships depend on the dead-time distribution.

Keywords Poisson point process · Inhomogeneous process · Random dead time · Interval distribution · Numerical method · 
Simulation

1 Introduction

The inhomogeneous Poisson point process is commonly 
used to model time series of discrete, stochastic events. It 
is applied to diverse phenomena, such as in the fields of 
neuroscience (e.g., Siebert 1970; Srulovicz and Goldstein 
1983; Brown et al. 1998; Liu et al. 2001; Amarasingham 
et al. 2006), optical communications (e.g., Vannucci and 
Teich 1978; Drost et al. 2015; Verma and Drost 2017), and 
particle physics (e.g., Müller 1981b). An inhomogeneous 
Poisson point process has a time-varying rate and generates 
a sequence of events that occur at random times (Snyder 
1975; Cox and Isham 1980). In the ideal case, all of the 
events can be observed using a suitable detector. In reality, a 

subset of events often fails to be observed due to a dead time 
in the detector (Müller 1981a; Grupen and Shwartz 2008; 
Picinbono 2009). One must therefore distinguish between 
two point processes: one of which describes the “events” 
themselves and the other of which describes the “detections” 
(i.e., the subset of events that is detected). An example from 
biology is the firing of spikes (i.e., action potentials) by a 
postsynaptic neuron in response to the release of excitatory 
neurotransmitter by a presynaptic neuron (with the further 
simplifying assumption that each neurotransmitter release 
event triggers a spike unless the postsynaptic neuron is in 
a dead state): the event process corresponds to the times 
at which neurotransmitter is released by the presynaptic 
neuron, the detection process corresponds to the times at 
which the released neurotransmitter triggers spikes in the 
postsynaptic neuron, and the dead time arises from a physi-
ological property of neurons, known as the refractory period, 
that prevents spikes from being generated too soon after the 
previous spike (Hodgkin and Huxley 1952). An example 
from physics is the counting of photons by a sensor: the 
event process corresponds to the times at which photons 
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arrive at the sensor, the detection process corresponds to the 
times at which the sensor detects photons, and the dead time 
arises from a property of the sensor that prevents photons 
from being detected if they arrive too soon after the previous 
detection. For simplicity, it is often assumed that all dead 
times in a given process have the same fixed duration (e.g., 
Müller 1981a; Teich 1985; Teich and Khanna 1985; Picin-
bono 2009), but some processes are better described by dead 
times with random durations drawn from a fixed distribu-
tion (e.g., Teich et al. 1978; Müller 1981a; Young and Barta 
1986; Deger et al. 2010; Peterson and Heil 2018). A distinc-
tion is made between “paralyzable” and “nonparalyzable” 
detectors (Müller 1981a). With a paralyzable detector, an 
event that occurs during a dead time causes the dead time to 
be prolonged. With a nonparalyzable detector, an event that 
occurs during a dead time simply fails to be detected, but the 
dead time is not prolonged. Only the nonparalyzable case, 
as would apply to neurons, is considered here. Although a 
detection is synonymous with a spike in the context of a 
neuronal spike train, the more general term “detection” is 
used here to emphasize the broader applicability of the work.

Figure 1 demonstrates how an inhomogeneous event 
process can be modified by random dead times to yield a 
detection process. Figure 1a shows the time-varying event 
rate that defines the process. This rate function (also known 
as the intensity function) determines the probability of an 
event occurring at each time point in the observation win-
dow. Figure 1b shows stochastic event times in such a pro-
cess. Figure 1c shows random dead times and indicates the 
subset of events (marked by “x”) that fall into each dead time 
and are therefore not detected. For illustrative purposes, the 
dead times are relatively long so that many events fail to be 
detected. Figure 1d shows all events that do not fall into a 
dead time and are therefore detected. Each detection trig-
gers the start of a new random dead time. Figure 1e shows 
the first-order intervals between detections. The statisti-
cal properties of point processes are often investigated by 
computing the distributions of such intervals (e.g., Johnson 
1978; Wilbur and Rinzel 1983; Gummer 1991; Shcherbakov 
et al. 2005; Kroó et al. 2007; Nawrot et al. 2008; Arkani and 

Raisali 2015; Pommé et al. 2015). However, except in very 
specific cases, typically involving a homogeneous Poisson 
point process or other simple renewal processes, it is difficult 
or impossible to obtain a closed-form expression to describe 
the interval distribution (Picinbono 2009).

Here, a numerical method is presented for computing the 
interval distribution expected for any arbitrary inhomoge-
neous Poisson point process modified by dead times drawn 
from any arbitrary distribution. The interval distributions 
obtained with this method are intended to be analogous to 
distributions computed from experimental data. Because 
experimental data are collected over a finite observation 
window (or several repetitions of a finite window), empirical 
interval distributions are distorted by the fact that an inter-
val between detections cannot exceed the time remaining in 
the observation window and therefore cannot be arbitrarily 
long. This distortion effect is known as right censoring and 
leads to an overrepresentation of short intervals and under-
representation of long intervals (e.g., Wiener 2003; Naw-
rot et al. 2008). Nonetheless, to maintain equivalence with 
experimentally obtained interval distributions, the numerical 
method must also reproduce the right censoring caused by 
the finite observation window. The numerical method pre-
sented here does this and is therefore applicable to a variety 
of experimentally observed phenomena in several fields of 
study.

2  Methods

The numerical method presented below was implemented 
in MATLAB R2019b and is publicly available in an online 
code repository (Peterson 2020). The method has been 
divided into several algorithms, with the goal of present-
ing each algorithm as straightforwardly as possible without 
regard for computational demand. Those algorithms found 
to be computationally demanding were then reimplemented 
using more optimized but less comprehensible MATLAB 
code. One particularly demanding computation (Eq. 8) was 
reimplemented using C code and compiled to a MATLAB 

Events

Dead times

Detections

Rate

Intervals

x x x x x x x x x x x x x x

a

b

c

d

e

Fig. 1  An inhomogeneous Poisson point process  modified by ran-
dom dead times. a Time-varying event rate of the point process. b 
Sequence of stochastic events generated by the process. c Random 

dead times, with each undetected event marked by an “x.” d Sequence 
of stochastic detections. e First-order intervals between detections
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MEX file to enable faster execution. All implementations of 
each algorithm are included in the online repository, along 
with a demonstration of their equivalence.

The following notations and conventions are used 
throughout:

1. The observation window of the point process spans the 
interval from tmin to tmax and is divided into bins of width 
Δt. Each bin is referenced by the time point at its right 
edge, denoted ti, where i is the index of the bin within 
the observation window. For an observation window 
starting at tmin = 0 s, the time point marking the first bin 
is t1 = Δt.

2. Durations in the dead-time distribution are denoted dj, 
where j is the index of a bin within the distribution. For 
the numerical method presented here, the shortest dura-
tion that needs to be considered is d1 = Δt.

3. Waiting times in the forward recurrence distributions 
or intervals in the interval distributions are denoted wk, 
where k is the index of a bin within the distribution. 
For the numerical method presented here, the shortest 
waiting time or interval that needs to be considered is 
w1 = Δt.

4. For simplicity, the bin indices i, j, and k are omitted from 
the figures, captions, and occasionally elsewhere.

Before describing each step of the numerical method 
below, it is necessary to define several prerequisite func-
tions. For clarity, all prerequisites and algorithm steps are 
demonstrated using one example point process of events and 
one example dead-time distribution.

2.1  Prerequisite 1: The rate (or probability) function 
of the detection process

To compute the interval distribution expected for an inho-
mogeneous Poisson point process modified by random dead 
times, it is necessary to know the rate of the detection pro-
cess over the observation window (i.e., the rate obtained 
from experimental measurements). The numerical method 
presented here will work for any arbitrary rate function. Fig-
ure 2 shows the example rate Rdetection (in detections/s) of the 
detection process used to demonstrate the method. Here, 
the observation window is 5 ms long and the time step is 
Δt = 0.1 ms. Note that multiplying the rate function by Δt (in 
seconds) will convert it to an equivalent probability function 
pdetection, which is also shown (right axis).

2.2  Prerequisite 2: The distribution of dead times

To compute the interval distribution expected for an inho-
mogeneous Poisson point process modified by random 

dead times, it is also necessary to know the distribution 
from which the dead times are drawn. The numerical 
method presented here will work for any arbitrary distri-
bution, as long as the random dead times are independ-
ent and drawn from the same distribution. Throughout the 
demonstrations below, the dead time is a random variable 
ddead equal to the sum of a fixed duration dfixed and a ran-
dom duration drand drawn from the geometric distribution 
with a mean of μrand. This is the discrete equivalent of a 
continuous distribution of dead times consisting of a fixed 
portion and a random portion drawn from the exponential 
distribution, such as was used by Young and Barta (1986) 
and Peterson and Heil (2018). The cumulative distribution 
function (CDF) for ddead (i.e., the probability that ddead is 
shorter than or equal to duration dj) is given by

This distribution is equivalent to the cumulative geo-
metric distribution G(k) = 1 − (1 − p)k (with success prob-
ability p and trial k ∈ {1, 2, 3,…}) but is parameterized 
in terms of time and is delayed by dfixed. Figure 3a shows 
the CDF for the example dead-time distribution (with 
dfixed = 0.5 ms and μrand = 0.5 ms). The survivor function 
for ddead (i.e., the probability that ddead is longer than dura-
tion dj) is given by the complement of the CDF,

Figure 3b shows the survivor function for the example 
dead-time distribution.
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Fig. 2  Example inhomogeneous detection rate over an observation 
window with tmin = 0 ms, tmax = 5 ms, and Δt = 0.1 ms. The rate can be 
scaled to yield detection probability pdetection (right axis)
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The probability mass function (PMF) for ddead (i.e., the 
probability that ddead is equal to duration dj) is given by

Figure 3c shows the PMF for the example dead-time dis-
tribution. Note that, as the time step decreases toward 0 ms, 
the PMF approaches the continuous probability density 
function (PDF) for a dead time having a random portion 
drawn from the exponential distribution (not shown).

With the rate of the detection process and the dead-time 
distribution specified, it is now possible to proceed to the 
first step in the numerical method.

2.3  Step 1: Computing the rate (or probability) 
function of the event process

For the numerical method presented here, it is necessary 
to know the probability pevent of an event at each time point 
in the observation window. If the dead-time distribution is 
known, then it is possible to compute pevent from pdetection. 
This computation requires knowing the probability pdead that 
the detector is in a dead state at each time point in the obser-
vation window, given by

where Sdead(d) is the survivor function for the dead times 
(i.e., the probability that ddead is longer than duration 
d), th = h⋅Δt is a time point of a bin preceding bin i, and 
di-h = (i−h)⋅Δt is a dead-time duration. For simplicity, the 
process is assumed to be free from dead-time effects at the 
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first time point in the observation window. For each subse-
quent time point ti, the value of pdead(ti) can be obtained from 
the probability pdetection of a detection at each previous time 
point th and the probability Sdead(di-h) that the dead time fol-
lowing each previous detection would extend through time 
point ti. More precisely, the contribution of a previous time 
point th to pdead at each subsequent time point ti is given by 
the joint probability pdetection(th)·Sdead(di-h). Figure 4a shows 
how each time point in the example process (marked by a 
symbol) contributes to pdead at all later time points (corre-
sponding gray line). The summation of the joint probabilities 
in Eq. 4 is equivalent to the binwise sum of the individual 
joint probability functions in Fig. 4a. Figure 4b shows the 
resultant pdead(ti) computed for the example process. Note 
that Eq. 4 is nothing other than the convolution of pdetection 
and Sdead and could be replaced by a more efficient algorithm 
such as convolution based on the fast Fourier transform.

Recall that two conditions must be met for a detection to 
occur: an event must occur, and the detector must not be in a 
dead state. The detection probability pdetection(ti) is therefore 
given by the joint probability

Equation 5 can be rearranged to obtain the probabil-
ity pevent of an event at each time point in the observation 
window,

Figure 4c shows pevent(ti) computed for the example pro-
cess. It is higher than pdetection(ti) (Fig. 2) at all time points 
except the first one. At the first point, pevent and pdetection are 
identical because it is assumed that the detector is not in a 
dead state at the start of the observation window (i.e., it is 
assumed that pdead(t1) = 0). Note that Eq. 6 is undefined in 
the unlikely case that pdead(ti) = 1, which would occur only 
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Fig. 3  Example dead-time distribution, where ddead is the random variable of dead times. a The CDF for ddead, given by Eq. 1. b The survivor 
function for ddead, given by Eq. 2. c The PMF for ddead, given by Eq. 3. For all three functions, dfixed = 0.5 ms, μrand = 0.5 ms, and Δt = 0.1 ms
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when ti falls into the fixed portion of a dead time following 
a time point for which a detection is guaranteed to occur 
(i.e., for which pdetection = 1). In such a case, pdetection(ti) = 0 
regardless of the value of pevent(ti), and the event probability 
would therefore be unknowable and unrecoverable.

Note that if pevent were known, rather than pdetection, then 
pdead and pdetection could be computed using Eqs. 4 and 5. For 
all time points ti following the initial point, the computation 
of pdead (Eq. 4) depends on the value of pdetection from all previ-
ous time points th, whereas the computation of pdetection (Eq. 5) 
depends on pdead from the current time point ti. This interde-
pendence of pdead and pdetection requires that both values be 
computed at a given time point before proceeding to the next 
point. For the numerical method presented here, it is necessary 
to know both pevent and pdetection, no matter which of the two 
was known initially.

2.4  Step 2: Computing forward recurrence 
distributions for events

The numerical method presented here makes heavy use of 
forward recurrence distributions. The distribution of forward 
recurrence times, fevent(ti,wk), specifies the probability that, at 
time point ti, the waiting time (or recurrence interval) to the 
next event is equal to wk. More precisely, the probability that 
the next event will occur with a waiting time of wk equals 
the joint probability that there is an event at time ti + wk and 
that there are no events between times ti and ti + wk. At time 
point ti in the observation window, the forward recurrence 
probability fevent that the waiting time to the next event is 
equal to wk is given by

(7)
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Here, for each time point ti, the product given by the ∏ 
notation computes the survivor function of the event process 
over the waiting times wk. Figure 5 shows selected forward 
recurrence distributions computed for the example process 
in Fig. 2. Figure 5a shows the forward recurrence distri-
bution fevent computed for the first time point (t1 = 0.1 ms), 
Fig.  5b shows fevent computed for the tenth time point 
(t10 = 1 ms), and Fig. 5c shows fevent computed for the twen-
tieth time point (t20 = 2 ms). For each recurrence distribution, 
potential waiting times range from as short as a single bin 
(w1 = Δt) to as long as the total number of bins remaining in 
the observation window (wmax = tmax − ti). Recurrence prob-
abilities are not needed for waiting times that would extend 
the process beyond the edge of the observation window and 
are omitted; each distribution shown is therefore incom-
plete because the sum of its probabilities will be less than 
1. For each recurrence distribution in Fig. 5, the upper time 
axis shows the corresponding time within the observation 
window. The forward recurrence distribution in Fig. 5a is 
one bin shorter than the observation window, with this edge 
marked by the gray shading beginning at w = 4.9 ms (i.e., 
t = 5 ms on the upper axis). As ti increases, the correspond-
ing forward recurrence distribution becomes increasingly 
incomplete. Although results are shown for only three exam-
ple time points, the method requires fevent to be computed for 
all time points in the observation window except for the final 
point (there is no recurrence possible after the final point, so 
there is no need to compute its recurrence distribution here). 
Note that when the event rate is periodic, as in the example 
(Fig. 4c), the distributions of forward recurrence times to the 
next event are identical for any two points separated by an 
integer number of periods, except that the distribution for the 
later point is more incomplete. This means that, for periodic 
event rates, the forward recurrence distributions only need to 
be computed for the points within the first cycle in the obser-
vation window; they can then be duplicated (incompletely) 
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Fig. 4  Computing the event rate. a Each time point (marked by sym-
bols) contributes to the probability pdead of the detector being in a 
dead state during all time points that follow. The contribution of each 
time point (gray lines) is given by the dead-time survivor function 
Sdead (Fig. 3b) scaled by probability pdetection of a detection at the pre-
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the individual contributions in a. c The event probability pevent (right 
axis) computed with Eq. 6, which can be scaled to yield the event rate 
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to obtain corresponding distributions for the points in each 
subsequent cycle. For aperiodic event rates, the forward 
recurrence distributions must be computed for all points in 
the observation window.

2.5  Step 3: Computing forward recurrence 
distributions for detections

Due to the random dead times in the detection process, 
the distribution of forward recurrence times to the next 
detection cannot be computed as straightforwardly as the 
distribution of forward recurrence times to the next event. 
In the method presented here, recurrence times to the next 
detection after time ti are computed under the assumption 
that a detection has occurred at time ti. Note that, with 
the assumption of a detection at ti, the forward recurrence 
times actually represent intervals (unlike forward recur-
rence times in the event process, for which there was no 
assumption of an event at time ti). Assuming a detection 
at time ti, the distribution of forward recurrence times to 
the next detection can be computed by considering the 
effect of each possible dead-time duration. If the dead time 
following a detection at ti ends after duration dj (i.e., at 
time ti+j = ti + dj), two facts are apparent about the distri-
bution of forward recurrence times to the next detection, 
fdetection(ti,wk). First, for any waiting time wk shorter than 
dj, the recurrence probability fdetection = 0. Second, for any 
waiting time wk longer than or equal to dj, the recurrence 
probability fdetection must follow the time course of fevent 
(Eq. 7) computed for time point ti+j (i.e., for the first point 
in the observation window free from the effects of the 
dead time). More specifically, the joint probability that a 
detection at time ti is followed by a dead time with dura-
tion dj (i.e., ending at time ti+j) and that the next detec-
tion occurs after waiting time wk following the detection 

is given by gdead(dj)·fevent(ti+j,wk). For each time point in 
the observation window, such a joint probability function 
is computed over all remaining bins. For time point ti, the 
forward recurrence probability fdetection is obtained by sum-
ming the respective contributions from each of the joint 
probability functions,

Here, wk is the waiting time following a detection at 
time ti and gdead(dj) is the probability that the dead time 
ddead has duration dj (Eq. 3 and Fig. 3c). Figure 6 shows 
selected results for the example process. Figure 6a shows 
all joint probability functions contributing to the forward 
recurrence distribution for the first time point (t1 = 0.1 ms), 
each of which originates at a time point marked by a sym-
bol. Figure 6b shows the corresponding fdetection, equiva-
lent to the binwise sum of all functions in Fig. 6a (note 
that the vertical axes differ in scaling). Figure 6c, d shows 
the contributing joint probability functions and fdetection 
for the tenth time point (t10 = 1 ms), and Fig. 6e, f shows 
the contributing joint probability functions and fdetection 
for the twentieth time point (t20 = 2 ms). Although results 
are shown for only three example time points, the method 
requires fdetection to be computed for all time points in the 
observation window except for the final point (there is 
no recurrence possible after the final point, so there is no 
need to compute its recurrence distribution here). Note 
that when the event rate is periodic, as in the example 
(Fig. 4c), the forward recurrence distributions only need 
to be computed for the points within the first cycle in the 
observation window and can then be duplicated (incom-
pletely) to obtain corresponding distributions for the 
points in each subsequent cycle.
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puted with Eq. 7. The top axis in each panel shows the time relative 

to the 5-ms observation window. Gray shading marks the region 
missing from each distribution (i.e., the region that would extend 
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2.6  Step 4: Computing the interval distributions 
for the event process and for the detection 
process

It is now possible to compute the distribution of interevent 
intervals (IEIs) and the distribution of interdetection inter-
vals (IDIs). The former requires knowing pevent(ti) (Eq. 6 and 
Fig. 4c) and the distribution of forward recurrence times to 
the next event for each time point in the observation window, 
fevent(ti,wk) (Eq. 7 and Fig. 5). The latter requires knowing 
pdetection(ti) (Eq. 5 and Fig. 2) and the distribution of forward 
recurrence times to the next detection for each time point in 
the observation window, fdetection(ti,wk) (Eq. 8 and Fig. 6). For 
an observation window having m time points, the probability 
pIEI of observing an IEI with duration wk is given by

(9)pIEI
�
wk

�
=

∑m−1

i=1
pevent

�
ti
�
⋅ fevent

�
ti,wk

�
nIEIs

Here, nIEIs = nevents − 1 + pzero is the expected number of 
IEIs per observation window, with nevents being the expected 
number of events per observation window and pzero being 
the probability that an observation window contains zero 
events. Note that if every observation window were guar-
anteed to contain at least one event, then the expected 
number of IEIs would simply be nIEIs = nevents − 1. How-
ever, observation windows containing zero events typi-
cally can occur and will yield zero IEIs rather than zero 
minus one IEIs, such that some portion of the 1 which 
was subtracted must be added back. This portion is equal 
to the probability that an observation window contains 
zero events. Here, nevents =

(
tmax − tmin

)
⋅

(
p̄event∕Δt

)
 and 

pzero =
∏m

i=1

�
1 − pevent

�
ti
��

 , with tmax − tmin being the dura-
tion of the observation window (in seconds), p̄event being the 
mean event probability in the observation window, and Δt 
being the time step (in seconds). Note that if pevent is a row 
vector with column index i and fevent is a matrix with row 
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Fig. 6  Example forward recurrence distributions, fdetection(t,w), show-
ing the probability that, given a detection at time point t in the pro-
cess, the waiting time to the next detection will equal w. a Contri-
butions to fdetection following a detection at time t1 = 0.1  ms. Each 
possible waiting time (marked by symbols) contributes to fdetection for 
all time points that follow. The contribution of each waiting time w 
(gray lines) is given by the portion of fevent (Fig.  5a) over the inter-
val [w, wmax], scaled by the probability gdead that the dead time has 
duration d = w (Fig. 3c). b The overall fdetection function for t1 = 0.1 ms, 

computed with Eq. 8, is equivalent to the binwise sum of all individ-
ual contributions in a. c Contributions to fdetection following a detec-
tion at time t10 = 1 ms. d The overall fdetection function for t10 = 1 ms. 
e Contributions to fdetection following a detection at time t20 = 2 ms. f 
The overall fdetection function for t20 = 2 ms. The top axis in each panel 
shows the time relative to the 5-ms observation window. Gray shad-
ing marks the region missing from each distribution (i.e., the region 
that would extend beyond the edge of the observation window). Each 
distribution is therefore incomplete
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index i and column index k, then pIEI in Eq. 9 is given by the 
matrix product of pevent and fevent, normalized by nIEIs.

The corresponding probability pIDI of observing an IDI 
with duration wk is given by

Here, nIDIs = ndetections  −  1 + pzero is the expected 
number of IDIs per observation window, with 
ndetections =

(
tmax − tmin

)
⋅

(
p̄detection∕Δt

)
 . The assumption that 

the detector is not in a dead state at the start of the obser-
vation window means the probability that an observation 
window contains zero detections is identical to the probabil-
ity that it contains zero events: pzero =

∏m

i=1

�
1 − pevent

�
ti
��

 . 
Note that if pdetection is a row vector with column index i and 
fdetection is a matrix with row index i and column index k, then 
pIDI in Eq. 10 is given by the matrix product of pdetection and 
fdetection, normalized by nIDIs.

The IEI distribution (in the form of a probability mass 
function as in Eq. 9) can be converted to rate RIEI (in IEIs/s), 
by dividing each probability by the time step Δt (in seconds):

Naturally, the IDI distribution (Eq. 10) can be scaled in 
the same way to yield rate RIDI (in IDIs/s):

Numerically computed IEI and IDI distributions are 
shown below for the example process and several additional 
processes. Note that, in the context of a neuronal spike train, 

(10)pIDI
�
wk

�
=

∑m−1

i=1
pdetection

�
ti
�
⋅ fdetection

�
ti,wk

�
nIDIs

(11)RIEI

(
wk

)
=

pIEI
(
wk

)
Δt

(12)RIDI

(
wk

)
=

pIDI
(
wk

)
Δt

the IDI distribution can be equated with the interspike inter-
val (ISI) distribution.

3  Results

The correctness of the method presented above will now 
be demonstrated for several point processes by comparing 
results obtained with the numerical method to results com-
puted from stochastic simulations. Although relatively high 
rates are used in these demonstrations, the numerical method 
yields equally precise results for low rates.

3.1  Inhomogeneous periodic Poisson point process 
modified by random dead times

For the example inhomogeneous Poisson point process 
above (see Methods and Figs. 2, 3, 4, 5, 6), the event rate 
Revent (in events/s) is given by a sinusoid passed through an 
exponential function,

where A is a scale factor (in events/s) that specifies the event 
rate when the instantaneous value of the sinusoid equals 
zero, B is a slope factor, f is the frequency (in Hertz) of the 
sinusoid, and ti is a time point (in seconds) in the observa-
tion window. For the example process in Fig. 4c, A = 600 
events/s, B = 1, and f = 400 Hz. Figure 7a shows an IEI distri-
bution computed from one million simulations of the event 
process (gray line) and the IEI distribution obtained using 
the numerical method (dashed black line). Figure 7b shows 
the corresponding IDI distributions of the detection process. 
For each interval distribution, the numerical result and the 
simulation result are in close agreement. The other functions 

(13)Revent

(
ti
)
= A ⋅ eB⋅sin(2�⋅f ⋅ti)
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Fig. 7  Comparison of numerical and simulation results for the exam-
ple inhomogeneous Poisson point process with a periodic event rate 
given by Eq.  13 with A = 600 events/s, B = 1, and f = 400  Hz. a IEI 
distributions computed from one million simulations (gray line) and 

from the numerical method (dashed black line). b IDI distributions 
computed from simulations and from the numerical method after tak-
ing the dead-time effects into consideration, with dfixed = 0.5 ms and 
μrand = 0.5 ms
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obtained using the numerical method (i.e., pdetection, pdead, 
fevent, and fdetection) are in correspondingly close agreement 
with the simulation results (not shown). These results show 
that the numerical method works correctly for the example 
process having a periodic event rate.

3.2  Inhomogeneous random‑walk Poisson point 
process modified by random dead times

Figure 8 shows results for an inhomogeneous Poisson point 
process whose event rate over the observation window is 
aperiodic and equal to one realization of a random walk. 
Figure 8a shows the particular random walk used for this 
example. The initial rate at time t1 was 600 events/s, and the 
rates at later time points were obtained by cumulatively sum-
ming random values from the uniform distribution on [− 75, 
75] events/s. Figure 8b shows the detection rate expected if 
this process were modified by dead times drawn from the 
example distribution (Fig. 3c). Figure 8c shows an IEI distri-
bution computed from one million simulations of the event 
process (gray line) and the IEI distribution obtained using 
the numerical method (dashed black line). Figure 8d shows 
the corresponding IDI distributions. The numerical results 
and the simulation results are in close agreement.

3.3  Homogeneous Poisson point process modified 
by random dead times

Figure 9 shows results for a homogeneous Poisson point 
process. Figure 9a shows its constant event rate of 1000 

events/s. Figure 9b shows the detection rate expected if 
the process were modified by dead times drawn from the 
example distribution (Fig. 3c). Figure 9c shows an IEI 
distribution computed from one million simulations of the 
event process (gray line) and the IEI distribution obtained 
using the numerical method (dashed black line). The IEIs 
in the homogeneous Poisson point process have a geo-
metric distribution (or, equivalently, an exponential dis-
tribution in the case of a continuous-time process). The 
inset in Fig. 9c shows the IEI distribution from the exam-
ple process plotted with a logarithmic rate axis. Due to 
right censoring caused by the finite observation window, 
this distribution deviates at longer IEIs from the straight 
line that would be expected for a geometric distribution. 
Figure 9d shows the corresponding IDI distributions. The 
numerical results and the simulation results are in close 
agreement. Although a closed-form expression is available 
for the continuous counterpart to this distribution (Young 
and Barta 1986; Heil et al. 2007; Neubauer et al. 2009), it 
has been derived assuming an infinitely long observation 
window which avoids the effects of right censoring. This 
closed-form solution would therefore account poorly for 
any experimentally obtained interval distributions that are 
strongly affected by right censoring. As the observation 
window becomes shorter and right censoring becomes 
more pronounced, the mean and standard deviation of the 
observed intervals decrease relative to those expected for 
the underlying process (Nawrot et al. 2008). Because a 
distribution computed with the numerical method pre-
sented here includes the effects of right censoring, it can 

Fig. 8  Comparison of numeri-
cal and simulation results for 
an inhomogeneous Poisson 
point process with an aperiodic 
event rate equal to one realiza-
tion of a random walk. a The 
particular random walk used for 
this example. b The expected 
detection rate after taking the 
dead-time effects into consid-
eration, with dfixed = 0.5 ms and 
μrand = 0.5 ms. c IEI distribu-
tions computed from one 
million simulations (gray line) 
of the same random walk shown 
in a, and from the numerical 
method (dashed black line). 
d IDI distributions computed 
from the simulations and from 
the numerical method
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be preferable to a distribution computed from a known 
closed-form expression.

Although a homogeneous event process (Fig. 9a) is in 
equilibrium, the detection process (Fig. 9b) that arises after 
applying random dead times is not. The nonequilibrium nature 
of the detection process manifests as a detection rate that ini-
tially equals the event rate but then decreases and settles into 
a lower steady-state rate. The higher detection rate at the start 
of the observation window results from the assumption that 
the detector is not initially in a dead state, such that the dis-
tribution of forward recurrence times to the first detection is 
identical to the distribution of forward recurrence times to the 
first event. The lower detection rate in the steady state results 
from the fact that, for all detections after the first one, dead-
time effects cause the probability mass in the distribution of 
forward recurrence times to the next detection to be shifted 
toward later times than in the corresponding distribution of 
forward recurrence times to the next event. For a homogene-
ous event process, the steady-state detection rate equals the 
inverse of the sum of the mean IEI and the mean dead time. 
This yields a steady-state rate of 526.3 detections/s for the 
example process (Fig. 9b), which has a mean IEI of (1−pevent)·(
Δt/pevent) = 0.9 ms and a mean dead time of dfixed + μrand = 1 ms.

4  Discussion

The numerical method presented here yields the expected 
distribution of intervals between detections of events in 
an inhomogeneous Poisson point process, assuming the 

detector is nonparalyzable and each detection is followed 
by a dead time drawn from a fixed probability distribution. 
There are, however, several limitations and considerations 
to keep in mind, as described below.

4.1  The method models the process in discrete time

Although point processes in nature operate in continuous 
time, numerical computation methods necessarily treat them 
as though that they operate in discrete time. For a stochastic 
process that operates in continuous time, the IDI distribution 
obtained with the discrete numerical method is therefore an 
estimate which converges to the exact solution as the time 
step approaches zero. There are, however, practical limits 
to how brief the time step can be in the numerical method. 
Shortening the time step or prolonging the rate function 
increases the number of time points in the observation win-
dow, and the computation time of the method grows super-
linearly with the number of time points. The main compu-
tational bottleneck is Eq. 8, which has a computation time 
that grows approximately in proportion to the cube of the 
number of time points. Nonetheless, to obtain an adequate 
description of a continuous point process, the time step in 
the numerical method must be sufficiently brief. At a mini-
mum, it should be brief enough that each time step would 
be expected to have either zero events or one event, but not 
several events. It should also be brief enough that fluctua-
tions in the rate function are not undersampled. For example, 
to model a process in which the rate fluctuates sinusoidally 
with a frequency of f Hz, the author suggests a time step of 

Fig. 9  Comparison of numeri-
cal and simulation results for 
a homogeneous event process. 
a The constant event rate of 
Revent = 1000 events/s. b The 
expected detection rate after 
taking the dead-time effects 
into consideration, with 
dfixed = 0.5 ms and μrand = 0.5 ms. 
c IEI distributions computed 
from one million simulations 
(gray line) and from the numeri-
cal method (dashed black line). 
d IDI distributions computed 
from the simulations and from 
the numerical method. Insets in 
c and d show the same distribu-
tions with a logarithmic rate 
axis
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Δt ≤ (200⋅f)−1 s, corresponding to a sampling rate of at least 
200 times f.

4.2  The method describes a nonequilibrium 
detection process

It has been shown that the numerical method can be used to 
compute IDI distributions for either homogeneous (Fig. 9) or 
inhomogeneous (Figs. 1, 2, 3, 4, 5, 6, 7, 8) event processes. 
In either case, the detection process is not in equilibrium, 
because there are transient changes in the detection rate at 
the start of the process before it settles into a steady state 
(Deger et al. 2010). This effect is most apparent for the pro-
cess with a constant event rate (Fig. 9a, b), although it also 
occurs for the process with a periodic event rate (Figs. 4c 
and 2). For a process to be in equilibrium at the start of 
the observation window, it must have both begun and set-
tled into its steady state prior to the start of the observation 
window. However, if a process began prior to the start of the 
observation window, then it might be in a dead state at the 
start of the observation window, which violates an assump-
tion of the numerical method presented here. Adapting the 
method to describe an equilibrium detection process would 
therefore require considering the probability that each time 
point in the observation window is in a dead state resulting 
from a detection occurring prior to the observation window. 
The numerical method presented here is therefore suitable 
only for processes that begin at the start of the observation 
window or processes that have a negligible event probability 
prior to the start of the observation window. An example of 
such a process would be a train of spikes recorded from a 
neuron in response to a stimulus, provided the neuron fires 
no (or negligibly few) spikes in the absence of a stimulus 
prior to the observation window.

4.3  The method requires that the detection 
probability be independent of the process 
history prior to the previous detection

The numerical method presented here works only for pro-
cesses in which the instantaneous probability of a detec-
tion depends only on the current time point in the observa-
tion window and on the time elapsed since the most recent 
detection (necessary for knowing the probability that the 
process is still in a dead state). The detection process can 
be either an “ordinary renewal process” (which results if 
the underlying event process is homogeneous such that the 
intervals between detections are independent and identically 
distributed) or an “inhomogeneous renewal process” (which 
results if the underlying event process is inhomogeneous 
such that the distribution of intervals to the next detection 
will depend on the rate function following the most recent 
detection). The numerical method can be applied in either 

case, so long as the probability of detection is not influenced 
by the process history prior to the most recent detection. The 
method does not work for nonrenewal processes.

4.4  The method operates in one direction only

Given a particular dead-time distribution, the numerical 
method can be used to work forward from the rate function 
to the IDI distribution. It is not possible, however, to work 
backward from the IDI distribution to the rate function that 
gave rise to it because the interval distribution contains little 
information about the timing of detections within the obser-
vation window (Turcott et al. 1994; Bi et al. 1988). Indeed, 
many different rate functions can give rise to virtually iden-
tical interval distributions. This can be demonstrated for a 
simple case by comparing a homogeneous Poisson point 
process to a “doubly stochastic” point process in which the 
event rate varies stochastically over time (Cox 1955). For 
sufficiently long observation windows, both processes can 
yield interval distributions that are essentially identical, 
despite the processes having different rate functions (Teich 
et al. 1990; Lowen and Teich 1991).

4.5  Previous approaches

Several investigators have presented results that relate, to 
varying degrees, to the present work. To the author’s knowl-
edge, however, none has presented a method to compute 
the IDI distribution expected for any arbitrary inhomogene-
ous Poisson point process of events modified by dead times 
drawn from any arbitrary distribution. For example, closed-
form expressions have been presented to describe the IDI 
distribution for the dead-time-modified homogeneous (i.e., 
constant-rate) Poisson point process, which in the absence 
of right censoring is given by the convolution of the IEI dis-
tribution and the dead-time distribution (Young and Barta 
1986; Li and Young 1993; Picinbono 2009; Prijs et al. 1993; 
Heil et al. 2007; Neubauer et al. 2009). Although Turcott 
et al. (1994) provide an expression for the IDI distribution 
of an inhomogeneous Poisson point process, it is for the very 
specific case in which the rate function decays exponentially 
and dead times are nonrandom and inversely proportional to 
the instantaneous detection rate. Deger et al. (2010) present 
a method to compute the time-dependent hazard function 
(their Eq. 22) for an inhomogeneous Poisson point process 
modified by random dead times. If converted to the cor-
responding probability distribution, this hazard function is 
equivalent to the distribution of forward recurrence times 
to the next detection obtained in the present study (Eq. 8). 
However, Deger et al. (2010) did not proceed to compute 
the expected IDI distribution from this result. Yakovlev 
et al. (2005) present a method to compute the expected IEI 
distribution for any arbitrary inhomogeneous Poisson point 
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process, but not for one that has been modified by dead 
times. Deriving the expected IDI distribution is therefore a 
novel contribution of the present study.

In the neuroscience literature, there exist two common 
implementations for applying dead-time effects to a point 
process of events. One implementation treats the dead time 
as a random variable, as in the present study, and any events 
which occur during a dead time fail to be detected (e.g., 
Teich et al. 1978; Young and Barta 1986; Li and Young 
1993; Franklin and Bair 1995; Liu et al. 2001; Heil et al. 
2007; Neubauer et al. 2009; Deger et al. 2010; Peterson et al. 
2014; Peterson and Heil 2018). In the alternative imple-
mentation, the dead time has the effect of transiently and 
deterministically reducing the rate of the process following 
each detection (e.g., Gray 1967; Lütkenhöner et al. 1980; 
Teich and Diament 1980; Gaumond et al. 1982; Johnson 
and Swami 1983; Jones et al. 1985; Miller 1985; Bi et al. 
1988; Bi 1989; Miller and Mark 1992; Carney 1993; Prijs 
et al. 1993; Delgutte 1996; Johnson 1996; Berry and Meister 
1998; Zhang et al. 2001; Sumner et al. 2002 2003; Meddis 
2006; Zilany and Bruce 2006; Zilany et al. 2009). In this 
implementation, the detection rate is conceived of as the 
product of two independent components, one of which is 
the stimulus-dependent excitation function, s(t), describing 
the rate of the event process without dead-time effects, and 
the other of which is the recovery function, r(t-t’), describ-
ing how the rate is to be scaled down following a detection 
at time t’ (or, equivalently, describing the probability that 
an event which has occurred based on the original event-
rate function will be detected). In the notation of the pre-
sent study, the detection rate following a detection at time 
ti would be given by Rdetection(ti+j) = Revent(ti+j)·Gdead(dj), 
where Gdead is, for example, given by Eq. 1 but is inter-
preted as a recovery function rather than as a cumulative 
dead-time distribution. Although the difference between the 
two implementations can be quite small when the refrac-
tory periods are short and the rate is low, the implementa-
tions are not equivalent (Peterson et al. 2014). The results 
obtained using the numerical method presented here are 
valid only for the implementation in which the dead time is 
treated as a random variable. Jones et al. (1985) present a 
procedure to obtain the IDI distribution for the alternative 
implementation.

4.6  Applications and future work

Although the numerical method is presented as though the 
rate function of the detection process is known from exper-
imental observation and can therefore be used to compute 
the expected IDI distribution, this is not the primary appli-
cation of the method envisioned by the author. After all, 
an investigator who has observed a process experimentally 
to obtain the rate function would be well positioned to 

simply compute an empirical IDI distribution directly from 
the data. Rather, the more interesting application of the 
method is in modeling. One can use the method to answer 
the question of how a given dead-time distribution will 
affect the IDI distribution of a process characterized by a 
given rate function. This is true whether the rate function 
assumed by the investigator describes the event process 
or the detection process, because the method enables each 
one to be obtained from the other. It is not necessary that 
the rate function or the dead-time distribution be repre-
sentable by a closed-form expression, and it is certainly 
not necessary that a closed-form expression exists for 
either the IEI or IDI distributions. The method could also 
be useful in cases for which the dead-time distribution 
giving rise to a particular experimentally observed IDI 
distribution is unknown; in such a case, it can be used 
to model how several candidate dead-time distributions 
would affect the shape of the IDI distribution and thereby 
aid in selecting a dead-time distribution that can account 
well for the observed data.

Future work could include adapting the method to also 
account for equilibrium processes, although this would 
require knowledge of the rate function prior to the start 
of the observation window so that the probability that the 
process is in a dead state due to a detection occurring prior 
to the window can be taken into consideration. This would 
require that a steady state can be derived for the rate func-
tion prior to the observation window (e.g., if the function 
is constant or periodic). Otherwise, the equilibrium pro-
cess can only be approximated using the current method 
by extending the observation window backward in time to 
allow the process to reach a steady state prior to the start 
of the original observation window, and then computing 
the IDI distribution using only the time points within the 
original observation window. The method can perhaps also 
be adapted to describe non-Poisson point processes modi-
fied by random dead times, or even multiple non-Poisson 
point processes which are superposed and then modified 
by random dead times as has been suggested previously 
to account for nonrenewal properties of spontaneous spike 
trains of auditory-nerve fibers (Peterson and Heil 2018). 
However, the longer-term history effects present in a non-
renewal event process would make such an extension of 
the method substantially more complex than the compara-
tively simple renewal event process presented here.
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